李宇鵬 張一鳴 胡海碧 康成宇 李牧洲 郭志云
(西南交通大學(xué)生命科學(xué)與工程學(xué)院,成都 610031)
肝癌細(xì)胞HepG2中p53調(diào)控miRNA-3661的生物信息分析與功能驗(yàn)證
李宇鵬 張一鳴 胡海碧 康成宇 李牧洲 郭志云
(西南交通大學(xué)生命科學(xué)與工程學(xué)院,成都 610031)
對已在前期實(shí)驗(yàn)中通過Dox誘導(dǎo)肝癌細(xì)胞HepG2 DNA損傷發(fā)現(xiàn)的受p53調(diào)控的hsa-miR-3661進(jìn)行生物信息學(xué)分析,并通過分子生物學(xué)實(shí)驗(yàn)對其功能進(jìn)行了驗(yàn)證,為miR-3661在肝腫瘤中的調(diào)控機(jī)制的研究提供理論基礎(chǔ)。獲取miR-3661結(jié)構(gòu)與序列信息;預(yù)測靶基因,使用DAVID進(jìn)行miRNA靶基因功能富集分析;分析miR-3661的p53結(jié)合位點(diǎn),通過基因間的相互作用構(gòu)建調(diào)控網(wǎng)絡(luò);進(jìn)行細(xì)胞增殖實(shí)驗(yàn)驗(yàn)證miR-3661抑制腫瘤功能。結(jié)果表明,miR-3661序列保守,啟動(dòng)子區(qū)存在p53結(jié)合位點(diǎn),暗示p53與hsa-miR-3661存在直接調(diào)控;預(yù)測靶基因1 009個(gè),369個(gè)顯著富集于細(xì)胞周期調(diào)控、細(xì)胞增殖、細(xì)胞凋亡等腫瘤相關(guān)生物學(xué)過程(P<0.05),主要參與了癌癥信號通路、MAPK信號通路與ErbB信號通路(P<0.05);通過268組基因間的相互作用數(shù)據(jù)構(gòu)建了p53、hsa-miR-3661和靶基因的調(diào)控網(wǎng)絡(luò),從系統(tǒng)生物學(xué)角度分析了參與多個(gè)腫瘤生物進(jìn)程的關(guān)鍵靶基因;在實(shí)驗(yàn)中證實(shí)過表達(dá)miR-3661可以顯著抑制肝癌細(xì)胞HepG2的增殖過程(P-value= 0.001 46)。miR-3661受p53直接調(diào)控,其靶基因顯著富集于多種腫瘤相關(guān)生物進(jìn)程與信號通路,過表達(dá)miR-3661可顯著抑制肝癌細(xì)胞增殖。
肝細(xì)胞癌;microRNAs;生物信息學(xué);阿霉素
原發(fā)性肝癌的發(fā)病率居全球第5位,致死率排第3位,其中以肝細(xì)胞癌(Hepatocellular carcinoma,HCC)最為常見[1]。MicroRNA是一類長度為18-24個(gè)核苷酸的小分子非編碼RNA,從線蟲到人類的多種生物種均有發(fā)現(xiàn)。它們可通過結(jié)合于靶mRNA非翻譯區(qū)(UTR),從而調(diào)控mRNA的翻譯和降解。大量研究表明,肝細(xì)胞中miRNA表達(dá) 異?;蚬δ苁д{(diào)與其細(xì)胞增殖、細(xì)胞周期、分化、病毒復(fù)制、肝細(xì)胞癌變的發(fā)生等生理與病理學(xué)過程密切相關(guān)。p53(Tumor protein 53,TP53)作為一種腫瘤抑制轉(zhuǎn)錄因子參與調(diào)控絕大多數(shù)腫瘤的發(fā)生與發(fā)展。前期研究證實(shí),在抗腫瘤藥物阿霉素(Doxorubicin,Dox)誘導(dǎo)下可激活p53從而調(diào)控包括microRNA在內(nèi)的下游靶基因的轉(zhuǎn)錄調(diào)控[2]。本課題組前期通過Dox誘導(dǎo)肝癌HepG2細(xì)胞后進(jìn)行小RNA測序(small RNA sequencing)分析發(fā)現(xiàn)了一系列受p53調(diào)控的miRNA[3]。通過qRT-PCR實(shí)驗(yàn)證實(shí),Dox處理HepG2細(xì)胞24 h后,miR-3661表達(dá)量上調(diào)10.17倍[3],通過文獻(xiàn)搜索并未有相關(guān)報(bào)道?;谏鲜鲅芯恳约扒捌诜治觯狙芯客ㄟ^生物信息學(xué)分析與分子生物學(xué)實(shí)驗(yàn)手段對miR-3661在肝癌中的調(diào)控作用進(jìn)行系統(tǒng)的分析,并從系統(tǒng)生物學(xué)角度發(fā)掘miR-3661與其他相關(guān)基因形成的調(diào)控網(wǎng)絡(luò),旨在通過實(shí)驗(yàn)證明miR-3661對肝癌細(xì)胞的抑制作用,為進(jìn)一步探明miRNA與肝腫瘤的發(fā)病機(jī)理奠定了理論與實(shí)驗(yàn)基礎(chǔ)。
1.1 材料
Hsa-miR-3661序列及結(jié)構(gòu)下載自miRbase(版本21)(http://www.mirbase.org/)[4]和UCSC(https:// genome.ucsc.edu/),人類蛋白相互作用數(shù)據(jù)共268組下載自BioGRID3.4數(shù)據(jù)庫(https://thebiogrid. org/)[5]。
人肝癌細(xì)胞HepG2由本實(shí)驗(yàn)室傳代保管;FBS購自法國Biowest公司;DMEM培養(yǎng)基購自美國Gibco公司;hsa-miR-3661 mimic、miRNA mimic control和miRNA negative control(5Cy3)購自廣州銳博;酶標(biāo)儀購自美國BioTek公司;Cell Counting Kit-8 試劑盒購自美國Sigma公司;培養(yǎng)箱購自日本Panasonic公司。
1.2 方法
1.2.1 miR-3661的基因預(yù)測與功能富集分析 使用miRanda(版本Aug.2010)(http://www.microrna. org/)[6]對miR-3661靶基因進(jìn)行預(yù)測,實(shí)驗(yàn)證實(shí)的靶基因獲取自miRTarBase(6.0版本)數(shù)據(jù)庫。使用DAVID(6.7版本)[7]對miR-3661靶基因進(jìn)行GO[8]與KEGG通路富集分析,以P值<0.05作為顯著性閾值。
1.2.2 miR-3661的p53結(jié)合位點(diǎn)篩選與p53-miR-3661調(diào)控網(wǎng)絡(luò)構(gòu)建 設(shè)定miRNA的TSS上游10 kb和下游1 kb作為miRNA啟動(dòng)子區(qū)域。將基于p53 ChIP-seq數(shù)據(jù)[9]獲取到的p53結(jié)合位點(diǎn)與miR-3661的啟動(dòng)子區(qū)進(jìn)行比對確定miR-3661的p53結(jié)合位點(diǎn),整合miR-3661靶基因與BioGRID蛋白相互作用數(shù)據(jù),使用Cytoscape(版本3.3.0)[10]軟件構(gòu)建調(diào)控網(wǎng)絡(luò)。
1.2.3 miR-3661 對HepG2 細(xì)胞增殖的影響 設(shè)置HepG2 細(xì)胞 hsa-miR-3661 mimic 轉(zhuǎn)染和HepG2 細(xì)胞熒光陰性對照 mimic 轉(zhuǎn)染,細(xì)胞處理72 h后進(jìn)行CCK-8細(xì)胞增殖檢測,計(jì)算生長抑制率:生長抑制率(%) =(1-實(shí)驗(yàn)組平均OD值/對照組平均OD值)×100%。
2.1 hsa-miR-3661基本信息
通過Dox誘導(dǎo)肝癌HepG2細(xì)胞,進(jìn)行小RNA測序(small RNA sequencing)(兩次生物學(xué)重復(fù))后發(fā)現(xiàn)了33條受p53調(diào)控的顯著差異表達(dá)miRNA。篩選標(biāo)準(zhǔn):(1)在兩組樣品中表達(dá)倍數(shù)變化均滿足|log2(fold change)|> 1;(2)至少在一個(gè)樣品中 reads數(shù)大于10;(3)至少在一個(gè)樣品中滿足P < 0.01。我們發(fā)現(xiàn)hsa-miR-1277、hsa-miR-146b、hsa-miR-3661、hsa-miR-3662、hsa-miR-371a、hsamiR-4485 和hsa-miR-4521這7條miRNA在先前的肝癌研究中并未有相關(guān)報(bào)道。通過qRT-PCR證實(shí)發(fā)現(xiàn),在Dox處理HepG2細(xì)胞24 h后,miR-3661表達(dá)量上調(diào)顯著(上調(diào)10.17倍),因此推測miR-3661在肝癌細(xì)胞HepG2的調(diào)控中可能發(fā)揮重要作用。為此選取miR-3661對其進(jìn)行了一系列的分析與驗(yàn)證。首先我們對miR-3661的基本信息進(jìn)行了分析,miR-3661位于人類的第5號染色體,前體長96 bp,具有典型的莖環(huán)結(jié)構(gòu),染色體定位:chr5:134225757-134225852[+],成熟序列:UGACCUGGGACUCGGACAGCUG。在UCSC基因組瀏覽器中顯示miR-3661具有高度的保守性(圖1)。
圖1 hsa-miR-3661組蛋白修飾、臨近基因、保守性
2.2 hsa-miR-3661調(diào)控靶基因預(yù)測與GO與KEGG通路功能富集分析
MiRanda軟件預(yù)測得到靶基因1 009個(gè),miRTarBase實(shí)驗(yàn)證實(shí)靶基因30個(gè)。通過DAVID對miR-3661的靶基因進(jìn)行功能富集分析表明,hsamiR-3661的靶基因顯著富集于p53調(diào)控腫瘤相關(guān)生物學(xué)進(jìn)程,如細(xì)胞凋亡、細(xì)胞周期阻滯、細(xì)胞遷移、細(xì)胞生長、細(xì)胞黏附、細(xì)胞分化和增殖(圖2)。其中SMAD3、GSK3B、MSX1、THBS1、TGFBR1、PTEN、WNT4、CDKN1A及TFAP4參與了上述絕大多數(shù)的生物學(xué)進(jìn)程。
圖2 369個(gè)靶基因參與20個(gè)癌癥相關(guān)生物學(xué)功能熱圖
通過對KEGG通路進(jìn)行富集分析表明,hsa-miR-3661的靶基因顯著富集于癌癥信號通路、MAPK信號通路和ErbB信號通路腫瘤相關(guān)通路(圖3)。如miRNA-3661富集到pathway in cancer通路的有34個(gè)靶基因:CYCS、akt2、TGFB3、bcr、RXRA、wnt5b、TRAF5、AXIN2、ARNT、NFKB2、FGF2、Egf、PTENP1、PPARG、tgfbr、TGFA、GSTP1、egfr、Epas1、Stat5b、NFKB1、rassf5、WNT4、Skp2、sufU、ARNT2、AXIN1、SMAD3、PTK2、IGF1R、 HIF1A、CDKN1A、GSK3B和DAPK1。其中AXIN1、SMAD3、PTK2、IGF1R、HIF1A、CDKN1A、GSK3B和DAPK1這8個(gè)基因同時(shí)也是p53的靶基因。
圖3 癌癥中的信號通路
2.3 hsa-miR-3661假定啟動(dòng)子區(qū)p53的結(jié)合位點(diǎn)分析
將5個(gè)p53 ChIP-seq的p53轉(zhuǎn)錄位點(diǎn)(TFBS)數(shù)據(jù)與miR-3661的啟動(dòng)子區(qū)域?qū)Ρ群蟀l(fā)現(xiàn)在miR-3661的啟動(dòng)子區(qū)存在一個(gè)p53結(jié)合位點(diǎn),在5號染色體的133561448-133561543區(qū)域,位于TSS下游79 kb處(圖4),p53-DNA結(jié)合序列為:GCTGCAGCTGCTTGTGG。這一結(jié)果說明p53直接相互作用于miR-3661,并且誘導(dǎo)miR-3661表達(dá)上調(diào)從而調(diào)控下游靶基因功能。
圖4 miR-3661轉(zhuǎn)錄啟動(dòng)位點(diǎn)與p53結(jié)合位點(diǎn)
2.4 p53-miRNA-mRNA調(diào)控網(wǎng)絡(luò)圖
MiR-3661靶基因參與的網(wǎng)絡(luò)復(fù)雜,為了提取和p53以及腫瘤相關(guān)的子網(wǎng)絡(luò),我們對參與p53關(guān)鍵生物進(jìn)程(細(xì)胞周期、細(xì)胞凋亡與細(xì)胞增殖)的miR-3661的143個(gè)靶基因進(jìn)行了調(diào)控網(wǎng)絡(luò)圖繪制(圖5)。從BioGRID獲取了這143個(gè)靶基因的268組人蛋白相互作用數(shù)據(jù),使用Cytoscape軟件對p53、miR-3661及參與細(xì)胞周期、細(xì)胞凋亡與細(xì)胞增殖的靶基因進(jìn)行了網(wǎng)絡(luò)構(gòu)建。從圖中可以看到,MSX1、 HIF1A、MELK、SOD2、HIPX2、CYP1B1和CLU同時(shí)參與細(xì)胞凋亡和細(xì)胞增殖的調(diào)控;BTG2、TFAP4、THBS1、ING4、E4F1、MDM4、GFBR1和SMAD3同時(shí)參與細(xì)胞周期與細(xì)胞增殖的調(diào)控;MYBBP1A參與細(xì)胞周期與細(xì)胞凋亡的調(diào)控;而ERN1和CDKN1A同時(shí)參與細(xì)胞周期、細(xì)胞凋亡與細(xì)胞增殖的調(diào)控。2.5 MiR-3661抑制HepG2細(xì)胞增殖
通過轉(zhuǎn)染miR-3661來檢驗(yàn)其是否對肝腫瘤細(xì)胞HepG2有明顯抑制作用。首先通過熒光顯微鏡觀察轉(zhuǎn)染效率(圖6),發(fā)現(xiàn)熒光陰性對照mimic成功轉(zhuǎn)入至 HepG2細(xì)胞內(nèi),在綠色熒光的激發(fā)下呈紅色,轉(zhuǎn)染效率較高,可達(dá)80%以上。檢測結(jié)果(圖7)表明,在HepG2中過表達(dá)miR-3661顯著抑制了細(xì)胞的增殖過程,抑制率為 25.70%,P-value = 0.001 460 497,差異顯著。
圖5 p53-miRNA-mRNA調(diào)控網(wǎng)絡(luò)圖
本文從生物信息學(xué)與分子生物學(xué)實(shí)驗(yàn)兩個(gè)角度證實(shí)hsa-miR-3661作為p53調(diào)控因子參與了肝癌細(xì)胞HepG2的腫瘤相關(guān)進(jìn)程并抑制其增殖。MiRNA-3661位于人類的5號染色體上,發(fā)現(xiàn)其前體RNA(pre-miRNA)具有典型的莖環(huán)結(jié)構(gòu),經(jīng)過加工,形成22 nt的單鏈RNA,這一長度與大多數(shù)的miRNA的長度一致。通過miRanda預(yù)測得到1 009個(gè)miRNA靶基因,其中有5條已被實(shí)驗(yàn)證實(shí)。對靶基因進(jìn)行GO功能富集分析表明,369個(gè)miR-3661的靶基因顯著富集于細(xì)胞周期、細(xì)胞凋亡、癌癥通路、細(xì)胞增殖等多種與腫瘤相關(guān)的生物學(xué)進(jìn)程中。這些參與生物進(jìn)程的基因中,有研究表明TGF-β1會(huì)通過p53的表達(dá)上調(diào)來促進(jìn)細(xì)胞周期蛋白激酶CDK的活性來調(diào)控細(xì)胞周期,而SMAD3會(huì)終止這一過程[11];THBS1作為腫瘤特異性的細(xì)胞外基質(zhì)蛋白,已發(fā)現(xiàn)在口腔鱗狀細(xì)胞癌中促進(jìn)癌細(xì)胞遷移[12];而TFAP2C可通過上調(diào)TGFBR1進(jìn)而激活PAK1信號從而促進(jìn)腫瘤發(fā)展[13];PTEN作為公認(rèn)的抑癌基因,在多種癌癥中表現(xiàn)出對癌細(xì)胞增殖的負(fù)調(diào)控;WNT4屬于WNT蛋白,在動(dòng)物發(fā)育中起到重要作用,表達(dá)異??赡芤鹉[瘤;TFAP4參與調(diào)節(jié)眾多細(xì)胞增殖和基因表達(dá),在結(jié)腸直腸癌和其他一些人類惡性腫瘤中表達(dá)上調(diào),與有絲分裂的保真性密切相關(guān)[14]。同樣是在結(jié)腸直腸癌,研究發(fā)現(xiàn)GSK3B驅(qū)動(dòng)了結(jié)腸直腸癌向IV期的發(fā)展[15]。使用KEGG通路分析發(fā)現(xiàn)miR-3661靶基因參與3種腫瘤相關(guān)通路。癌癥通路共富集34個(gè)靶基因,P值為0.000 48;ErbB信號通路共富集21個(gè)靶基因,P值為0.00 79;MAPK信號通路共富集23個(gè)靶基因,P值為0.037。在參與的通路中,已知AXIN1是抑癌基因,在Wnt通路中可作為抑制劑來下調(diào)信號通路中主要的效應(yīng)分子[16];PTK2的高表達(dá)與腫瘤復(fù)發(fā)相關(guān)[17];IGF1R的表達(dá)上調(diào)會(huì)促進(jìn)腫瘤的發(fā)生[18];而在對胃癌的相關(guān)報(bào)道中,HIF1A的高表達(dá)會(huì)促進(jìn)胃癌細(xì)胞血管的再生,導(dǎo)致預(yù)后差[19];DAPK1(死亡相關(guān)蛋白激酶1)具有腫瘤抑制功能,并介導(dǎo)多種細(xì)胞過程,包括細(xì)胞凋亡和自噬[20]。
結(jié)合p53ChIP-seq數(shù)據(jù)進(jìn)行分析,我們發(fā)現(xiàn)miRNA-3661的假定啟動(dòng)子區(qū)存在一個(gè)p53結(jié)合位點(diǎn),位于5號染色體的133561448-133561543區(qū)域,TSS下游79 kb處,且處于miR-3661轉(zhuǎn)錄本的莖環(huán)結(jié)構(gòu)域,這種情況在研究人類基因保守的TFBS時(shí)曾被報(bào)道過:TFBS可位于miRNA的pre-miRNA區(qū)域[21]。為了從系統(tǒng)生物學(xué)角度闡明p53、miR-3661以及其靶基因之間的調(diào)控關(guān)系,我們構(gòu)建了三者的調(diào)控網(wǎng)絡(luò)圖。從圖中我們發(fā)現(xiàn)有兩個(gè)基因:ERN1和CDKN1A,它們可同時(shí)被p53與miRNA-3661調(diào)節(jié)并可作用于p53關(guān)鍵的生物學(xué)進(jìn)程:細(xì)胞周期、細(xì)胞凋亡和細(xì)胞增殖。已在乳腺癌的研究中證實(shí),使用激酶抑制劑抑制ERN1后,會(huì)使乳腺癌細(xì)胞致瘤性下降,與Strietz等人發(fā)現(xiàn)的在乳腺癌中ERN1能夠抑制潛在的腫瘤啟始細(xì)胞現(xiàn)象一致[22]。同時(shí)CDKN1A(p21)也已經(jīng)有實(shí)驗(yàn)證實(shí)可以作為抑制前列腺癌增長的藥物靶向位點(diǎn)[23]。
圖6 HepG2細(xì)胞轉(zhuǎn)染效率
圖7 hsa-miR-3661抑制HepG2細(xì)胞增殖
前期我們通過realtimePCR實(shí)驗(yàn),證實(shí)經(jīng)阿霉素處理24 h后HepG2細(xì)胞中miR-3661表達(dá)量相比對照組上調(diào)了10.17倍,這與我們前期的小RNA測序結(jié)果一致。p53作為腫瘤抑制轉(zhuǎn)錄因子其正調(diào)控的靶基因在p53表達(dá)上調(diào)后應(yīng)當(dāng)呈現(xiàn)與p53一致的生物學(xué)功能,如參與抑制細(xì)胞增殖。miR-3661作為p53的正調(diào)控靶基因,其生物學(xué)功能也應(yīng)當(dāng)具備抑制細(xì)胞增殖的能力,為此通過CCK-8細(xì)胞增殖實(shí)驗(yàn)證實(shí)在HepG2中過表達(dá)miR-3661顯著抑制了細(xì)胞的增殖過程,抑制率為 25.70%,這與預(yù)期的miR-3661功能相一致。
MiRNA-3661序列保守并存在p53結(jié)合位點(diǎn),顯著參與腫瘤相關(guān)細(xì)胞周期調(diào)控、細(xì)胞增殖、細(xì)胞凋亡等腫瘤相關(guān)生物學(xué)過程,同時(shí)也顯著參與癌癥信號通路、MAPK信號通路與ErbB信號通路。p53、hsa-miR-3661和靶基因的調(diào)控網(wǎng)絡(luò)從系統(tǒng)生物學(xué)角度闡述了參與腫瘤生物進(jìn)程的關(guān)鍵靶基因。實(shí)驗(yàn)證實(shí)過表達(dá)miR-3661可以顯著抑制肝癌細(xì)胞HepG2的增殖過程(P-value= 0.00146)。
[1]Yang JD, Roberts LR. Epidemiology and management of hepatocellular carcinoma[J]. Infectious Disease Clinics of North America, 2010, 24(4):899-919.
[2]Liu J, Zhang C, Feng Z. Tumor suppressor p53 and its gain-offunction mutants in cancer[J]. Acta Biochimica et Biophysica Sinica, 2014, 46(3):170-179.
[3]Yang Y, Liu W, Ding R, et al. Comprehensive expression profiling and functional network analysis of p53-regulated MicroRNAs in HepG2 Cells treated with doxorubicin[J]. PLoS One, 2016, 11(2):e0149227.
[4]Agarwal V, Bell GW, Nam JW, Bartell DP. Predicting effective microRNA target sites in mammalian mRNAs[J]. Elife, 2015, 4:e05005.
[5]Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, et al. The BioGRID interaction database:2015 update[J]. Nucleic Acids Res, 2015, 43(Database issue):D470-478.
[6]Betel D, Koppal A, Agius P, et al. Comprehensive modeling of microRNA targets predicts functional non-conserved and noncanonical sites[J]. Genome Biology, 2010, 11(8):R90.
[7]Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists[J]. Nucleic Acids Research, 2009, 37(1):1-13.
[8]Vlachos IS, Paraskevopoulou MD, Karagkouni D, et al. DIANATarBase v7. 0:indexing more than half a million experimentally supported miRNA:mRNA interactions[J]. Nucleic Acids Research, 2015, 43(D1):D153-D159.
[9]Zeron-Medina J, Wang X, Repapi E, et al. A polymorphic p53 response element in KIT ligand influences cancer risk and hsa undergone natural selection[J]. Cell, 2013, 155(2):410-422.
[10]Shannon P, Markiel A, Ozier O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11):2498-2504.
[11] Park SJ, Yang SW, Kim BC. Transforming growth factor-beta1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells[J]. Biochem Biophys Res Commun, 2016, 472(3):502-507.
[12]Pal SK, Nguyen CT, Morita KI, et al. THBS1 is induced by TGFB1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma[J]. J Oral Pathol Med, 2016, 45(10):730-739.
[13]Kim W, Kim E, Lee S, et al. TFAP2C-mediated upregulation of TGFBR1 promotes lung tumorigenesis and epithelial-mesenchymal transition[J]. Exp Mol Med, 2016, 48(11):e273.
[14]D’Annibale S, Kim J, Magliozzi R, et al. Proteasome-dependent degradation of transcription factor activating enhancer-binding protein 4(TFAP4)controls mitotic division[J]. J Biol Chem, 2014, 289(11):7730-7737.
[15] Palaniappan A, Ramar K, Ramalingam S. Computational identification of novel stage-specific biomarkers in colorectal cancer progression[J]. PLoS One, 2016, 11(5):e0156665.
[16]Pe?ina-?laus N, Kafka A, Vladu?i? T, et al. AXIN1 expression and localization in meningiomas and association to changes of APC and e-cadherin[J]. Anticancer Res, 2016, 36(9):4583-4594.
[17]Sethuraman A, Brown M, Seagroves TN, et al. SMARCE1 regulates metastatic potential of breast cancer cells through the HIF1A/PTK2 pathway[J]. Breast Cancer Res, 2016, 18(1):81.
[18]Yasumoto M, Sakamoto E, Ogasawara S, et al. Muscle RAS oncogene homolog(MRAS)recurrent mutation in Borrmann typeIV gastric cancer[J]. Cancer Med, 2017, 6(1):235-244.
[19]Wu Y, Yun D, Zhao Y, et al. Down regulation of RNA binding motif, single-stranded interacting protein 3, along with up regulation of nuclear HIF1A correlates with poor prognosis in patients with gastric cancer[J]. Oncotarget, 2017, 8(1):1262-1277.
[20]Singh P, Ravanan P, Talwar P. Death associated protein kinase 1(DAPK1):a regulator of apoptosis and autophagy[J]. Front Mol Neurosci, 2016, 9:46.
[21]Piriyapongsa J, Jordan IK, Conley AB, et al. Transcription factor binding sites are highly enriched within microRNA precursor sequences[J]. Biology Direct, 2011, 6:61.
[22]Strietz J, Stepputtis SS, Precac BT, et al. ERN1 and ALPK1 inhibit differentiation of bi-potential tumor-initiating cells in human breast cancer[J]. Oncotarget, 2016, 7(50):83278-83293.
[23]Guo H, Xu Y, Fu Q. Curcumin inhibits growth of prostate carcinoma via miR-208-mediated CDKN1A activation[J]. Tumor Biology, 2015, 36(11):8511-8517.
(責(zé)任編輯 李楠)
Bioinformatics Analysis and Functional Verification of p53 Regulating miRNA-3661 in Hepatoma Cell HepG2
LI Yu-peng ZHANG Yi-ming HU Hai-bi KANG Cheng-yu LI Mu-zhou GUO Zhi-yun
(School of Life Science and Engineering,Southwest Jiaotong University,Chengdu 610031)
The aims of this work are to have the bioinformatics analysis of hsa-miR-3661 regulated by p53,which was found in doxorubicin(Dox)inducing the DNA damages of hepatoma cell HepG2 in previous experiment,and to verify its function by molecular biological experiment,providing theoretical basis for the regulating mechanism of miR-3661 in hepatoma cells. After acquiring the structure and sequence information of miR-3661,we predicted the target genes and used DAVID to do the functional enrichment analysis of miRNA target gene. We then analyzed the binding sites of p53 and miR-3661,and built the regulatory network by the interaction among genes. Finally,multiplication experiment verified the functions of miR-3661 in restraining tumor. The results showed that miR-3661 sequence was conserved,and the promoter region existed in the binding site of p53,suggesting that there was direct regulation between p53 and hsa-miR-3661. We predicted that there were 1009 target genes,and 369 genes of them significantly enriched in the biological procedure related to tumor,such as cell cycle regulation,proliferation,apoptosis and so on(P < 0.05),mainly involved in cancer pathway,MAPK signaling pathway,ErbB signaling pathway(P < 0.05). Using the interactions of 2830 groups of genes,we constructed the regulatory network among p53,hsa-miR-3661 and target genes,and analyzed key target gene participating in several tumorous biological process from the perspective of system biology. It was confirmed in the experiment that the overexpression of miR-3661 significantly inhibited the proliferation of hepatoma cell HepG2(P-value= 0.00146). In conclusion,miR-3661 is directly regulated by p53 and its target genes significantly enrich in various biological processes and signal pathways related to tumor. Moreover,the overexpression of miR-3661 significantly inhibits the proliferation of hepatoma cell.
hepatocellular carcinoma;microRNAs;bioinformatics;doxorubicin
10.13560/j.cnki.biotech.bull.1985.20170005
2017-01-12
中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(2682016YXZT04),國家大學(xué)生創(chuàng)新性實(shí)驗(yàn)計(jì)劃項(xiàng)目(201610613066)
李宇鵬,男,研究方向:生物信息學(xué);E-mail:15234151228@163.com
郭志云,男,副教授,研究方向:腫瘤生物信息學(xué);E-mail:zhiyunguo@gmail.com