郭曉俊,袁俊生,趙穎穎,杜亞威,楊超鵬
(河北工業(yè)大學(xué)海洋科學(xué)與工程學(xué)院,天津300130)
濃海水制備液體鹽過(guò)程中空氣吹出法除溴的研究
郭曉俊,袁俊生,趙穎穎,杜亞威,楊超鵬
(河北工業(yè)大學(xué)海洋科學(xué)與工程學(xué)院,天津300130)
研究了濃海水制備液體鹽過(guò)程中,用空氣吹出法脫除海水中溴的可行性及工藝問(wèn)題.考察了不同空氣流量、溫度對(duì)溴的脫除速率及其平衡濃度的影響.確定了通過(guò)空氣吹出法除溴的極限值為12 mg/L,配套適當(dāng)?shù)幕钚蕴即?,可將濃海水溴含量降低? mg/L.溫度越高,越有利于除溴,但過(guò)高的溫度會(huì)引起溴的水解反應(yīng),生成溴酸鹽,反而不利于除溴.壓力越低,越有利于除溴.經(jīng)過(guò)模型檢驗(yàn),采用Aspen Plus7.2模擬軟件研究了延伸的操作溫度、操作壓力對(duì)濃海水中Br2脫吸平衡濃度的影響.
液體鹽;濃海水;空氣吹出法;活性碳床;脫溴;平衡濃度
目前制堿行業(yè)都采用固體食鹽(NaCl)作為原料,需要經(jīng)過(guò)化鹽、精制、澄清、過(guò)濾、重飽和及預(yù)熱、中和以及鹽泥洗滌等過(guò)程,處理工藝復(fù)雜,占地面積大,能耗高.若將海水淡化后的濃海水通過(guò)凈化除去雜質(zhì)離子,只剩NaCl的溶液(以下稱(chēng)為液體鹽),經(jīng)濃縮后作為制堿原料,不僅能節(jié)約占地,降低制堿能耗[1].若技術(shù)可行且具有經(jīng)濟(jì)性,勢(shì)必對(duì)制堿業(yè)產(chǎn)生積極的影響.業(yè)已發(fā)現(xiàn),濃海水通過(guò)離子篩、電滲析等常規(guī)技術(shù)可以將K+、Rb+、Li3+脫除[2-6];通過(guò)納濾等技術(shù)可以除去二價(jià)離子,如Ca2+、Mg2+、溴是海洋元素,在濃海水中的濃度相對(duì)較高,與含量最高的氯同屬鹵族,性質(zhì)接近,難以通過(guò)物理過(guò)程實(shí)現(xiàn)分離.
空氣吹出法是工業(yè)制備溴的主要方法之一[12-15],與本文濃海水除溴化學(xué)反應(yīng)相似.然而本質(zhì)并不相同.制溴核心是溴的產(chǎn)率與成本,而脫溴關(guān)鍵在于將濃海水中溴的濃度降低到極低的水平(≤3 mg/L),以確保液體鹽對(duì)后續(xù)制堿沒(méi)有影響,兩者工藝條件相差甚遠(yuǎn).
本文采用直徑230 mm,理論級(jí)(N)=6的玻璃填料塔對(duì)空氣脫溴工藝進(jìn)行了工藝研究.采集了某海水淡化廠排放濃海水,按比例配入濃硫酸和氯氣,使海水中的Br-全部被還原為Br2,用空氣將濃海水中絕大部分Br2除去.再將濃海水通入活性炭床進(jìn)行深度Br2脫除,確保符合下游處理要求.采用實(shí)驗(yàn)數(shù)據(jù)對(duì)Aspen Plus流程模擬軟件的模型數(shù)據(jù)進(jìn)行校核,分析了更寬范圍內(nèi)操作溫度、操作壓力對(duì)溴平衡濃度的影響.本研究為處理海水淡化副產(chǎn)濃海水提供了一個(gè)出路,更為制堿行業(yè)降低原料成本提出一個(gè)解決方案.
1.1 試驗(yàn)過(guò)程與裝置
原料海水的預(yù)處理和測(cè)定:分析采集濃海水中Br-濃度,配入NaBr,確保濃海水中Br-濃度為普通海水的2倍,即134 mg/L(通常熱法海水淡化濃縮倍數(shù)為2倍).過(guò)超濾預(yù)處理待用.硫酸,天津化學(xué)試劑有限公司;氯氣,滄州大化集團(tuán)有限責(zé)任公司提供;活性炭,淮北潔力活性炭廠提供的果殼活性炭.
將濃海水中的Br-氧化成Br2,氧化率的高低取決于海水的酸度和配氯率.適合的氧化條件為3.5≤pH≤4.5,配氯率為130%.氧化率可達(dá)95%以上.本實(shí)驗(yàn)在每1 000 kg海水中加入653 g濃硫酸,其pH值顯示為3.8,配氯155 g,通過(guò)靜態(tài)混合器使氧化反應(yīng)充分進(jìn)行,反應(yīng)為
2Br-+Cl2—→Br2+2Cl-
實(shí)驗(yàn)步驟如圖1所示,V01的濃海水按照上述條件配入硫酸和氯氣,使溴離子的氧化反應(yīng)達(dá)到平衡.經(jīng)泵P01打入脫吸塔T01上部向下淋洗.空氣由VP01鼓入T01下部,氣液逆流接觸除溴.按照一定時(shí)間間隔對(duì)淋洗液中溴進(jìn)行分析,直到溴濃度低于15 mg/L視為合格.然后由泵P02打入VC01和VC02進(jìn)行微量溴的吸附,當(dāng)濃海水中溴含量小于3 mg/L時(shí)即為合格.
圖1 液體鹽制備過(guò)程中除溴工藝流程圖Fig.1 Process flow diagram of removal of bromine during the preparing course of liquid salt
1.2 分析方法
濃海水中溴離子濃度測(cè)定采用ASTM D3869-2004(微咸水、海水和鹽水中碘化物和溴化物離子的測(cè)試方法)進(jìn)行測(cè)量[16].
1.3 過(guò)程模擬分析
采用Aspen Plus7.2中的RGibbs和Radfrac模塊對(duì)溴脫吸塔進(jìn)行模擬.物性選擇:海水的物性計(jì)算采用了Chen等提出的電解質(zhì)ENRTL-RK模型[17-18].流程模擬電解質(zhì)計(jì)算選項(xiàng)采用表觀組分的形式.
2.1 不同空氣流速對(duì)海水脫溴的影響
充分氧化的濃海水流量為1 000 m3/h,從填料塔頂部進(jìn)入.鼓風(fēng)機(jī)給塔底送氣,分別考察了空氣流量在50~80 Nm3/h時(shí),每0.5 h對(duì)濃海水中溴濃度進(jìn)行檢測(cè),所得結(jié)果如圖2所示.
氧化后,海水中Br2的初始濃度是134 mg/L,0.5 h后,不同空氣流速下,海水中溴均表現(xiàn)為快速下降.以60 Nm3/h時(shí)為例,0.5 h后Br2濃度急劇降為57.3 mg/L,1.5 h之后,濃度降到28 mg/L.在此之后,濃度繼續(xù)降低,但是降低的趨勢(shì)逐漸減緩,2.5 h后,Br2的濃度穩(wěn)定在12 mg/L左右.
氣速60 Nm3/h與80 Nm3/h的下降趨勢(shì)比較接近,2.5 h候接近平衡.而50 Nm3/h的脫除速率明顯偏小.因此,在濃海水流量為1 m3/h時(shí),適宜的空氣流速為60 Nm3/h,即適宜的氣液比為60.
可見(jiàn),吹溴過(guò)程是液膜控制的富液解吸過(guò)程.海水中Br2濃度越高,向氣相中轉(zhuǎn)移的推動(dòng)力就越大,Br2濃度下降就愈快.隨著B(niǎo)r2濃度的降低,推動(dòng)力降低,Br2濃度下降的趨勢(shì)逐漸減緩,直到基本保持不變.此時(shí),空氣與海水中溶解Br2達(dá)到平衡,稱(chēng)為平衡濃度.空氣流速增大,Br2濃度降低速率增大,由圖2可知,氣速越大,初始降低速率就越高,達(dá)到解吸平衡的時(shí)間也就越短.氣速越小,開(kāi)始下降速度慢,其降速減緩的速度也較慢,達(dá)到解吸平衡需要的時(shí)間越長(zhǎng).一定時(shí)間之后,不同氣速下海水中Br2濃度均穩(wěn)定在12 mg/L左右.可知,空氣流量對(duì)濃海水解吸平衡時(shí)Br2濃度沒(méi)有影響,只對(duì)達(dá)到解吸平衡時(shí)間有影響.
2.2 空氣量對(duì)海水脫溴的影響
空氣流量保持60 Nm3/h,濃海水流量1 m3/h,考察了累積進(jìn)塔空氣量與塔底海水中Br2濃度的對(duì)應(yīng)關(guān)系,如圖3所示.開(kāi)始通入空氣后Br2濃度快速下降,累計(jì)空氣量達(dá)到75 kg時(shí),Br2濃度的降速顯著減緩,150 kg后,Br2濃度變化不明顯,如圖3所示.
圖2 不同空氣流量下海水中Br-濃度隨送氣時(shí)間變化趨勢(shì)Fig.2 Tendency of Br-concentration in brine at different air flow rate
圖3 海水中Br-含量隨空氣量的變化趨勢(shì)Fig.3 Tendency of Br-concentration in brinewithair cumulative quality
采用Aspen Plus7.2對(duì)海水除溴工藝進(jìn)行流程模擬.模擬流程圖如圖4所示.一定量的海水(SEAWATER)與氯氣(Cl2)在REACTOR混合并反應(yīng),得到一定量的含Br2濃海水.濃海水進(jìn)入ABSORPTI的頂部,空氣(Air)從ABSORPTI下部進(jìn)入,含溴空氣(VAPOR)從ABSORPTI頂部逸出,脫溴海水BOTM從ABSORPTI底部流出.
圖4 模擬流程圖Fig.4 Flow chart of simulation
3.1 操作溫度對(duì)海水中Br2含量平衡濃度的影響
分別測(cè)定了20℃、25℃和30℃的平衡濃度,如圖5所示.通過(guò)模型校核,采用Aspen Plus軟件分析了1 bar、空氣流量為60 Nm3/h下操作溫度對(duì)海水脫溴終點(diǎn)濃度的影響,結(jié)果如圖5所示.隨著操作溫度升高,濃海水中溴含量在平衡態(tài)時(shí)含量越低,如圖5所示.可見(jiàn),操作溫度越高,對(duì)Br2的脫除越有利.
濃海水中溴的脫除率取決于Br2的平衡系數(shù)顯然,P值越大越有利于Br2的脫除.溫度一定,P值一定,與空氣的流速無(wú)關(guān).隨著溫度的升高,溴的脫除效率越高.然而,較高的溫度會(huì)導(dǎo)致Br2發(fā)生如下的水解反應(yīng):
溴在濃海水中的水解反應(yīng)平衡常數(shù)為
K值隨著溫度的升高而增大,例如:在0℃時(shí),K值為0.7×10-9,25℃時(shí)為5.8×10-9,而在50℃為2.83×10-8[19].當(dāng)H+的濃度不變時(shí),溫度升高,HBrO和因?yàn)锽r2的水解而升高.HBrO和不能通過(guò)空氣吹出,不利于實(shí)現(xiàn)溴的大量脫除.因此,適宜的除溴溫度不應(yīng)該超過(guò)50℃.
3.2 操作壓力對(duì)海水中Br2含量平衡濃度的影響
采用模擬的方法分析了20℃、空氣流量為60 Nm3/h下,操作壓力(絕對(duì)壓力)從接近真空到3 bar的范圍內(nèi)壓力對(duì)海水中Br2含量平衡濃度的影響,結(jié)果如圖6所示.本實(shí)驗(yàn)在20℃、1.0 bar的壓力下進(jìn)行,Br2在海水中的平衡濃度約為12 mg/L,模擬結(jié)果與實(shí)驗(yàn)結(jié)果十分接近.隨著壓力的升高,Br2在海水中的平衡濃度呈直線逐漸升高.操作壓力升高,海水中Br2解吸平衡濃度增大,不利于解吸操作的進(jìn)行.因此,適當(dāng)?shù)牡蛪翰僮鲗?duì)濃海水除溴是十分有利的.
圖5 溫度對(duì)海水Br2含量平衡濃度的影響Fig.5 Effect oftemperatureon Br2equilibrium concentration
圖6 操作壓力對(duì)海水Br2含量平衡濃度的影響Fig.6 Effect of operating pressureon Br2equilibrium concentration
1)空氣吹出法可以將海水中Br-脫除到接近12 mg/L左右,配套適當(dāng)?shù)幕钚蕴课街?,可以將Br-濃度控制在3 mg/L左右.
2)空氣流量對(duì)海水脫溴的速率有影響.空氣流量越大,海水脫溴的初始速率越快,其速率的下降也越快,達(dá)到脫吸平衡的時(shí)間相對(duì)較短.反之,空氣流量小,初始速率減小,速率下降趨緩,達(dá)到平衡需要的時(shí)間較長(zhǎng).空氣流速對(duì)海水中Br2的平衡濃度沒(méi)有影響.
3)操作溫度較高,Br2的平衡系數(shù)越大,有利于除溴;然后過(guò)高的溫度會(huì)造成Br2的水解,生成難以處理的溴酸鹽離子.
4)操作壓力越低,對(duì)濃海水的除溴越有利.
5)濃海水除溴常壓下(1 bar)的操作條件:氣液比60,溫度40℃.
[1]劉駱?lè)澹瑥堄晟?,黃西平,等.淡化后濃海水化學(xué)資源綜合利用技術(shù)研究進(jìn)展[J].化工進(jìn)展,2013,32(2):446-452.
[2]Yuan J S,Zhao Y Y,Li Q H,et al.Preparation of potassium ionic sieve membrane and its application on extracting potash from seawater[J].Separation and Purification Technology,2012,99:55-60.
[3]Jin N,Meng Cx,Hou J.Preparation and characterization of merlinoite for potassium extraction from seawater[J].Journal of Industrial and Engineering Chemistry,2014,20:1227-1230.
[4]Hou J,Yuan J S,Xu J,et al.Template-free synthesis and characterization of K-phillipsite for use in potassium extraction from seawater[J]. Particuology,2013,11:786-788.
[5]Pan L,Zhang A B,Sun J,et al.Application of ocean manganese nodules for the adsorption of potassium ions from seawater[J].Minerals Engineering,2013,49:121-127.
[6]Hou J,Yuan J S,Xu J,et al.Synthesis and characterization of K-phillipsite(K-PHI)membrane for potassium extraction from seawater[J].Microporous and Mesoporous Materials,2013,172:217-221.
[7]Nam J Y,Jwa E,Kim D,et al.Selective removal of multivalent ions from seawater by bioelectrochemical system[J].Desalination,2015,359:37-40.
[8]Muraviev D,Noguerol J,Valiente M.Separation and concentration of calcium and magnesium from seawater by carboxylic resins with temperatureinduced selectivity[J].Reactive&Functional Polymers,1996,28:111-126.
[9]Kang K C,Ling P,Park K N,et al.Seawater desalination by gas hydrate process and removal characteristics of dissolved ions(Na+,K+,Mg2+,Ca2+,B3+,Desalination,2014,353:84-90.
[10]Park K N,Hong S Y,Lee J W,et al.A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals(Na+,Mg2+,Ca2+,K+,B3+)[J].Desalination,2011,274:91-96.
[11]Galama A H,Daubaras G,Burheimc O S,et al.Seawater electrodialysis with preferential removal of divalent ions[J].Journal of Membrane Science,2014,452:219-228.
[12]Eihamoua A M,Mann R.Chemical reaction engineering analysis of the blow-out process for bromine manufacture from seawater[J].Industrial& engineering chemistry research,2007,46:3008-3015.
[13]Stewart L C.Commercial extraction of bromine from sea water[J].Industrial&engineering chemistry research,1934,26(4):361-369.
[14]Gergert V R,Artamonov Y F.Equilibrium distribution of bromine between the gas phase and a salt solution[J].Zhurnal Neorganicheskoi Khimii,1976,21(11):3160-3161.
[15]Nuryev A,Umarova N S,Burkutova R A,et al.Study of the statics of the bromine desorption process in highly mineralized salt solutions[J]. SeriyaFiziko-Tekhnicheskikh,Khimicheskikhi Geologicheskikh Nauk,1977,3:122-125.
[16]ASTM D 3869-04,Standard Test Methods for Iodide and Bromide Ions in Brackish Water,Seawater and brines[S].
[17]ChenCC,EvansLB.AlocalcompositionmodelfortheexcessGibbsenergyofaqueouselectrolytesystems[J].AICHEJournal,1986,32(3):444-454.
[18]Chen C C,Mathias P M,Orbey H.Use of hydration and dissociation chemistries with the Electrolyte-NRTL model[J].AICHE Journal,1999,45(7):1576-1586.
[19]в.и.克先津科,л.с.斯塔西涅維奇.溴碘工藝學(xué)[M].牛寶琦,李中甫,譯.北京:海洋出版社,1991.
[責(zé)任編輯 田豐]
On removal of bromine by air blowing method in the preparing course of liquid salt from brine
GUO Xiaojun,YUAN Junsheng,ZHAO Yingying,DU Yawei,YANG Chaopeng
(School of Marine Science and Engineering,Hebei University of Technology,Tianjin 300130,China)
Feasibility and process conditions of bromine removal from brine were studied.Effects of removal rate of bromine and equilibrium concentration of Br2had been studied at different air flow rate and temperature.It was determined that the limit value of bromine removal by air blowing method was 12 mg/L,and the bromine concentration of brine can be reduced to 3 mg/L by the appropriate activated carbon bed.The higher the temperature was,the faster the removal was. Then the excessive temperature may be conducive to the hydrolysis reaction of bromine and bromate formation,which was not conducive to the removal of bromine.The lower the pressure was,the more conducive to the removal of bromine.Effects of extended operating temperature and operating pressure had been studied by Aspen Plus7.2 process simulation soft after model test.
liquid salts;brine;air blowing method;activated carbon bed;removal of bromine;equilibrium concentration
TQ028.1
A
1007-2373(2017)03-0073-05
10.14081/j.cnki.hgdxb.2017.03.013
2017-03-01
國(guó)家自然科學(xué)基金(21606067);河北省自然科學(xué)基金(B2014202082);河北省高等學(xué)校青年拔尖人才計(jì)劃項(xiàng)目(BJ2016016)
郭曉?。?975-),男,高級(jí)工程師,博士,happyman583@126.com.