鐘登華,杜榮祥,關(guān) 濤,胡 煒,王佳俊
(天津大學(xué)水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300350)
心墻堆石壩倉(cāng)面施工進(jìn)度動(dòng)態(tài)控制
鐘登華,杜榮祥,關(guān) 濤,胡 煒,王佳俊
(天津大學(xué)水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300350)
聯(lián)合倉(cāng)面施工進(jìn)度仿真模型和倉(cāng)面施工質(zhì)量實(shí)時(shí)監(jiān)控模型,綜合考慮施工現(xiàn)場(chǎng)各項(xiàng)影響因素,提出了心墻堆石壩倉(cāng)面施工進(jìn)度動(dòng)態(tài)控制模型,通過(guò)對(duì)倉(cāng)面施工方案的優(yōu)化以及對(duì)施工過(guò)程的施工進(jìn)度偏差實(shí)時(shí)分析和反饋,從而實(shí)現(xiàn)倉(cāng)面施工進(jìn)度的事前、事中控制。將該施工進(jìn)度動(dòng)態(tài)控制模型應(yīng)用到某心墻堆石壩,通過(guò)對(duì)心墻區(qū)某倉(cāng)面進(jìn)行多方案優(yōu)化仿真分析,給出倉(cāng)面施工事前控制推薦優(yōu)化方案;當(dāng)實(shí)際施工進(jìn)度滯后時(shí),倉(cāng)面施工仿真模型根據(jù)當(dāng)前倉(cāng)面施工面貌進(jìn)行動(dòng)態(tài)更新并仿真,給出倉(cāng)面施工事中控制推薦優(yōu)化方案,從而保障倉(cāng)面施工進(jìn)度。應(yīng)用結(jié)果表明,實(shí)際施工方案與仿真推薦方案一致,且二者僅相差23 min,實(shí)現(xiàn)了倉(cāng)面施工進(jìn)度的有效控制。該反饋模型能夠及時(shí)給出合理的優(yōu)化施工方案,從而實(shí)現(xiàn)對(duì)現(xiàn)場(chǎng)施工進(jìn)度偏差的有效控制,為心墻堆石壩填筑進(jìn)度提供保障。
心墻堆石壩;倉(cāng)面施工進(jìn)度;實(shí)時(shí)監(jiān)控;倉(cāng)面施工仿真;參數(shù)更新;動(dòng)態(tài)控制;事前控制;事中控制
隨著我國(guó)水利水電工程建設(shè)的進(jìn)展,心墻堆石壩開(kāi)始向300 m級(jí)高度不斷發(fā)展[1],心墻堆石壩規(guī)模的提高對(duì)大壩建設(shè)管理特別是施工進(jìn)度的控制提出了更高的要求。施工進(jìn)度作為大壩施工過(guò)程中重要的控制目標(biāo),相關(guān)學(xué)者進(jìn)行了大量的科學(xué)研究。施工過(guò)程仿真以循環(huán)網(wǎng)絡(luò)模擬技術(shù)(CYCLONE)[2]的出現(xiàn)為開(kāi)端,此后有許多學(xué)者基于此提出了諸多仿真模型,如SIREN、CIPROS、STRABOSCOPE和SIMPHONY等[3],并在土木建筑和公路建設(shè)等領(lǐng)域進(jìn)行了大量研究[4-6]。在國(guó)內(nèi),朱光熙[7]首次采用系統(tǒng)仿真方法對(duì)大壩施工過(guò)程進(jìn)行了仿真研究,并得到較理想且符合實(shí)際的施工方案;鐘登華等[8]利用循環(huán)網(wǎng)絡(luò)技術(shù)建立仿真模型,采用面向?qū)ο蟮姆椒ㄩ_(kāi)發(fā)了堆石壩施工仿真系統(tǒng);鐘登華等[9]通過(guò)分析大壩體型參數(shù),把倉(cāng)面整合成填筑單元,作為仿真單位進(jìn)行研究,并以此對(duì)心墻堆石壩倉(cāng)面碾壓過(guò)程進(jìn)行了精細(xì)化分析;鐘登華等[10]針對(duì)瀝青混凝土心墻堆石壩的特點(diǎn)建立了心墻堆石壩施工仿真模型,并在某工程中得到了成功應(yīng)用;鐘登華等[11]基于CATIA開(kāi)發(fā)平臺(tái),實(shí)現(xiàn)了堆石壩施工仿真過(guò)程的三維動(dòng)態(tài)表達(dá)和4D模型的遠(yuǎn)程交互。
隨著信息技術(shù)和網(wǎng)絡(luò)技術(shù)的發(fā)展,施工管理方法越來(lái)越向科學(xué)化、數(shù)字化發(fā)展。針對(duì)土石壩和碾壓混凝土壩壩倉(cāng)面施工的特點(diǎn),天津大學(xué)研發(fā)出相應(yīng)的大壩施工質(zhì)量實(shí)時(shí)監(jiān)控系統(tǒng)[12-13],應(yīng)用該系統(tǒng)可對(duì)大壩碾壓施工倉(cāng)面中碾壓機(jī)速度、振動(dòng)狀態(tài)、倉(cāng)面碾壓遍數(shù)、壓實(shí)厚度等施工參數(shù)進(jìn)行實(shí)時(shí)監(jiān)控,從而保證倉(cāng)面碾壓施工質(zhì)量,同時(shí)對(duì)倉(cāng)面施工進(jìn)度進(jìn)行了實(shí)時(shí)掌控。隨著實(shí)時(shí)監(jiān)控技術(shù)的發(fā)展,實(shí)時(shí)監(jiān)控技術(shù)與施工仿真技術(shù)得到了有效結(jié)合,并得到了快速發(fā)展。鐘登華等[14]應(yīng)用系統(tǒng)仿真技術(shù)、數(shù)據(jù)庫(kù)技術(shù)、可視化技術(shù)、系統(tǒng)集成技術(shù)和實(shí)時(shí)監(jiān)控技術(shù),開(kāi)展了高堆石壩施工仿真與優(yōu)化的理論方法與技術(shù)研究。劉寧等[15]通過(guò)分析實(shí)時(shí)監(jiān)控?cái)?shù)據(jù),提出了監(jiān)控與預(yù)測(cè)信息對(duì)動(dòng)態(tài)仿真系統(tǒng)的影響機(jī)制。鐘登華等[16]應(yīng)用實(shí)時(shí)監(jiān)控?cái)?shù)據(jù)與施工仿真參數(shù)對(duì)比分析了實(shí)際施工進(jìn)度出現(xiàn)偏差的原因并提出施工建議。張念木[17]提出了基于實(shí)時(shí)監(jiān)控的面板堆石壩施工動(dòng)態(tài)仿真模型,根據(jù)實(shí)際施工信息,實(shí)時(shí)獲取并更新仿真參數(shù),對(duì)施工進(jìn)度進(jìn)行動(dòng)態(tài)仿真預(yù)測(cè)。鐘登華等[18]基于實(shí)時(shí)監(jiān)控技術(shù),對(duì)碾壓混凝土壩倉(cāng)面施工仿真可視化進(jìn)行了研究。
在施工進(jìn)度控制領(lǐng)域,隨著計(jì)算機(jī)技術(shù)的發(fā)展,施工仿真技術(shù)為施工現(xiàn)場(chǎng)進(jìn)度控制提供了有力的手段,任炳昱[19]研究高拱壩混凝土跳倉(cāng)澆筑施工動(dòng)態(tài)仿真的基本原理對(duì)大壩跳倉(cāng)澆筑進(jìn)行多方案動(dòng)態(tài)仿真分析與綜合評(píng)價(jià)優(yōu)選;吳康新[20]根據(jù)進(jìn)度控制的基本原理,描述了高拱壩施工進(jìn)度動(dòng)態(tài)調(diào)整與控制的方法。然而上述研究是對(duì)大壩施工進(jìn)度的宏觀(guān)控制,對(duì)于倉(cāng)面內(nèi)如何進(jìn)行合理的施工組織規(guī)劃,以及倉(cāng)面施工進(jìn)度出現(xiàn)偏差后應(yīng)當(dāng)如何更新施工方案,從而最大限度的保障施工進(jìn)度,上述研究中均未進(jìn)行討論。
綜上所述,對(duì)于倉(cāng)面碾壓質(zhì)量實(shí)時(shí)監(jiān)控技術(shù)與施工仿真技術(shù)的結(jié)合,僅局限于碾壓施工參數(shù)的統(tǒng)計(jì)分析,但是尚未實(shí)現(xiàn)基于實(shí)時(shí)監(jiān)控技術(shù)和施工仿真技術(shù)的施工進(jìn)度與資源配置的動(dòng)態(tài)反饋。而現(xiàn)有對(duì)施工進(jìn)度仿真的研究中,僅能對(duì)施工進(jìn)度進(jìn)行預(yù)測(cè),但是對(duì)于如何優(yōu)化施工現(xiàn)場(chǎng)資源配置,以及如何對(duì)施工現(xiàn)場(chǎng)進(jìn)行進(jìn)度跟蹤與反饋控制均未涉及。
基于當(dāng)前研究現(xiàn)狀,筆者在現(xiàn)有研究基礎(chǔ)上做出如下改進(jìn):(a)在倉(cāng)面填筑施工開(kāi)始前,施工仿真模型根據(jù)倉(cāng)面體型和現(xiàn)場(chǎng)施工資源配置給出優(yōu)化的施工進(jìn)度方案,進(jìn)行倉(cāng)面施工進(jìn)度的“事前控制”;(b)實(shí)時(shí)監(jiān)控模型對(duì)倉(cāng)面施工過(guò)程進(jìn)行動(dòng)態(tài)跟蹤,當(dāng)發(fā)現(xiàn)倉(cāng)面施工進(jìn)度與計(jì)劃進(jìn)度出現(xiàn)偏差時(shí),施工仿真模型會(huì)根據(jù)現(xiàn)場(chǎng)實(shí)際情況動(dòng)態(tài)更新仿真初始條件,并給出更新的施工進(jìn)度方案,實(shí)現(xiàn)倉(cāng)面施工進(jìn)度的“事中控制”,從而最大限度地保障倉(cāng)面施工進(jìn)度。
通過(guò)倉(cāng)面施工過(guò)程精細(xì)化監(jiān)控模型對(duì)大壩倉(cāng)面施工過(guò)程進(jìn)行實(shí)時(shí)監(jiān)控,整理并分析各項(xiàng)機(jī)械施工參數(shù),作為倉(cāng)面施工仿真模型的初始輸入?yún)?shù),同時(shí)考慮多種施工因素影響把影響因素作為仿真的約束條件,進(jìn)行施工仿真計(jì)算,施工仿真成果指導(dǎo)倉(cāng)面實(shí)際施工過(guò)程。通過(guò)現(xiàn)場(chǎng)實(shí)際進(jìn)度與仿真進(jìn)度對(duì)比,當(dāng)發(fā)現(xiàn)施工出現(xiàn)進(jìn)度偏差后,將偏差反饋信息發(fā)送至施工仿真模型,并基于最新的倉(cāng)面施工面貌和施工參數(shù)重新進(jìn)行仿真計(jì)算,給出新的施工方案,從而完成施工進(jìn)度的動(dòng)態(tài)控制。系統(tǒng)框架如圖1所示。
圖1 心墻堆石壩倉(cāng)面施工進(jìn)度動(dòng)態(tài)控制框架Fig.1 Framework of dynamic control of construction progress of core rockfill dam storehouse surface
2.1 目標(biāo)函數(shù)和約束條件
在基于實(shí)時(shí)監(jiān)控的心墻堆石壩倉(cāng)面施工進(jìn)度動(dòng)態(tài)控制模型中,通過(guò)倉(cāng)面施工仿真模型與實(shí)時(shí)監(jiān)控模型間的數(shù)據(jù)有效溝通,實(shí)現(xiàn)倉(cāng)面施工進(jìn)度的動(dòng)態(tài)實(shí)時(shí)控制,在達(dá)到倉(cāng)面施工質(zhì)量要求的同時(shí),實(shí)現(xiàn)倉(cāng)面施工進(jìn)度的控制目標(biāo)。目標(biāo)函數(shù)如下:
(1)
其中
(2)
式中:T——倉(cāng)面實(shí)際施工進(jìn)度;S——倉(cāng)面施工進(jìn)度計(jì)劃;Te——倉(cāng)面施工進(jìn)度控制過(guò)程;Co——倉(cāng)面施工進(jìn)度控制干擾因素;A——倉(cāng)面施工進(jìn)度目標(biāo)計(jì)劃制定時(shí)要求倉(cāng)面范圍;B——方案規(guī)劃碾輪寬度;m——方案規(guī)劃施工機(jī)械數(shù)量;ρ——方案規(guī)劃運(yùn)輸?shù)缆烦休d能力;V——運(yùn)輸車(chē)單車(chē)運(yùn)載土方量;vtr——運(yùn)輸車(chē)實(shí)際行駛速度;l——運(yùn)輸車(chē)實(shí)際行駛路線(xiàn);h——倉(cāng)面實(shí)際厚度;vr——碾壓機(jī)實(shí)際碾壓速度;e——碾壓機(jī)實(shí)際振動(dòng)狀態(tài);p——條帶實(shí)際碾壓遍數(shù);b——碾壓條帶實(shí)際搭接寬度;w——天氣情況;D——施工干擾;G——管理水平;P——施工水平。
基于對(duì)上述指標(biāo)參數(shù)分析,約束條件可表示為進(jìn)度計(jì)劃制定約束、進(jìn)度計(jì)劃執(zhí)行約束和進(jìn)度計(jì)劃執(zhí)行干擾因素三部分。
a. 進(jìn)度計(jì)劃制定約束:
(3)
式中:As——實(shí)際倉(cāng)面面積約束;Bs——實(shí)際碾輪寬度;Vmin——現(xiàn)場(chǎng)運(yùn)輸車(chē)運(yùn)載能力下限;Vmax——現(xiàn)場(chǎng)運(yùn)輸車(chē)運(yùn)載能力上限;ρmax——現(xiàn)場(chǎng)運(yùn)輸?shù)缆返淖畲蟪休d能力;Mmin——現(xiàn)場(chǎng)施工機(jī)械數(shù)量下限;Mmax——現(xiàn)場(chǎng)施工機(jī)械數(shù)量上限。
b. 進(jìn)度計(jì)劃執(zhí)行約束:
(4)
式中:vtr max——規(guī)范要求運(yùn)輸車(chē)最大行駛速度;lc——現(xiàn)場(chǎng)可行運(yùn)輸車(chē)行駛路線(xiàn);hmin——規(guī)范要求倉(cāng)面最小厚度;hmax——規(guī)范要求倉(cāng)面最大厚度;vr min——規(guī)范要求碾壓機(jī)最小碾壓速度;vr max——規(guī)范要求碾壓機(jī)最大碾壓速度;es——規(guī)范要求碾壓機(jī)振動(dòng)狀態(tài);bmin——規(guī)范要求條帶最小搭接寬度;bmax——規(guī)范要求條帶最大搭接寬度;pmin——條帶最少碾壓遍數(shù);pmax——條帶最多碾壓遍數(shù)。
c. 進(jìn)度計(jì)劃執(zhí)行干擾因素:
(5)
式中:ws——現(xiàn)場(chǎng)實(shí)際天氣情況;Ds——現(xiàn)場(chǎng)實(shí)際施工干擾;Gs——現(xiàn)場(chǎng)實(shí)際管理水平;Ps——現(xiàn)場(chǎng)實(shí)際施工水平。
實(shí)際施工過(guò)程中,通過(guò)將倉(cāng)面施工狀態(tài)與仿真中相應(yīng)時(shí)鐘對(duì)應(yīng)的狀態(tài)進(jìn)行動(dòng)態(tài)對(duì)比,當(dāng)出現(xiàn)上述狀態(tài)異常時(shí),系統(tǒng)判斷進(jìn)度偏差出現(xiàn),并根據(jù)現(xiàn)場(chǎng)實(shí)際施工面貌進(jìn)行優(yōu)化仿真分析。狀態(tài)轉(zhuǎn)移方程如下:
(6)
式中:Vi、Vj——仿真中時(shí)刻i和實(shí)際施工中時(shí)刻j對(duì)應(yīng)的倉(cāng)面卸料方量;ΔV——施工方案卸料方量允許誤差;SSi、SSj——仿真中時(shí)刻i和實(shí)際施工中時(shí)刻j對(duì)應(yīng)的倉(cāng)面平倉(cāng)面積;ΔSS——施工方案平倉(cāng)面積允許誤差;SRi、SRj——仿真中時(shí)刻i和實(shí)際施工中時(shí)刻j對(duì)應(yīng)的倉(cāng)面壓實(shí)面積;ΔSR——施工方案壓實(shí)面積允許誤差;Ti、Tj——仿真中到達(dá)i時(shí)刻和實(shí)際施工到達(dá)j時(shí)刻時(shí)的累積倉(cāng)面施工歷時(shí)。
2.2 心墻堆石壩倉(cāng)面施工進(jìn)度動(dòng)態(tài)控制方法和流程
在倉(cāng)面施工開(kāi)始前,通過(guò)倉(cāng)面施工過(guò)程精細(xì)化監(jiān)控信息對(duì)倉(cāng)面碾壓施工數(shù)據(jù)進(jìn)行采集,并應(yīng)用貝葉斯更新方法[21]對(duì)施工參數(shù)分布規(guī)律進(jìn)行更新(包括碾壓機(jī)速度分布規(guī)律、碾壓機(jī)偏轉(zhuǎn)角規(guī)律、搭接寬度等),作為倉(cāng)面施工仿真初始輸入?yún)?shù),結(jié)合倉(cāng)面體型參數(shù)、施工機(jī)械配置等信息,通過(guò)倉(cāng)面流水單元規(guī)劃方法對(duì)倉(cāng)面施工方案進(jìn)行規(guī)劃,并應(yīng)用倉(cāng)面施工仿真模塊對(duì)倉(cāng)面進(jìn)行施工仿真計(jì)算,給出推薦的機(jī)械配置方案、倉(cāng)面施工方案以及優(yōu)化的施工工期[22];施工管理者以此方案指導(dǎo)現(xiàn)場(chǎng)施工,并通過(guò)倉(cāng)面碾壓實(shí)時(shí)監(jiān)控模塊進(jìn)行倉(cāng)面施工過(guò)程跟蹤。系統(tǒng)對(duì)施工過(guò)程中發(fā)生的進(jìn)度偏差實(shí)時(shí)反饋,并更新仿真模型,從而完成倉(cāng)面碾壓施工過(guò)程的反饋控制。心墻堆石壩倉(cāng)面施工進(jìn)度動(dòng)態(tài)控制流程如圖2所示(n為施工方案,z為倉(cāng)塊,Z為倉(cāng)塊總數(shù))。
圖2 心墻堆石壩倉(cāng)面施工進(jìn)度動(dòng)態(tài)控制流程Fig.2 Flow chart of dynamic control of construction progress of core rockfill dam storehouse surface
在現(xiàn)場(chǎng)倉(cāng)面規(guī)劃階段,倉(cāng)面施工進(jìn)度仿真模型從倉(cāng)面碾壓質(zhì)量實(shí)時(shí)監(jiān)控模型中同步獲取包括倉(cāng)面邊界、施工參數(shù)、機(jī)械投入等倉(cāng)面規(guī)劃參數(shù),并進(jìn)行施工優(yōu)化仿真計(jì)算,通過(guò)多方案比較,選擇最佳的倉(cāng)面施工方案,從而實(shí)現(xiàn)對(duì)倉(cāng)面施工過(guò)程的第一階段控制,即“事前控制”??刂七^(guò)程見(jiàn)圖3(a)。
倉(cāng)面施工過(guò)程中,當(dāng)出現(xiàn)進(jìn)度偏差時(shí),倉(cāng)面施工進(jìn)度仿真模型會(huì)再次獲取倉(cāng)面碾壓質(zhì)量實(shí)時(shí)監(jiān)控模型中的倉(cāng)面施工參數(shù),獲取當(dāng)前倉(cāng)面施工面貌?;诖酥匦逻M(jìn)行優(yōu)化仿真計(jì)算,并給出當(dāng)前施工面貌下新的施工推薦方案,從而最大限度地保障施工進(jìn)度。此為第二階段控制,即“事中控制”,控制過(guò)程見(jiàn)圖3(b)。
圖3 心墻堆石壩倉(cāng)面施工進(jìn)度動(dòng)態(tài)控制過(guò)程Fig.3 Process of dynamic control of construction progress of core rockfill dam storehouse surface
以中國(guó)西南某大型水利工程為例,壩型為礫石土心墻堆石壩,最大壩高295 m。應(yīng)用上述動(dòng)態(tài)控制理論,提出基于實(shí)時(shí)監(jiān)控的心墻堆石壩倉(cāng)面施工進(jìn)度動(dòng)態(tài)控制理論并對(duì)現(xiàn)場(chǎng)施工進(jìn)度進(jìn)行動(dòng)態(tài)反饋控制。
3.1 初始條件下優(yōu)化施工方案與事前控制
以心墻區(qū)某施工倉(cāng)面為例,倉(cāng)面尺寸為68.4 m×46.6 m,施工管理者通過(guò)錄入倉(cāng)面施工坐標(biāo)、機(jī)械參數(shù)等指標(biāo),并同步到倉(cāng)面施工進(jìn)度仿真模型,確定可行的倉(cāng)面施工方案;按照流水施工單元?jiǎng)澐址椒?倉(cāng)面可劃分為1~5個(gè)流水施工單元,分別對(duì)應(yīng)5種施工方案(表1)。
表1 事前控制仿真施工方案對(duì)比
仿真過(guò)程根據(jù)現(xiàn)場(chǎng)實(shí)測(cè)碾壓機(jī)速度、偏轉(zhuǎn)角、搭接寬度等參數(shù),以及現(xiàn)場(chǎng)施工資源配置,對(duì)倉(cāng)面施工進(jìn)行多方案仿真比選。在資源配置允許的情況下,選擇工期最短為最優(yōu)方案。對(duì)5種方案分別進(jìn)行施工仿真,得到工期見(jiàn)表1。仿真結(jié)果表明,當(dāng)倉(cāng)面施工劃分為垂直河流方向3個(gè)流水施工單元時(shí),工期為15.73 h,在5種可行施工方案中工期最短。當(dāng)倉(cāng)面劃分為1~3個(gè)流水單元時(shí),倉(cāng)面施工機(jī)械配置相同,均需要11臺(tái)運(yùn)輸車(chē)、3臺(tái)平倉(cāng)機(jī)和4臺(tái)碾壓機(jī),但由于倉(cāng)面施工組織不同,各方案工期不同,因此機(jī)械利用率也有隨工期變短而增加的趨勢(shì);當(dāng)倉(cāng)面劃分為4~5個(gè)流水施工單元時(shí),機(jī)械配置數(shù)量有所改變,共需8臺(tái)運(yùn)輸車(chē)、3臺(tái)平倉(cāng)機(jī)和3臺(tái)碾壓機(jī)。因此當(dāng)倉(cāng)面施工資源有限時(shí),可推薦方案4(即4個(gè)流水施工單元方案);當(dāng)施工資源配置充足時(shí),推薦3個(gè)流水單元施工方案。
施工仿真模型將優(yōu)選出的施工方案推薦給施工管理者,此為倉(cāng)面施工進(jìn)度仿真根據(jù)現(xiàn)場(chǎng)實(shí)測(cè)施工參數(shù)對(duì)現(xiàn)場(chǎng)施工的“事前控制”。施工管理者按照施工方案指導(dǎo)現(xiàn)場(chǎng)施工,并對(duì)施工過(guò)程進(jìn)行實(shí)時(shí)監(jiān)控。
3.2 異常工況下施工優(yōu)化方案更新與施工事中控制
現(xiàn)場(chǎng)施工倉(cāng)面于第一年11月28日20:04開(kāi)倉(cāng),23:00上壩道路由于機(jī)械設(shè)備損壞導(dǎo)致運(yùn)輸?shù)缆窊矶?上壩強(qiáng)度受到限制,截至11月29日5:55,即距離開(kāi)倉(cāng)時(shí)間9.85 h后道路恢復(fù)正常,故倉(cāng)面在此時(shí)間段內(nèi)僅有一個(gè)工作面進(jìn)行作業(yè),處于順序施工狀態(tài)。按仿真推薦方案,正常工況下倉(cāng)面應(yīng)平倉(cāng)完成,且第二個(gè)流水單元進(jìn)行最后一個(gè)條帶碾壓(圖4(a)),而倉(cāng)面實(shí)際僅進(jìn)行到第二個(gè)單元將近1/3面積的碾壓施工,倉(cāng)面實(shí)際施工進(jìn)度已經(jīng)偏離初始計(jì)劃(圖4(b))。
圖4 倉(cāng)面施工進(jìn)度偏差對(duì)比Fig.4 Comparison of deviation in construction progress of storehouse surface
針對(duì)此情況,施工仿真模型根據(jù)施工質(zhì)量實(shí)時(shí)監(jiān)控模型動(dòng)態(tài)更新現(xiàn)場(chǎng)倉(cāng)面信息,得到最新施工面貌,并重新進(jìn)行仿真優(yōu)化計(jì)算。進(jìn)行倉(cāng)面施工進(jìn)度的“事中控制”。
截至11月29日5:55,倉(cāng)面按照順序作業(yè)方式,完成下游側(cè)29.3 m區(qū)域的碾壓施工工作,倉(cāng)面剩余39.1 m×46.6 m范圍還未進(jìn)行施工,根據(jù)倉(cāng)面尺寸、機(jī)械參數(shù)等指標(biāo)確定可行的倉(cāng)面施工方案為垂河向劃分1~3個(gè)流水單元,并進(jìn)行仿真計(jì)算,得到工期如表2所示。
表2 事中控制施工方案對(duì)比
圖5 基于事中控制的倉(cāng)面施工優(yōu)化方案Fig.5 Optimized construction scheme of storehouse surface with intermediate control
當(dāng)倉(cāng)面劃分為1~2個(gè)流水單元時(shí),倉(cāng)面施工機(jī)械配置相同,均需要11臺(tái)運(yùn)輸車(chē)、3臺(tái)平倉(cāng)機(jī)和4臺(tái)碾壓機(jī);當(dāng)倉(cāng)面劃分為3個(gè)流水施工單元時(shí),機(jī)械配置數(shù)量有所改變,共需10臺(tái)運(yùn)輸車(chē)、2臺(tái)平倉(cāng)機(jī)和3臺(tái)碾壓機(jī)。仿真結(jié)果表明,當(dāng)倉(cāng)面施工劃分為垂直河流方向2個(gè)流水施工單元時(shí)工期可達(dá)8.36 h,為3種可行施工方案中工期最短的方案。在各方案機(jī)械配置和機(jī)械利用率均在合理范圍的情況下,為了滿(mǎn)足施工進(jìn)度需求,現(xiàn)場(chǎng)推薦施工方案2(即垂河向劃分2個(gè)流水施工單元),如圖5(a)所示。此為倉(cāng)面施工進(jìn)度仿真根據(jù)現(xiàn)場(chǎng)實(shí)測(cè)施工參數(shù)對(duì)現(xiàn)場(chǎng)施工的事中控制。
現(xiàn)場(chǎng)按照上述推薦施工仿真方案進(jìn)行現(xiàn)場(chǎng)施工組織,并于11月29日14:40完成倉(cāng)面施工過(guò)程,如圖5(b)所示,施工情況與仿真結(jié)果基本吻合,實(shí)現(xiàn)了倉(cāng)面實(shí)時(shí)施工進(jìn)度的有效反饋控制。
倉(cāng)面施工進(jìn)度是心墻堆石壩倉(cāng)面施工過(guò)程中的重要控制指標(biāo),然而,實(shí)際施工過(guò)程中存在諸多主觀(guān)及客觀(guān)因素,給倉(cāng)面施工進(jìn)度控制帶來(lái)難題。筆者提出了倉(cāng)面施工進(jìn)度動(dòng)態(tài)仿真控制方法,針對(duì)心墻堆石壩倉(cāng)面施工過(guò)程中進(jìn)度偏差的影響因素,建立基于實(shí)時(shí)監(jiān)控的心墻堆石壩施工優(yōu)化仿真反饋控制模型,并在模型中考慮了對(duì)進(jìn)度偏差的實(shí)時(shí)反饋機(jī)制。
與傳統(tǒng)的倉(cāng)面施工進(jìn)度控制相比,所提出的基于實(shí)時(shí)監(jiān)控的心墻堆石壩施工優(yōu)化仿真反饋控制模型,對(duì)進(jìn)度偏差能夠及時(shí)給出合理的優(yōu)化施工方案,為施工管理者的管理和決策提供有力幫助。將基于實(shí)時(shí)監(jiān)控的心墻堆石壩施工優(yōu)化仿真反饋控制方法應(yīng)用于中國(guó)西南某在建心墻堆石壩工程中,應(yīng)用效果表明,該反饋模型能夠有效地對(duì)現(xiàn)場(chǎng)施工進(jìn)度偏差進(jìn)行及時(shí)動(dòng)態(tài)反饋,并給出推薦的施工方案,為心墻堆石壩大壩倉(cāng)面施工進(jìn)度控制提供了保障。
[ 1 ] 王柏樂(lè),劉瑛珍,吳鶴鶴.中國(guó)土石壩工程建設(shè)新進(jìn)展[J].水力發(fā)電,2005,31(1):63-65.(WANG Baile,LIU Yingzhen,WU Hehe.New development of China earth and stone dam project construction[J].Water Power,2005,31(1):63-65.(in Chinese))
[ 2 ] HALPIND W.An investigation of the use of simulation networks for modeling construction operations[D].Illinois:University of Illinois,1973.
[ 3 ] BI Lei,REN Bingyu,ZHONG Denghua,et al.Real-time construction schedule analysis of long-distance diversion tunnels based on lithological predictions using a markovprocess[J].Journal of Construction Engineering and Management,2014,141(2):04014076.
[ 4 ] MENASSA C C,KAMAT V R,LEE S H,et al.Conceptual framework to optimize building energy consumptionby coupling distributed energy simulation and occupancy models[J].Journal of Computing in Civil Engineering,2014,28(1):50-62.
[ 5 ] LU Weizhou,OLOFSSON T.Building information modeling and discrete event simulation:towards an integrated framework[J].Automation in Construction,2014,44:73-83.
[ 6 ] HU Di,MOHAMED Y.Simulation-model-structuring methodology for industrial construction fabrication shops[J].Journal of Construction Engineering and Management,2014,140(5):04014002.
[ 7 ] 朱光熙.二灘水電站雙曲拱壩混凝土澆筑的計(jì)算機(jī)模擬[J].系統(tǒng)工程理論與實(shí)踐,1985,25(3):25-32.(ZHU Guangxi.Computer simulation of the Ertan hydropower station hyperbolic arch dam concreting[J].Systems Engineering Theory and Practice,1985,25(3):25-32.(in Chinese))
[ 8 ] 鐘登華,胡程順,張靜.高土石壩施工計(jì)算機(jī)一體化仿真[J].天津大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,37(10):872-877.(ZHONG Denghua,HU Chengshun,ZHANG Jing.Computer integration simulation for high rockfill dam construction[J].Journal of Tianjin University(Science and Technology),2004,37 (10):872-877.(in Chinese))
[ 9 ] 鐘登華,趙晨生,張平.高心墻堆石壩壩面碾壓施工仿真理論與應(yīng)用[J].中國(guó)工程科學(xué),2011,13(12):28-32.(ZHONG Denghua,ZHAO Chensheng,ZHANG Ping.Theory and application of construction simulation for roller compaction of high core rockfill dam[J].Engineering Sciences,2011,13(12):28-32.(in Chinese))
[10] 鐘登華,陳永興,常昊天,等.瀝青混凝土心墻堆石壩施工仿真建模與可視化分析[J].天津大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,46(4):285-290.(ZHONG Denghua,CHEN Yongxing,CHANG Haotian,et al.Construction simulation modeling and visual analysis of rockfill dam with asphalt concrete core[J].Journal of Tianjin University(Science and Technology),2013,46(4):285-290.(in Chinese))
[11] 鐘登華,張琴婭,杜榮祥,等.基于CATIA的心墻堆石壩施工動(dòng)態(tài)仿真[J].天津大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,48(12):1118-1125.(ZHONG Denghua,ZHANG Qinya,DU Rongxiang,et al.Dynamic construction simulation of core rockfill dam based on CATIA platform[J].Journal of Tianjin University(Science and Technology),2015,48(12):1118-1125.(in Chinese))
[12] 鐘登華,劉東海,崔博.高心墻堆石壩碾壓質(zhì)量實(shí)時(shí)監(jiān)控技術(shù)及應(yīng)用[J].中國(guó)科學(xué)(技術(shù)科學(xué)),2011,41(8):1027-1034.(ZHONG Denghua,LIU Donghai,CUI Bo.Real-time compaction quality monitoring of high core rockfill dam[J].Science China(Technologica),2011,41(8):1027-1034.(in Chinese))
[13] LIU Yuxi,ZHONG Denghua,CUI Bo,et al.Study on real-time construction quality monitoring of storehouse surfaces for RCC dams[J].Automation in Construction,2015,49:100-112.
[14] 鐘登華,常昊天,劉寧,等.高堆石壩施工過(guò)程的仿真與優(yōu)化[J].水利學(xué)報(bào),2013,44(7):863-872.(ZHONG Denghua,CHANG Haotian,LIU Ning,et al.Simulation and optimization of high rock-filled dam construction operations[J].Journal of Hydraulic Engineering,2013,44(7):863-872.(in Chinese))
[15] 劉寧,佟大威,崔博,等.基于監(jiān)控與預(yù)測(cè)信息的摻礫土心墻堆石壩施工動(dòng)態(tài)仿真系統(tǒng)研究[J].系統(tǒng)仿真學(xué)報(bào),2014,26(2):323-331.(LIU Ning,TONG Dawei,CUI Bo,et al.Study on construction dynamic simulation system for gravelly soil core rockfill dam based on monitor and forecast information[J].Journal of System Simulation,2014,26(2):323-331.(in Chinese))
[16] 鐘登華,常峻,任炳昱,等.基于實(shí)時(shí)監(jiān)控的高堆石壩施工進(jìn)度影響因素研究[J].水力發(fā)電學(xué)報(bào),2014,33(3):239-252.(ZHONG Denghua,CHANG Jun,REN Bingyu,et al.Study on influencing factors of construction progress of high rockfill dam based on real-time monitoring[J].Journal of Hydroelectric Engineering,2014,33(3):239-252.(in Chinese))
[17] 張念木.基于實(shí)時(shí)監(jiān)控的面板堆石壩施工工期-質(zhì)量-成本綜合優(yōu)化研究[D].天津:天津大學(xué),2014.
[18] 鐘登華,張?jiān)?吳斌平,等.基于實(shí)時(shí)監(jiān)控的碾壓混凝土壩倉(cāng)面施工仿真可視化分析[J].河海大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,44(5):377-385.(ZHONG Denghua,ZHANG Yuankun,WU Binping,et al.Simulation and visual analysis for construction of storehouse surface of RCC dam based on real-time monitoring[J].Journal of Hohai University(Natural Sciences),2016,44(5):377-385.(in Chinese))
[19] 任炳昱.高拱壩施工實(shí)時(shí)控制理論與關(guān)鍵技術(shù)研究[D].天津:天津大學(xué),2010.
[20] 吳康新.混凝土高拱壩施工動(dòng)態(tài)仿真與實(shí)時(shí)控制研究[D].天津:天津大學(xué),2008.
[21] TAE H C,YASSER M,SIMAAN A.Bayesian updating application into simulation in the North Edmonton Sanitary Trunk Tunnel Project[J].Journal of Construction Engineering and Management,2006,132:882-894.
[22] DU Rongxiang,ZHONG Denghua,YU Jia,et al.Construction simulation for a core rockfill dam based on optimal construction stages and zones:case study[J].Journal of Computing in Civil Engineering,2015,33(3):05015002.
Dynamic control of construction progress of core rockfill dam storehouse surface
ZHONG Denghua, DU Rongxiang, GUAN Tao, HU Wei, WANG Jiajun
(StateKeyLaboratoryofHydraulicEngineeringSimulationandSafety,TianjinUniversity,Tianjin300350,China)
A dynamic control model for construction progress of the storehouse surface of core rockfill dams is proposed based on thesimulation model for construction progress and thereal-time monitoring model for construction quality of the storehouse surface, with field construction factors taken into consideration. Through optimization of the construction scheme and real-time analysis and feedback of progress deviation during the construction process with the model, the construction progress control before and during the construction process was realized.The model was applied to a core rockfill dam under construction. An optimized scheme for advance control of construction progress of a storehouse surface was chosen based on optimization and simulation analysis of multiple construction schemes. When the construction progress was stunted by unforeseen circumstances, the simulation model for storehouse surface construction was used to dynamically simulate and update the construction situation, and an optimized scheme for intermediate control of construction progress wasrecommended. The schedule of storehouse surface construction can thus be guaranteed. The application results showed that the actual construction scheme was consistent with the chosen one, only with a deviation of 23 minutes in the construction process.Therefore, the storehouse surface construction progress could be effectively controlled with the dynamic control model. As conclusions, the model can provide a reasonable and optimized construction scheme, effectively control the deviation in construction progress, and guarantee the construction progress of a storehouse surface of core rockfill dams.
core rockfill dam; storehouse surface construction progress; real-time monitoring; storehouse surface construction simulation; parameter updating; dynamic control; advance control; intermediate control
10.3876/j.issn.1000-1980.2017.04.001
2017-01-06
國(guó)家自然科學(xué)基金創(chuàng)新群體基金(51621092);國(guó)家自然科學(xué)基金(51439005);國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)(2013CB035904)
鐘登華(1963—),男,江西贛縣人,中國(guó)工程院院士,教授,博士,主要從事水利水電工程施工仿真與實(shí)時(shí)控制分析技術(shù)研究。E-mail:dzhong@tju.edu.cn
TV511;TV641.4+1
A
1000-1980(2017)04-0283-08