李鵬坤+姜新文+蓋方宇
摘 要:文獻(xiàn)[1]提出的MSP問(wèn)題是一個(gè)NP完全問(wèn)題。為了求解MSP問(wèn)題,文獻(xiàn)[1]給出了ZH算法。本文以ZH算法為研究對(duì)象,剖析ZH算法主要過(guò)程,從新的角度解讀其作用,給出并證明ZH算法的兩條重要性質(zhì)——頂點(diǎn)邊集守恒性質(zhì)和頂點(diǎn)邊集存在性質(zhì)。對(duì)算法過(guò)程和作用的新視角分析為MSP問(wèn)題的研究提供重要參考,ZH算法的重要性質(zhì)也為算法的正確性證明提供幫助。
關(guān)鍵詞:MSP問(wèn)題;ZH算法;算法分析;算法性質(zhì)
中圖分類號(hào):TP301.6 文獻(xiàn)標(biāo)識(shí)碼:A
Abstract:Jiang(2016) proposed Z-H Algorithm to solve MSP Problem. This paper analyzed the main process of Z-H Algorithm, interpreted its role from a new perspective and put forward two important properties of Z-H Algorithm. The analysis from a new angle provided an important reference for the research of MSP Problem, and the properties of Z-H Algorithm also assisted to prove the correctness of the algorithm.
Key words:MSP Problem; Z-H Algorithm; algorithm analysis; algorithm properties
1引言
NP完全問(wèn)題是理論計(jì)算機(jī)科學(xué)領(lǐng)域的重要研究課題。文獻(xiàn)[1]提出的MSP問(wèn)題是一個(gè)NP完全問(wèn)題。在文獻(xiàn)[1]中,作者給出了求解MSP問(wèn)題的多項(xiàng)式時(shí)間算法以及關(guān)于算法正確性的證明,該問(wèn)題對(duì)于NP完全問(wèn)題的研究具有重要意義。本文對(duì)MSP問(wèn)題求解算法ZH算法進(jìn)行深入分析,從新的視角解讀該算法,分析算法主要執(zhí)行過(guò)程,并指出算法本身具有的一些重要性質(zhì)。這種新視角的分析以及算法的性質(zhì),能夠使研究人員更好的理解MSP問(wèn)題及其求解算法,為MSP問(wèn)題的研究提供有價(jià)值的幫助。
2ZH算法分析
MSP問(wèn)題相關(guān)的一些基本定義及求解MSP問(wèn)題的ZH算法詳見(jiàn)文獻(xiàn)[1],鑒于文章篇幅原因,本文不再贅述。本文涉及的所有符號(hào)和算法過(guò)程都來(lái)自文獻(xiàn)[1](新的符號(hào)會(huì)另行說(shuō)明)。
ZH算法整體上以多級(jí)加標(biāo)圖的可達(dá)路徑集邊集R(E)為基礎(chǔ)運(yùn)行,算法不斷循環(huán)去除R(E)中的邊,同時(shí)不斷縮減每個(gè)頂點(diǎn)的邊集中的邊,使得頂點(diǎn)邊集的改變和R(E)的改變互相約束,最終達(dá)到平衡。具體的修改過(guò)程包含兩方面:一是通過(guò)執(zhí)行Change(R(u,v,l))修改邊?u,v,l?的可達(dá)路徑集邊集R(u,v,l);二是通過(guò)執(zhí)行Comp(λ(v),v,R(E))修改頂點(diǎn)v對(duì)應(yīng)的邊集λ(v)。對(duì)R(E)的修改是ZH算法中最主要的過(guò)程,因此下文對(duì)ZH算法的分析,將首先探討可達(dá)路徑集邊集的意義,之后分析兩個(gè)基本算子Comp(ES,v,R(E) )和Change(R(u,v,l))的作用和性質(zhì),最后給出完整修改過(guò)程的分析。
4 結(jié)束語(yǔ)
文獻(xiàn)[1]提出的MSP問(wèn)題是NP完全問(wèn)題的重要表達(dá)。本文對(duì)ZH算法進(jìn)行了詳細(xì)分析,從新的角度指出了算法的意義。在對(duì)算法的分析過(guò)程中,分析了組成算法的兩個(gè)主要基本算子Comp(ES,v,R(E) )和Change(R(u,v,l))的作用和性質(zhì)。最后給出并證明了ZH算法的兩條重要性質(zhì)——頂點(diǎn)邊集守恒性和頂點(diǎn)邊集存在性。對(duì)ZH算法的分析及其性質(zhì)為MSP問(wèn)題的研究提供了重要參考。
參考文獻(xiàn)
姜新文,吳添君,李鵬坤,等.MSP問(wèn)題的一個(gè)求解算法[J].計(jì)算技術(shù)與自動(dòng)化,2016,35(1):60-70.
Jiang X W. Determining the H Property of A Graph by Changing It into Multistage Graph[J]. Computing Technology And Automation, 2004, 23(2):52-54.
Jiang X W, Wang Q, Jiang Z H. The Fourth Version of The Proof for Z-H Algorithm to Solve MSP Problem[J]. Computing Technology & Automation, 2010, 29(3):35-48.
Jiang X W, Peng L H, Wang Q. MSP Problem: Its NP-Completeness and Its Algorithm[C]// Ubiquitous Information Technologies and Applications (CUTE), 2010 Proceedings of the 5th International Conference on. IEEE, 2010:1-5.
吳添君,姜新文.MSP問(wèn)題NP完全性研究[J].計(jì)算機(jī)科學(xué),2015,42(07):12-14.
Fan S, Jiang X W, Peng L H. Polynomial-time heuristic algorithms for several NP-complete optimization problems[J]. Journal of Computational Information Systems, 2014, 10(22):9707-9721.
Jiang X W, Liu W W, Wu T J, et al. Reductions from MSP to SAT and from SUBSET SUM to MSP[J]. Journal of Computational Information Systems, 2014, 10(3):1287-1295.
Jiang X W. A Polynomial Time Algorithm for the Hamilton Circuit Problem[J]. Computer Science, 2013.
樊碩,姜新文.SAT問(wèn)題可多項(xiàng)式歸結(jié)到MSP問(wèn)題[J].計(jì)算機(jī)科學(xué),2012,39(11):179-182.
姜新文.MSP問(wèn)題及其求解研究[J].計(jì)算技術(shù)與自動(dòng)化,2006,25(4):145-159.