張 靜,黃建安,劉仲華*(湖南農(nóng)業(yè)大學(xué) 茶學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,國家植物功能成分利用工程技術(shù)研究中心,植物功能成分利用協(xié)同創(chuàng)新中心,湖南 長沙 410128)
茶葉功能成分抑制蛋白質(zhì)聚集及錯(cuò)誤折疊疾病的研究進(jìn)展
張 靜,黃建安,劉仲華*
(湖南農(nóng)業(yè)大學(xué) 茶學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,國家植物功能成分利用工程技術(shù)研究中心,植物功能成分利用協(xié)同創(chuàng)新中心,湖南 長沙 410128)
蛋白質(zhì)錯(cuò)誤折疊是引起阿爾茨海默病、帕金森、亨廷頓舞蹈癥及2型糖尿病等疾病的發(fā)生機(jī)制,導(dǎo)致蛋白質(zhì)聚集產(chǎn)生具有毒性的蛋白質(zhì)寡聚體及淀粉樣變性。本文依據(jù)近年來國內(nèi)外體內(nèi)、體外實(shí)驗(yàn)研究結(jié)果,就茶葉中兒茶素、茶黃素等功能成分抑制蛋白質(zhì)聚集的作用方式及機(jī)理,以及對(duì)幾種典型的蛋白質(zhì)錯(cuò)誤折疊疾病具有的防治作用進(jìn)行綜述。
茶葉;兒茶素;茶黃素;蛋白質(zhì);聚集;錯(cuò)誤折疊
蛋白質(zhì)是構(gòu)成生物體的基礎(chǔ)物質(zhì)之一,正常情況下,蛋白質(zhì)正確折疊是體內(nèi)蛋白正常代謝及其行使正常生物學(xué)功能的基礎(chǔ),其本質(zhì)是DNA-RNA-多肽鏈-功能蛋白的生命信息流動(dòng),當(dāng)?shù)鞍踪|(zhì)結(jié)構(gòu)發(fā)生錯(cuò)誤折疊后聚集,則代謝發(fā)生紊亂[1]。然而,人體內(nèi)超過27%蛋白可能發(fā)生錯(cuò)誤折疊,其概率相對(duì)較高。蛋白質(zhì)錯(cuò)誤折疊一般發(fā)生在DNA復(fù)制、翻譯及翻譯后等環(huán)節(jié),當(dāng)DNA復(fù)制受到內(nèi)源性或外源性因素引起損傷;翻譯過程中氨基酸導(dǎo)入錯(cuò)誤;翻譯后,分子伴侶無法幫助不能自發(fā)折疊的蛋白質(zhì)進(jìn)行正確組裝或蛋白酶系統(tǒng)無法清除錯(cuò)誤折疊蛋白時(shí),蛋白質(zhì)將發(fā)生錯(cuò)誤折疊。同時(shí),在非正常、 非穩(wěn)定條件下,蛋白質(zhì)先由單體形成低聚體,再緩慢變?yōu)槔w維核,原纖加速聚集形成大分子的成熟纖維,從而導(dǎo)致淀粉樣變性[2]。在此聚集過程中,形成的具有毒性的寡聚體和自行組裝的、有序的淀粉樣纖維富含極其穩(wěn)定的β-折疊結(jié)構(gòu),同一蛋白和不同蛋白β-折疊片之間通過肽鍵的氨基和羧基形成氫鍵,從而以這種方式發(fā)生交聯(lián)產(chǎn)生不溶性纖維化聚集體,導(dǎo)致蛋白質(zhì)以非天然構(gòu)象存在(圖1)。
圖1 茶葉功能成分(如EGCG、茶黃素)對(duì)蛋白質(zhì)聚集作用模式圖Fig. 1 Working models showing the effects of functional components such as EGCG and theaflavins in tea on protein aggregation
近年來,研究發(fā)現(xiàn)一些疾病伴隨著蛋白質(zhì)錯(cuò)誤折疊,同時(shí)產(chǎn)生包含β-折疊結(jié)構(gòu)的不溶性淀粉樣纖維,并將這類疾病命名為蛋白質(zhì)錯(cuò)誤折疊疾?。╬rotein misfolding diseases,PMDs)[3]。目前,已發(fā)現(xiàn)超過20 種淀粉樣蛋白可導(dǎo)致PMDs的發(fā)生與發(fā)展[4],如β-淀粉樣蛋白(amyloid β-protein,Aβ)聚集和Tau蛋白磷酸化誘發(fā)的阿爾茨海默?。ˋlzheimer’s disease,AD)、α-突觸核蛋白(alpha-synuclein,α-syn)聚集誘發(fā)的帕金森癥(Parkinson’s disease,PD)、胰島淀粉樣多肽(islet amyloid polypeptide,IAPP)聚集誘發(fā)的2型糖尿?。╰ypeⅡ diabetes mellitus,T2DM)、累積的突變蛋白形成不可溶的亨廷頓蛋白(Huntingtin,Htt)聚集體誘發(fā)的多聚谷氨酰胺疾病如亨廷頓舞蹈?。℉untington’s disease,HD),甲狀腺結(jié)合前清蛋白(transthyretin,TTR)聚集誘發(fā)的家族性淀粉樣多發(fā)性神經(jīng)病(familial amyloidotic polyneuropathy,F(xiàn)AP)、具有傳染性朊蛋白導(dǎo)致海綿狀腦?。╰ransmissible spongiform eneephalopathy,TSE)、血紅蛋白聚集誘發(fā)鐮刀性貧血癥等[5]。如今,PMDs患者的人數(shù)日益劇增,預(yù)期至2030年全世界患AD的人數(shù)達(dá)6 570萬;患T2DM的人數(shù)將達(dá)到3.6億;在歐洲地區(qū)超過65 歲的人群中存在1.8%老年人患有PD[6-8];為了緩解此類疾病對(duì)人類健康造成的巨大危險(xiǎn),因此,蛋白質(zhì)錯(cuò)誤折疊及聚集機(jī)理研究已成為當(dāng)前研究的熱點(diǎn)。蛋白質(zhì)聚集及錯(cuò)誤折疊產(chǎn)生細(xì)胞毒性的致病機(jī)理主要包括氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激、脂質(zhì)膜通透性增加及線粒體功能障礙等,大多數(shù)PMDs與淀粉樣蛋白產(chǎn)生活性氧(reactive oxygen species,ROS)導(dǎo)致的氧化應(yīng)激密切相關(guān)[9],現(xiàn)主要通過以上幾種致病機(jī)理研發(fā)防治PMDs的方法和藥物。抑制蛋白質(zhì)聚集的主要方法有物理、化學(xué)和生物等方法;現(xiàn)階段主要處于小分子抑制劑的體外研究階段,小分子抑制劑的結(jié)構(gòu)特性決定其抑制蛋白質(zhì)聚集或解聚功能,芳香環(huán)上攜帶3 個(gè)以上羥基被認(rèn)為是能夠有效結(jié)合淀粉樣蛋白從而抑制淀粉樣纖維化的關(guān)鍵結(jié)構(gòu)[10-11],也有專家認(rèn)為含有C6-連-C6結(jié)構(gòu)的成分將可能成為極具潛力的蛋白質(zhì)聚集抑制劑[12]。因此,探索和開發(fā)抑制蛋白質(zhì)聚集或逆轉(zhuǎn)蛋白質(zhì)構(gòu)象異常變化的天然產(chǎn)物作為防治PMDs的藥物已成為人們的關(guān)注焦點(diǎn)。
近年來,主要研究的小分子抑制劑為多酚類化合物[10,13-15]。茶多酚類化合物是茶葉主體功能成分,其中兒茶素成分可達(dá)到綠茶干質(zhì)量的30%[16],兒茶素中以表沒食子兒茶素沒食子酸酯(epigallocatechin-3-gallate,EGCG)、表兒茶素沒食子酸酯((-)-epicatechin-gallate,ECG)、表沒食子兒茶素((-)-epigallocatechin,EGC)、表兒茶素((-)-epicatechin,EC)為主;而紅茶中茶黃素類是由兒茶素經(jīng)多酚氧化酶催化后形成的有色氧化產(chǎn)物。茶多酚類化合物因分子結(jié)構(gòu)具有抑制淀粉樣蛋白聚集優(yōu)勢基團(tuán)和結(jié)構(gòu),同時(shí)具有良好的生物兼容性和抗氧化、抗淀粉樣纖維等生理學(xué)功能活性[17],因此,許多專家通過體內(nèi)外實(shí)驗(yàn)研究了茶葉功能成分在不引起毒副作用的前提下,對(duì)以下幾種典型的淀粉樣蛋白聚集產(chǎn)生抑制作用,以探討茶葉功能成分成為防治PMDs潛在藥物的可能性。
AD是最常見的老年癡呆病,早在20世紀(jì)已被歸為神經(jīng)退行性疾病,AD主要由Aβ聚集及沉積形成老年斑(senile plaques,SP)和Tau蛋白過度磷酸化形成神經(jīng)纖維纏結(jié)(neurofibrillary tangle,NFT)兩種致病途徑引起。Aβ是引發(fā)AD的主要淀粉樣蛋白之一,屬于含有36~43 個(gè)氨基酸殘基的無結(jié)構(gòu)的內(nèi)源性蛋白,Aβ由淀粉樣前體蛋白(amyloid precursor protein,APP)先后經(jīng)β-分泌酶和γ-分泌酶水解產(chǎn)生,然而絕大多數(shù)APP在α-分泌酶作用下通過非淀粉源途徑代謝釋放具有神經(jīng)保護(hù)作用的可溶性α片段sAPPa,從而有效阻止Aβ生成。一般常見的是含有40或42 個(gè)氨基酸殘基的Aβ1-40和Aβ1-42,兩者共同參與了腦內(nèi)淀粉斑塊與寡聚體的形成[10],Aβ寡聚體比纖維體具有更強(qiáng)的神經(jīng)毒性[18-20],寡聚體可能引起小鼠體內(nèi)突觸損傷[21-22],可溶性Aβ寡聚體可通過擾亂谷氨酸能和γ-氨基丁酸能系統(tǒng)平衡,從而損害海馬突觸傳遞的長期增益效應(yīng)[23]。目前Aβ1-42寡聚體被認(rèn)為是最直接的神經(jīng)毒性因子,Aβ1-42寡聚體濃度低至5 μmol/L即可對(duì)細(xì)胞產(chǎn)生損傷作用[24];而Aβ1-40為腦內(nèi)和腦脊液中的正??扇苄援a(chǎn)物,但其為血液中Aβ的主要形式,為腦血管壁Aβ沉積的主要成分[25],對(duì)腦血管亦有一定損傷作用。引發(fā)AD的另一種主要淀粉樣蛋白即Tau蛋白,它由位于17q21染色體上的微管相關(guān)蛋白Tau (microtubule-associated protein Tau,MAPT)基因編碼,包含16 個(gè)外顯子及6 種亞型,促進(jìn)微管蛋白聚合并保持微管穩(wěn)定,具有軸突運(yùn)輸以及細(xì)胞骨架、信號(hào)轉(zhuǎn)導(dǎo)等作用。然而,Tau蛋白過磷酸化作用將抑制微管的組裝,降低微管穩(wěn)定性,從而導(dǎo)致神經(jīng)元退行性變。一般情況下,磷酸化Tau蛋白在AD患者腦中高出正常人3~4 倍[26]。
體外實(shí)驗(yàn)表明,EGCG不僅能直接結(jié)合天然無折疊的淀粉樣多肽,有效抑制Aβ聚集過程中原纖維以及中間體的產(chǎn)生,從而抑制Aβ致神經(jīng)毒性[27-28],同時(shí),EGCG還能結(jié)合到富含β-折疊結(jié)構(gòu)的成熟Aβ纖維上,通過改變其構(gòu)象使之轉(zhuǎn)變?yōu)榉肿淤|(zhì)量較小的、無定形的、對(duì)細(xì)胞無毒性的蛋白質(zhì)聚集物[28],從而表明EGCG可通過調(diào)控Aβ聚集對(duì)AD具有一定保護(hù)作用。有研究通過建立Aβ25-35或Aβ1-42誘導(dǎo)小鼠海馬細(xì)胞產(chǎn)生細(xì)胞毒性的AD模型[29],比較了綠茶和紅茶提取物(5~25 μg/mL)對(duì)神經(jīng)細(xì)胞的保護(hù)作用,同時(shí)還比較了EGCG、ECG、EGC、EC(1~20 μmol/L)4 種主要單體成分抑制細(xì)胞產(chǎn)生毒性的效果。Aβ不僅能誘導(dǎo)細(xì)胞毒性,Aβ42寡聚體還能進(jìn)入神經(jīng)元細(xì)胞膜并形成鈣離子通道或小孔導(dǎo)致脂質(zhì)膜損傷及細(xì)胞凋亡[30-31],然而EGCG及紅茶提取物能有效抑制Aβ寡聚體導(dǎo)致的細(xì)胞膜通透性增加、線粒體膜損傷及細(xì)胞色素C釋放增加等[32-33]。Fernandez等[34]研究表明,轉(zhuǎn)染了人SweAPP基因的小鼠神經(jīng)母細(xì)胞瘤細(xì)胞(neuro-2a cells,N2a)和來自于SweAPP基因過表達(dá)小鼠的原代神經(jīng)元細(xì)胞經(jīng)EGCG處理后,可顯著降低Aβ水平;同時(shí),對(duì)SweAPP轉(zhuǎn)基因小鼠(Tg2576)進(jìn)行腹腔注射或口服EGCG,均能使Aβ生成量及淀粉樣斑塊減少。此外,還有研究表明EGCG能調(diào)控小鼠腦內(nèi)APP從而緩解腦內(nèi)淀粉樣變性,其作用機(jī)制可能是提高了α-分泌酶的切割活性,并增加了sAPP的產(chǎn)生,而β-、γ-分泌酶活性并無顯著改變[2]。由此可知,EGCG可促使APP轉(zhuǎn)為sAPP,從而減少Aβ生成量[35-36]。
有研究證實(shí)EGCG具有強(qiáng)化蛋白激酶B(Akt)磷酸化,從而抑制GSD3β誘導(dǎo)Tau蛋白磷酸化[25,37],運(yùn)用綠茶多酚及EGCG單體干預(yù)合成的Tau蛋白片段(His-K18DK280),研究發(fā)現(xiàn)毒性寡聚體生成量顯著下降[38],也有研究者通過動(dòng)物模型實(shí)驗(yàn)表明了EGCG能調(diào)控轉(zhuǎn)基因AD小鼠體內(nèi)Tau蛋白磷酸化以及Aβ聚集,從而抑制小鼠認(rèn)知功能損傷[36]??傊?,通過大量體內(nèi)外實(shí)驗(yàn)研究表明,兒茶素能抑制Aβ聚集及Tau蛋白磷酸化從而減輕細(xì)胞毒性,并發(fā)揮神經(jīng)保護(hù)作用。
PD是最常見神經(jīng)退行性疾病之一,PD早期癥狀可能潛伏于21~40 歲之間的年輕人甚至在20 歲以下的青少年階段,有報(bào)道聲稱呈常染色體顯性遺傳的早發(fā)性家族性PD與α-syn基因突變有關(guān)。PD主要病理變化為黑質(zhì)致密部的多巴胺能神經(jīng)元進(jìn)行性死亡,致使紋狀體內(nèi)多巴胺不足,同時(shí)在剩余神經(jīng)元中出現(xiàn)嗜酸性包涵體即路易小體,其主要成分為α-syn,在病理?xiàng)l件下,α-syn錯(cuò)誤折疊導(dǎo)致纖維性聚集體的產(chǎn)生,從而引起錐體外系運(yùn)動(dòng)功能障礙。
體外實(shí)驗(yàn)研究表明,EGCG不僅能直接結(jié)合未折疊的α-syn從而抑制其轉(zhuǎn)變?yōu)槎拘怨丫垠w,同時(shí)還能將成熟的α-syn轉(zhuǎn)變?yōu)槎拘暂^小的無定形聚集體[32-33]。紅茶中4 種主要茶黃素單體具有抑制α-syn纖維化及清除淀粉樣沉積的作用[39]。通過研究14 種天然多酚類化合物以及紅茶提取物對(duì)α-syn寡聚體形成的影響,有人提出了含有鄰二酚羥基的芳香族化合物可能具備打破α-syn自行聚集狀態(tài)的能力[40]。有研究運(yùn)用α-syn的10 種表位特異性抗體檢測區(qū)分α-syn單體和纖維體,以及檢測多酚類與單體或二聚體穩(wěn)定結(jié)合后蛋白質(zhì)構(gòu)象變化,結(jié)果表明小分子抑制劑如EGCG能結(jié)合淀粉樣纖維化過程中產(chǎn)生的中間體,從而抑制纖維化形成[41]。Bae[42]和Hwang[43]等研究表明離子液體能促使淀粉樣蛋白快速形成淀粉樣纖維,進(jìn)一步研究表明1-丁基-3-甲基咪唑六氟磷酸鹽離子液體能促使α-syn快速形成聚集體,然而,經(jīng)EGCG處理后能有效解聚聚集體[44]。研究人員運(yùn)用預(yù)纖維化野生型α-syn及突變型α-syn(A30P 和A53T)誘導(dǎo)脂質(zhì)囊泡及SH-SY5Y神經(jīng)細(xì)胞線粒體膜滲透性改變以及細(xì)胞色素c釋放,經(jīng)紅茶提取物及EGCG處理后均發(fā)生一定程度的改善[45]。上述研究為尋找α-syn結(jié)構(gòu)中潛在的治療靶標(biāo)提供了理論依據(jù)。此外,有研究以6-羥基多巴胺誘導(dǎo)的人神經(jīng)母細(xì)胞瘤SH-SY5Y 細(xì)胞系作為PD體外細(xì)胞模型,比較了6 種茶提取物如茶多酚、EGCG、茶黃素、L-茶氨酸、咖啡堿、茶色素對(duì)PD細(xì)胞模型的保護(hù)作用差異,綜合評(píng)價(jià)了茶葉提取物防治PD的潛力,并比較出茶黃素、EGCG及茶多酚保護(hù)效果較為突出[46];以上茶葉功能成分還可通過調(diào)節(jié)蛋白激酶C(protein kinase C,PKC)、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)等信號(hào)通路、調(diào)節(jié)細(xì)胞內(nèi)Ca2+穩(wěn)態(tài)、抑制氧化應(yīng)激及細(xì)胞凋亡等方面防治PD[47]。
因發(fā)病機(jī)理不同可將糖尿病分為1型糖尿病和2型糖尿病,其中2型糖尿病占了糖尿病總?cè)藬?shù)的90%~95%左右,它被認(rèn)為是世界上第五大死因[7,48]。T2DM的發(fā)病機(jī)制是由于胰島素抵抗造成胰島素靶細(xì)胞對(duì)胰島素需求量增加,從而引起內(nèi)分泌失調(diào)及胰島β-細(xì)胞凋亡[49]??赡芤?型糖尿病的一個(gè)致病因素是胰島淀粉樣蛋白聚集,IAPP是含有37 個(gè)氨基酸殘基的多肽類激素,它是由胰島β-細(xì)胞在分泌胰島素的同時(shí)分泌的可以在胰島內(nèi)發(fā)生淀粉樣聚集的一種淀粉樣蛋白,它可產(chǎn)生細(xì)胞毒性從而引起β-細(xì)胞凋亡[50-52]。
在研究2型糖尿病病理過程中,研究人員發(fā)現(xiàn)淀粉樣蛋白與細(xì)胞膜的相互作用和蛋白誘發(fā)的β-細(xì)胞功能損傷密切相關(guān)[53],而EGCG具有抑制IAPP聚集以及IAPP聚集引起的細(xì)胞膜通透性變化[54-55]。體外實(shí)驗(yàn)研究表明兒茶素能通過干預(yù)松散的IAPP 22-27胰島淀粉樣多肽片段并穩(wěn)定其天然形態(tài),從而顯著抑制纖維化早期階段胰島淀粉樣蛋白形成纖維核,兒茶素在一定程度上可將成熟的胰島淀粉樣纖維逆轉(zhuǎn)成松散單體結(jié)構(gòu),同時(shí),兒茶素能抑制由IAPP誘導(dǎo)的細(xì)胞毒性,從而延緩2型糖尿病的發(fā)病[56-58]。小鼠體內(nèi)研究表明EGCG和其他兒茶素及黃酮類化合物通過增加胰島素活性以及抑制β-細(xì)胞損傷從而預(yù)防高血糖癥[59]。另外,紅茶對(duì)小鼠具有一定降血糖功能[60-61],綠茶中EGCG能緩解因果糖所致糖尿病小鼠體內(nèi)的胰島抵抗并升高葡萄糖運(yùn)輸容量[62],同時(shí)能抑制糖尿病患者肝臟葡萄糖生成[63]以及氧化應(yīng)激損傷[64]。有研究者給予2型糖尿病小鼠劑量為300 mg/(kg·d)的綠茶提取物,連續(xù)30 d后發(fā)現(xiàn)綠茶提取物能使小鼠體內(nèi)血漿葡萄糖和糖基化血紅蛋白水平顯著下降,同時(shí)升高胰島素及血紅蛋白水平,肝臟中有關(guān)糖代謝的幾種關(guān)鍵酶的活性均能恢復(fù)至正常水平[65]。另有研究表明喝茶能有效防治2型糖尿病的發(fā)生與發(fā)展,經(jīng)調(diào)查65~100 歲年齡段的非肥胖人群,每天飲用1~2 杯紅茶或者綠茶的人群患有2型糖尿病的幾率降低了88%[66];對(duì)日本231 名男性及213 名女性糖尿病患者進(jìn)行5 年跟蹤調(diào)查,發(fā)現(xiàn)每天喝綠茶不少于6 杯的人群與每周喝茶少于1 杯的參與者相比,患2型糖尿病的概率降低了1/3[67];“新加坡華人健康研究”項(xiàng)目從1999—2004年跟蹤調(diào)查了36 908 名年齡在45~74 歲之間的參與者,報(bào)導(dǎo)了每天喝紅茶不少于1 杯的參與者比每天不喝紅茶的參與者患2型糖尿病的風(fēng)險(xiǎn)降低了14%[68];患有2型糖尿病的成人堅(jiān)持每天飲用1.5 L烏龍茶,連續(xù)4 周后發(fā)現(xiàn)患者空腹血糖值顯著下降[69]。對(duì)于通過飲茶可防治2型糖尿病的眾多研究中,不同的研究結(jié)果其有效飲茶量也不相同,有學(xué)者通過統(tǒng)計(jì)前人研究結(jié)果并綜合分析,總結(jié)出每天飲茶量不少于4 杯可降低患2型糖尿病的風(fēng)險(xiǎn)[70]。
HD是一種常染色體顯性遺傳的影響運(yùn)動(dòng)功能的慢性進(jìn)行性舞蹈病。該病具有高度的區(qū)域選擇性,其中一個(gè)主要病癥為侵害基底節(jié)運(yùn)動(dòng)通路引發(fā)運(yùn)動(dòng)過度,即舞蹈樣動(dòng)作;另外,大腦運(yùn)動(dòng)皮層錐體細(xì)胞以及紋狀體投射性γ-氨基丁酸能神經(jīng)元過早死亡,導(dǎo)致患者認(rèn)知情感功能障礙及精神異常[71],且晚期亨廷頓舞蹈癥多見癡呆。導(dǎo)致該疾病的是位于人第4號(hào)染色體上的IT15基因發(fā)生突變,該基因第一外顯子CAG三核苷酸異常重復(fù)擴(kuò)張,拷貝數(shù)超過35 次則引起HD,該基因編碼含3 144 個(gè)氨基酸、分子質(zhì)量為350 kD的亨廷頓蛋白Htt,其氨基末端含一段多聚谷氨酰胺序列(PolyQ)[72]。
Ehrnhoefer等[73]通過體外實(shí)驗(yàn)比較了幾種主要兒茶素成分對(duì)亨廷頓exon 1蛋白聚集抑制作用,通過斑點(diǎn)免疫印跡法以及原子力顯微鏡觀察等檢測,結(jié)果表明EGCG和ECG抑制Htt蛋白錯(cuò)誤折疊以及寡聚體生成的效果較為顯著,且干預(yù)作用產(chǎn)生于聚集過程的早期階段,然而EGC、GC并無明顯效果,因此得出EGCG在多酚與Htt蛋白相互作用中起著至關(guān)重要的作用;同時(shí),這一結(jié)果首次表明綠茶多酚類化合物能調(diào)節(jié)Htt蛋白聚集化過程中早期階段的蛋白質(zhì)錯(cuò)誤折疊。體內(nèi)實(shí)驗(yàn)表明EGCG不僅能顯著抑制HD酵母模型中Htt聚集及細(xì)胞毒性,還能促使HD轉(zhuǎn)基因果蠅運(yùn)動(dòng)功能提升。Kumar等[74]用神經(jīng)毒素3-硝基丙酸處理Wistar雄性大鼠構(gòu)建HD動(dòng)物模型,從而導(dǎo)致大鼠認(rèn)知功能損傷及谷胱甘肽系統(tǒng)障礙,經(jīng)EGCG(10、20、40 mg/(kg·d))處理后,大鼠記憶力顯著提高,谷胱甘肽系統(tǒng)功能得到一定修復(fù)。
TTR是人體內(nèi)重要的運(yùn)輸甲狀腺素和VA的血漿轉(zhuǎn)運(yùn)蛋白之一,約95%產(chǎn)生于肝臟,在眼睛和脈絡(luò)膜細(xì)胞中也有少量合成[75],主要分布于腦脊髓液和人體血漿之中。正常情況下,TTR在體內(nèi)以四聚體形式存在,但TTR四聚體在非正常生理狀態(tài)下無法維持穩(wěn)定結(jié)構(gòu),從而聚集形成淀粉樣纖維,最終引發(fā)FAP,現(xiàn)有100多種TTR突變體已被鑒定。
EGCG能結(jié)合TTR從而有效抑制其淀粉樣纖維化,Miyata等[76]運(yùn)用X射線晶體定向儀檢測出EGCGV30M TTR復(fù)合物中EGCG具有3 個(gè)結(jié)合位點(diǎn),首次發(fā)現(xiàn)其晶體結(jié)構(gòu)與TTR四聚體不同的結(jié)合位點(diǎn)及作用方式;運(yùn)用11 種TTR突變體與EGCG體外孵育得出EGCG具有抑制TTR四聚體纖維化的作用,且EGCG抑制效果與其劑量存在一定依賴關(guān)系;將20 μmol/L EGCG干預(yù)經(jīng)TTR突變體轉(zhuǎn)染的CHO-K1細(xì)胞36 h后,通過十二烷基磺酸鈉-聚丙烯酰胺凝膠電泳和蛋白質(zhì)免疫印跡法檢測細(xì)胞內(nèi)四聚體含量升高。Ferreira等[77]通過體外實(shí)驗(yàn)研究將2 mg/mL野生型TTR與0.36 mmol/L EGCG于37 ℃孵育1 h后進(jìn)行電噴霧質(zhì)譜檢測,結(jié)果表明一個(gè)EGCG分子能與一個(gè)TTR四聚體相結(jié)合,并通過等溫滴定量熱法測定結(jié)合常數(shù)表明EGCG配體能與蛋白質(zhì)強(qiáng)力結(jié)合;將EGCG與預(yù)纖維化的TTR L55P于37 ℃孵育4 d,運(yùn)用透射電子顯微鏡以及動(dòng)態(tài)光散射法分析,表明EGCG能有效抑制預(yù)纖維化的TTR形成無定形蛋白質(zhì)聚集物;將EGCG干預(yù)經(jīng)TTR L55P cDNA轉(zhuǎn)染的小鼠許旺氏細(xì)胞(rat schwannoma,RN22),斑點(diǎn)免疫印跡法檢測結(jié)果表明EGCG對(duì)TTR聚集抑制效果超過90%。小鼠體內(nèi)實(shí)驗(yàn)以劑量為100 mg/(kg·d)的EGCG喂養(yǎng)TTR V30M轉(zhuǎn)基因小鼠6 周后,通過等電聚焦電泳檢測,結(jié)果表明EGCG處理能提高TTR四聚體穩(wěn)定性并降低TTR纖維化沉積[78];生物素標(biāo)記法檢測發(fā)現(xiàn),經(jīng)EGCG處理后,小鼠腸胃及背根神經(jīng)節(jié)中BiP、Fas和3-NT蛋白表達(dá)量及TTR沉積物降低。Ferreira等[79]進(jìn)一步實(shí)驗(yàn)結(jié)果表明:等電聚焦電泳法檢測結(jié)果表明茶葉中主要兒茶素及茶黃素等多酚類化合物能不同程度上結(jié)合并穩(wěn)定TTR四聚體,從而影響TTR淀粉樣纖維形成;通過動(dòng)態(tài)光散射和透射電子顯微鏡表明這些黃酮類化合物不同程度抑制TTR低聚物形成;并通過RN22細(xì)胞毒性實(shí)驗(yàn)表明,茶葉中兒茶素及茶黃素等黃酮類化合物能有效抑制由TTR低聚物激活的Caspase-3通路和內(nèi)質(zhì)網(wǎng)應(yīng)激,綜合實(shí)驗(yàn)結(jié)果可知沒食子酸酯在抑制蛋白質(zhì)聚集中具有關(guān)鍵性作用。臨床實(shí)驗(yàn)將每天飲用綠茶的14 名遺傳性轉(zhuǎn)甲狀腺素蛋白淀粉樣變心肌病患者作為研究對(duì)象,對(duì)患者進(jìn)行長達(dá)一年的血液、超聲波心動(dòng)圖、心臟磁共振成像等檢測評(píng)估,結(jié)果表明全程參與本研究的患者左心室心肌衰弱得到一定緩解,二尖瓣環(huán)收縮期運(yùn)動(dòng)速度降低,總膽固醇及低密度脂蛋白明顯降低,由此推測綠茶或綠茶提取物對(duì)由TTR基因突變所致淀粉樣變心肌病具有一定防治作用[80]。
可傳播性海綿狀腦病是PMDs中具有傳染性的神經(jīng)退行性疾病,傳播源是一種不含RNA和DNA的朊病毒蛋白,它在人和動(dòng)物體內(nèi)正常存在時(shí)被稱為PrPC,其結(jié)構(gòu)包含3 個(gè)α-螺旋及一段短的反平行β-折疊結(jié)構(gòu),當(dāng)PrPCα-螺旋被β-折疊結(jié)構(gòu)所取代而轉(zhuǎn)變?yōu)椴荒鼙坏鞍酌附到獾木哂袀魅拘缘碾玫鞍讜r(shí)則被稱為PrPsc,現(xiàn)對(duì)此類蛋白研究較多的是酵母朊蛋白Sup35。有報(bào)道稱EGCG能消除預(yù)成型的Sup35朊病毒蛋白以及擾亂分子內(nèi)和分子間朊病毒接觸,同時(shí),EGCG與DAPH-12兩者共同作用時(shí)將增強(qiáng)對(duì)多種Sup35朊病毒菌株的消除作用[81]。
隨著社會(huì)老齡化現(xiàn)象日趨嚴(yán)重,與衰老直接相關(guān)的神經(jīng)退行性疾病的發(fā)病率也日益增高,近年來,在美國、澳大利亞、日本及歐洲地區(qū)AD、PD及TM2D等發(fā)病人數(shù)逐漸增加,這已成為顯著的健康與社會(huì)發(fā)展問題,科研工作者為闡明在體外或組織中蛋白質(zhì)聚集的分子機(jī)理,從簡單的細(xì)胞實(shí)驗(yàn)到動(dòng)物模型實(shí)驗(yàn)?zāi)酥寥梭w臨床實(shí)驗(yàn)進(jìn)行了大量有關(guān)PMDs病理學(xué)研究。相對(duì)于化學(xué)合成藥物諸多副作用以及昂貴價(jià)格,以天然產(chǎn)物化學(xué)成分為主體開發(fā)的藥物凸顯高效性、安全性及穩(wěn)定性優(yōu)勢,天然成分所具備的生物兼容特性也使其更容易嵌入并結(jié)合至生命體系分子結(jié)構(gòu)中,已經(jīng)被生物學(xué)和醫(yī)藥學(xué)領(lǐng)域廣泛認(rèn)可和開發(fā)[82]。茶葉作為全球性健康型天然飲料,其功能成分的挖掘及保健藥用功效深度開發(fā)一直吸引著國內(nèi)外學(xué)者的關(guān)注?,F(xiàn)有研究初步表明,茶葉中兒茶素主成分EGCG以及紅茶中茶黃素均能有效抑制或延遲多肽和蛋白質(zhì)進(jìn)行錯(cuò)誤折疊后形成毒性寡聚態(tài)或纖維狀高分子聚合物,甚至能將蛋白質(zhì)聚集體通過逆轉(zhuǎn)途徑使其恢復(fù)成無毒性的蛋白質(zhì)單體(圖1)。但現(xiàn)階段將茶葉功能成分應(yīng)用于PMDs臨床研究仍存在一些問題:目前,防治PMDs相關(guān)研究更多停留在體外實(shí)驗(yàn),對(duì)于動(dòng)物實(shí)驗(yàn)或人類臨床實(shí)驗(yàn)相對(duì)較少;茶葉功能成分對(duì)其神經(jīng)保護(hù)作用及神經(jīng)退行性疾病防治作用靶點(diǎn)或相關(guān)通路尚不太明確;因血腦屏障及人類吸收代謝較為復(fù)雜,導(dǎo)致茶葉功能成分進(jìn)入血腦屏障后含量或活性降低[83]。因此,未來可采用納米技術(shù)等方法改進(jìn)茶葉功能成分吸收效率;同時(shí),需引進(jìn)更多如生物素標(biāo)記、分子結(jié)構(gòu)修飾以及蛋白質(zhì)組學(xué)等新型實(shí)驗(yàn)方法和技術(shù),從分子、細(xì)胞及動(dòng)物多水平明確兒茶素或茶黃素等茶多酚類化合物緩解PMDs發(fā)生和發(fā)展的作用機(jī)制,為今后臨床實(shí)驗(yàn)以及將茶葉功能成分開發(fā)成為防治神經(jīng)退行性疾病的功能產(chǎn)品奠定堅(jiān)實(shí)的理論基礎(chǔ)。
[1] 王曄, 顧振綸, 秦正紅. 蛋白質(zhì)錯(cuò)誤折疊與神經(jīng)退行性疾病[J].中國臨床神經(jīng)科學(xué), 2005, 13(4): 422-426. DOI:10.3969/ j.issn.1008-0678.2005.04.02.
[2] REZAI-ZADEH K, SHYTLE D, SUN N, et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice[J]. The Journal of Neuroscience, 2005, 25(38): 8807-8814. DOI:10.1523/JNEUROSCI.1521-05.2005.
[3] CAUGHEY B, LANSBURY P T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders[J]. Annual Review of Neuroscience, 2003, 26(1): 267-298. DOI:10.1146/annurev.neuro.26.010302.081142.
[4] 王明, 李學(xué)周, 符兆英. 蛋白質(zhì)錯(cuò)誤折疊與蛋白質(zhì)構(gòu)象病[J]. 延安大學(xué)學(xué)報(bào)(醫(yī)學(xué)科學(xué)版), 2009, 7(2): 12-13. DOI:10.3969/ j.issn.1672-2639.2009.02.005.
[5] 陳明輝, 占琦, 霍光華. 錯(cuò)誤折疊蛋白質(zhì)的聚集效應(yīng)及其對(duì)策[J]. 生命的化學(xué), 2005, 25(3): 193-195. DOI:10.3969/j.issn.1000-1336.2005.03.006.
[6] KALARIA R N, MAESTRE G E, ARIZAGA R, et al. Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors[J]. The Lancet Neurology, 2008, 7(9): 812-826. DOI:10.1016/S1474-4422(08)70169-8.
[7] WILD S, ROGLIC G, GREEN A, et al. Global prevalence of diabetes estimates for the year 2000 and projections for 2030[J]. Diabetes Care, 2004, 27(5): 1047-1053. DOI:10.2337/diacare.27.5.1047.
[8] de RIJK M, LAUNER L, BERGER K, et al. Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group[J]. Neurology, 1999, 54(Suppl 5): 21-23. DOI:10.1136/jnnp.62.1.10.
[9] CHENG B, GONG H, XIAO H, et al. Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013, 1830(10): 4860-4871. DOI:10.1016/j.bbagen.2013.06.029.
[10] PORAT Y, ABRAMOWITZ A, GAZIT E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism[J]. Chemical Biology & Drug Design, 2006, 67(1): 27-37. DOI:10.1111/j.1747-0285.2005.00318.x.
[11] SINHA S, DU Z, MAITI P, et al. Comparison of three amyloid assembly inhibitors: the sugar scyllo-inositol, the polyphenol epigallocatechin gallate, and the molecular tweezer CLR01[J]. ACS Chemical Neuroscience, 2012, 3(6): 451-458. DOI:10.1021/cn200133x.
[12] RIVIèRE C, RICHARD T, VITRAC X, et al. New polyphenols active on β-amyloid aggregation[J]. Bioorganic & Medicinal Chemistry Letters, 2008, 18(2): 828-831. DOI:10.1016/j.bmcl.2007.11.028.
[13] PALLAUF K, RIMBACH G. Autophagy, polyphenols and healthy ageing[J]. Ageing Research Reviews, 2013, 12(1): 237-252. DOI:10.1016/j.arr.2012.03.008.
[14] FERREIRA N, SARAIVA M J, ALMEIDA M R. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation[J]. FEBS Letters, 2011, 585(15): 2424-2430. DOI:10.1016/j.febslet.2011.06.030.
[15] ONO K, YOSHIIKE Y, TAKASHIMA A, et al. P4-369 Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease[J]. Neurobiology of Aging, 2004, 25(1): 172-181. DOI:10.1016/S0197-4580(04)81927-4.
[16] TENORE G C, DAGLIA M, CIAMPAGLIA R, et al. Exploring the nutraceutical potential of polyphenols from black, green and white tea infusions: an overview[J]. Current Pharmaceutical Biotechnology, 2015, 16(3): 265-271. DOI:10.2174/1389201016666150118133604.
[17] LU Jike, HAO Limin, TAO Ruyu, et al. Antioxidant activity of green tea polyphenols and theaflavins of varied purities[J]. 食品科學(xué), 2015, 36(17): 17-21. DOI:10.7506/spkx1002-6630-201517004.
[18] MA M F. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory[J]. Nature Medicine, 2008, 14: 837-842. DOI:10.1038/nm1782.
[19] JAN A, ADOLFSSON O, ALLAMAN I, et al. Aβ42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Aβ42 species[J]. Journal of Biological Chemistry, 2011, 286(10): 8585-8596. DOI:10.1074/jbc.M110.172411.
[20] SANDBERG A, LUHESHI L M, S?LLVANDER S, et al. Stabilization of neurotoxic Alzheimer amyloid-β oligomers by protein engineering[J]. Proceedings of the National Academy of Sciences, 2010, 107(35): 15595-15600. DOI:10.1073/pnas.1001740107.
[21] KLYUBIN I, WALSH D M, LEMERE C A, et al. Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo[J]. Nature Medicine, 2005, 11(5): 556-561. DOI:10.1038/nm1234.
[22] TOWNSEND M, SHANKAR G M, MEHTA T, et al. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers[J]. The Journal of Physiology, 2006, 572(2): 477-492. DOI:10.1113/jphysiol.2005.103754.
[23] LEI M, XU H, LI Z, et al. Soluble Aβ oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance[J]. Neurobiology of Disease, 2016, 85: 111-121. DOI:10.1016/j.nbd.2015.10.019.
[24] 王建秀, 段淑榮, 王德生, 等. Aβ_(42)與Aβ_(42)寡聚體的生物學(xué)性質(zhì)比較研究[C]//全國神經(jīng)病學(xué)學(xué)術(shù)會(huì)議. 北京: 中華醫(yī)學(xué)會(huì)神經(jīng)病學(xué)分會(huì), 2008: 2577-2580.
[25] SCHROETER H, BAHIA P, SPENCER J P, et al. (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons[J]. Journal of Neurochemistry, 2007, 101(6): 1596-1606. DOI:10.1111/j.1471-4159.2006.04434.x.
[26] 萬章, 王春梅. Tau蛋白過度磷酸化在阿爾茨海默病發(fā)病機(jī)制中的作用[J]. 醫(yī)學(xué)研究生學(xué)報(bào), 2010, 23(5): 539-542. DOI:10.3969/ j.issn.1008-8199.2010.05.023.
[27] EHRNHOEFER D E, BIESCHKE J, BOEDDRICH A, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers[J]. Nature Structural & Molecular Biology, 2008, 15(6): 558-566. DOI:10.1038/nsmb.1437.
[28] BIESCHKE J, RUSS J, FRIEDRICH R P, et al. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity[J]. Proceedings of the National Academy of Sciences, 2010, 107(17): 7710-7715. DOI:10.1073/pnas.0910723107.
[29] BASTIANETTO S, YAO Z X, PAPADOPOULOS V, et al. Neuroprotective effects of green and black teas and their catechin gallate esters against β-amyloid-induced toxicity[J]. European Journal of Neuroscience, 2006, 23(1): 55-64. DOI:10.1111/j.1460-9568.2005.04532.x.
[30] ARISPE N, POLLARD H B, ROJAS E. The ability of amyloid β-protein [AβP (1–40)] to form Ca2+channels provides a mechanism for neuronal death in Alzheimer’s disease[J]. Annals of the New York Academy of Sciences, 1994, 747(1): 256-266. DOI:10.1111/j.1749-6632.1994.tb44414.x.
[31] LIN H, BHATIA R, LAL R. Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology[J]. The FASEB Journal, 2001, 15(13): 2433-2444. DOI:10.1096/fj.01-0377com.
[32] GAUCI A J, CARUANA M, GIESE A, et al. Identification of polyphenolic compounds and black tea extract as potent inhibitors of lipid membrane destabilization by Aβ42 aggregates[J]. Journal of Alzheimer’s Disease, 2011, 27(4): 767. DOI:10.3233/JAD-2011-111061.
[33] CAMILLERI A, ZARB C, CARUANA M, et al. Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828(11): 2532-2543. DOI:10.1016/j.bbamem.2013.06.026.
[34] FERNANDEZ J W, REZAI-ZADEH K, OBREGON D, et al. EGCG functions through estrogen receptor-mediated activation of ADAM10 in the promotion of non-amyloidogenic processing of APP[J]. FEBS Letters, 2010, 584(19): 4259-4267. DOI:10.1016/ j.febslet.2010.09.022.
[35] OBREGON D F, REZAI-ZADEH K, BAI Y, et al. ADAM10 activation is required for green tea (-)-epigallocatechin-3-gallateinduced α-secretase cleavage of amyloid precursor protein[J]. Journal of Biological Chemistry, 2006, 281(24): 16419-16427. DOI:10.1074/ jbc.M600617200.
[36] REZAI-ZADEH K, ARENDASH G W, HOU H, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice[J]. Brain Research, 2008, 1214: 177-187. DOI:10.1016/j.brainres.2008.02.107.
[37] VAUZOUR D, VAFEIADOU K, RICE-EVANS C, et al. Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons[J]. Journal of Neurochemistry, 2007, 103(4): 1355-1367. DOI:10.1111/j.1471-4159.2007.04841.x.
[38] WOBST H J, SHARMA A, DIAMOND M I, et al. The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios[J]. FEBS Letters, 2015, 589(1): 77-83. DOI:10.1016/j.febslet.2014.11.026.
[39] GRELLE G, OTTO A, LORENZ M, et al. Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils[J]. Biochemistry, 2011, 50(49): 10624-10636. DOI:10.1021/bi2012383.
[40] CARUANA M, H?GEN T, LEVIN J, et al. Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds[J]. FEBS Letters, 2011, 585(8): 1113-1120. DOI:10.1016/j.febslet.2011.03.046.
[41] MASUDA M, HASEGAWA M, NONAKA T, et al. Inhibition of α-synuclein fibril assembly by small molecules: analysis using epitope-specific antibodies[J]. FEBS Letters, 2009, 583(4): 787-791. DOI:10.1016/j.febslet.2009.01.037.
[42] BAE S Y, KIM S, LEE B Y, et al. Amyloid formation using 1-butyl-3-methyl-imidazolium-based ionic liquids[J]. Analytical Biochemistry, 2011, 419(2): 354-356. DOI:10.1016/j.ab.2011.08.007.
[43] HWANG H, CHOI H, KIM H K, et al. Ionic liquids promote amyloid formation from α-synuclein[J]. Analytical Biochemistry, 2009, 386(2): 293-295. DOI:10.1016/j.ab.2008.12.019.
[44] BAE SY, KIM S, HWANG H, et al. Amyloid formation and disaggregation of α-synuclein and its tandem repeat (α-TR)[J]. Biochemical and Biophysical Research Communications, 2010, 400(4): 531-536. DOI:10.1016/j.bbrc.2010.08.088.
[45] CARUANA M, NEUNER J, H?GEN T, et al. Polyphenolic compounds are novel protective agents against lipid membrane damage by α-synuclein aggregates in vitro[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2012, 1818(11): 2502-2510. DOI:10.1016/ j.bbamem.2012.05.019.
[46] 閆敬娜, 羅理勇, 胡雅瓊, 等. 茶提取物和納米表沒食子兒茶素沒食子酸酯對(duì)6-羥基多巴胺誘導(dǎo)的SH-SY5Y細(xì)胞保護(hù)作[J]. 食品科學(xué), 2016, 37(1): 163-170. DOI:10.7506/spkx1002-6630-201601029.
[47] 胡雅瓊, 羅理勇, 曾亮. 茶葉提取物對(duì)帕金森病的防治作用研究進(jìn)展[J]. 中草藥, 2014, 45(9): 1342-1348. DOI:10.7501/ j.issn.0253-2670.2014.09.027.
[48] ZIMMET P. The burden of type 2 diabetes: are we doing enough?[J]. Diabetes & Metabolism, 2003, 29(4): 6S9-6S18. DOI:10.1016/S1262-3636(03)72783-9.
[49] STUMVOLL M, GOLDSTEIN B J, van HAEFTEN T W. Type 2 diabetes: principles of pathogenesis and therapy[J]. The Lancet, 2005, 365: 1333-1346. DOI:10.1016/S0140-6736(05)61032-X.
[50] KHEMTEMOURIAN L, GAZIT E, MIRANKER A. Recent insight in islet amyloid polypeptide morphology, structure, membrane interaction, and toxicity in Type 2 diabetes[J]. Journal of Diabetes Research, 2016, 2016: 1-2. DOI:10.1155/2016/2535878.
[51] LUCIE C, HOFFMANN A R F, ALEXANDRA B, et al. Molecular structure, membrane interactions, and toxicity of the islet amyloid polypeptide in Type 2 diabetes mellitus[J]. Journal of Diabetes Research, 2016, 2016(6): 1-13. DOI:10.1155/2016/5639875.
[52] SPIJKER H S, SONG H, ELLENBROEK J H, et al. Loss of β-cell identity occurs in Type 2 diabetes and is associated with islet amyloid deposits[J]. Diabetes, 2015, 64(8): 2928. DOI:10.2337/db14-1752.
[53] BRENDER J R, DüRR U H, HEYL D, et al. Membrane fragmentation by an amyloidogenic fragment of human islet amyloid polypeptide detected by solid-state NMR spectroscopy of membrane nanotubes[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2007, 1768(9): 2026-2029. DOI:10.1016/j.bbamem.2007.07.001.
[54] BRISSE M. The inhibitive effects of 5 dietary compounds on IAPP fibril formation[D]. Ann Arbor: University of Michigan, 2013: 16-17.
[55] ENGEL M F, VANDENAKKER C C, SCHLEEGER M, et al. The polyphenol EGCG inhibits amyloid formation less efficiently at phospholipid interfaces than in bulk solution[J]. Journal of the American Chemical Society, 2012, 134(36): 14781-14788. DOI:10.1021/ja3031664.
[56] CAO P, RALEIGH D P. Analysis of the inhibition and remodeling of islet amyloid polypeptide amyloid fibers by flavanols[J]. Biochemistry, 2012, 51(13): 2670-2683. DOI:10.1021/bi2015162.
[57] KAMIHIRA-ISHIJIMA M, NAKAZAWA H, KIRA A, et al. Inhibitory mechanism of pancreatic amyloid fibril formation: Formation of the complex between tea catechins and the fragment of residues 22-27[J]. Biochemistry, 2012, 51(51): 10167-10174. DOI:10.1021/bi3012274.
[58] MENG F, ABEDINI A, PLESNER A, et al. The flavanol (-)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity[J]. Biochemistry, 2010, 49(37): 8127-8133. DOI:10.1021/bi100939a.
[59] ANDERSON R A, POLANSKY M M. Tea enhances insulin activity[J]. Journal of Agricultural and Food Chemistry, 2002, 50(24): 7182-7186. DOI:10.1021/jf020514c
[60] GOMES A, VEDASIROMONI J, DAS M, et al. Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat[J]. Journal of Ethnopharmacology, 1995, 45(3): 223-226. DOI:10.1016/0378-8741(95)01223-Z.
[61] BROADHURST C L, POLANSKY M M, ANDERSON R A. Insulinlike biological activity of culinary and medicinal plant aqueous extracts in vitro[J]. Journal of Agricultural and Food Chemistry, 2000, 48(3): 849-852. DOI:10.1021/jf9904517.
[62] WU L Y, JUAN C C, HWANG L S, et al. Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model[J]. European Journal of Nutrition, 2004, 43(2): 116-124. DOI:10.1007/s00394-004-0450-x.
[63] WALTNER-LAW M E, WANG X L, LAW B K, et al. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production[J]. Journal of Biological Chemistry, 2002, 277(38): 34933-34940. DOI:10.1074/jbc.M204672200.
[64] SABU M, SMITHA K, KUTTAN R. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes[J]. Journal of Ethnopharmacology, 2002, 83(1): 109-116. DOI:10.1016/S0378-8741(02)00217-9.
[65] SUNDARAM R, NARESH R, SHANTHI P, et al. Modulatory effect of green tea extract on hepatic key enzymes of glucose metabolism in streptozotocin and high fat diet induced diabetic rats[J]. Phytomedicine, 2013, 20(7): 577-584. DOI:10.1016/j.phymed.2013.01.006.
[66] POLYCHRONOPOULOS E, ZEIMBEKIS A, KASTORINI C M, et al. Effects of black and green tea consumption on blood glucose levels in non-obese elderly men and women from Mediterranean Islands (MEDIS epidemiological study)[J]. European Journal of Nutrition, 2008, 47(1): 10-16. DOI:10.1007/s00394-007-0690-7.
[67] ISO H, DATE C, WAKAI K, et al. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults[J]. Annals of Internal Medicine, 2006, 144(8): 554-562. DOI:10.7326/0003-4819-144-8-200604180-00005.
[68] ODEGAARD A O, PEREIRA M A, KOH W P, et al. Coffee, tea, and incident type 2 diabetes: the Singapore Chinese Health Study[J]. The American Journal of Clinical Nutrition, 2008, 88(4): 979-985.
[69] HOSODA K, WANG M F, LIAO M L, et al. Antihyperglycemic effect of oolong tea in type 2 diabetes[J]. Diabetes Care, 2003, 26(6): 1714-1718. DOI:10.2337/diacare.26.6.1714.
[70] JING Y, HAN G, HU Y, et al. Tea consumption and risk of type 2 diabetes: a meta-analysis of cohort studies[J]. Journal of General Internal Medicine, 2009, 24(5): 557-562. DOI:10.1007/s11606-009-0929-5.
[71] FERRANTE R, KOWALL N, BEAL M, et al. Selective sparing of a class of striatal neurons in Huntington’s disease[J]. Science, 1985, 230: 561-563. DOI:10.1126/science.2931802.
[72] MacDONALD M E, AMBROSE C M, DUYAO M P, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes[J]. Cell, 1993, 72(6): 971-983.
[73] EHRNHOEFER D E, DUENNWALD M, MARKOVIC P, et al. Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models[J]. Human Molecular Genetics, 2006, 15(18): 2743-2751. DOI:10.1093/ hmg/ddl210.
[74] KUMAR P, KUMAR A. Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: a novel nitric oxide mechanism[J]. Food and Chemical Toxicology, 2009, 47(10): 2522-2530. DOI:10.1016/ j.fct.2009.07.011.
[75] SARAIVA M J, CARDOSO I S. Transthyretin aggregation and toxicity[M]// RAHIMI F, BITAN G. Non-fibrillar amyloidogenic protein assemblies-common cytotoxins underlying degenerative diseases. Berlin: Springer, 2012: 407-432. DOI:10.1007/978-94-007-2774-8_13.
[76] MIYATA M, SATO T, KUGIMIYA M, et al. The Crystal structure of the green tea polyphenol (-)-epigallocatechin gallate-transthyretin complex reveals a novel binding site distinct from the thyroxine binding site[J]. Biochemistry, 2010, 49(29): 6104-6114. DOI:10.1021/ bi1004409.
[77] FERREIRA N, CARDOSO I, DOMINGUES M R, et al. Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity[J]. FEBS Letters, 2009, 583(22): 3569-3576. DOI:10.1016/j.febslet.2009.10.062.
[78] FERREIRA N, SARAIVA M J, ALMEIDA M R. Epigallocatechin-3-gallate as a potential therapeutic drug for TTR-related amyloidosis:“in vivo” evidence from FAP mice models[J]. PLoS ONE, 2012, 7(1): e29933. DOI:10.1371/journal.pone.0029933.
[79] FERREIRA N, PEREIRA-HENRIQUES A, ALMEIDA M R. Transthyretin chemical chaperoning by flavonoids: structure-activity insights towards the design of potent amyloidosis inhibitors[J]. Biochemistry and Biophysics Reports, 2015, 3: 123-133. DOI:10.1016/ j.bbrep.2015.07.019.
[80] KRISTEN A V, LEHRKE S, BUSS S, et al. Green tea halts progression of cardiac transthyretin amyloidosis: an observational report[J]. Clinical Research in Cardiology, 2012, 101(10): 805-813. DOI:10.1007/s00392-012-0463-z.
[81] ROBERTS B E, DUENNWALD M L, WANG H, et al. A synergistic small-molecule combination directly eradicates diverse prion strain structures[J]. Nature Chemical Biology, 2009, 5(12): 936-946. DOI:10.1038/nchembio.246.
[82] CLARDY J, WALSH C. Lessons from natural molecules[J]. Nature, 2004, 432: 829-837. DOI:10.1038/nature03194.
[83] 魏然, 徐平, 應(yīng)樂, 等. 茶多酚對(duì)阿爾茨海默病的防治功能與機(jī)理研究進(jìn)展[J]. 茶葉科學(xué), 2016(1): 1-10. DOI:10.13305/j.cnki. jts.2016.01.001.
Progress in Understanding Inhibitory Effects of Tea Functional Components on Protein Aggregation and Misfolding Diseases
ZHANG Jing, HUANG Jianan, LIU Zhonghua*
(National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China)
Protein misfolding and aggregation can cause a series of diseases such as Alzheimer’s, Parkinson’s, Huntington’s diseases and type 2 diabetes by inducing the formation of toxic oligomer and amyloid fiber. In this article, recent in vivo and in vitro studies in this regard are summarized. We also review the literature on the inhibitory effects and mechanisms of functional components such as catechins and theaflavins in tea on protein aggregation as well as their effects in preventing and treating several typical protein misfolding diseases.
tea; catechin; theaflavins; protein; aggregation; misfolding
10.7506/spkx1002-6630-201713045
R742;R285
A
1002-6630(2017)13-0277-08
張靜, 黃建安, 劉仲華. 茶葉功能成分抑制蛋白質(zhì)聚集及錯(cuò)誤折疊疾病的研究進(jìn)展[J]. 食品科學(xué), 2017, 38(13): 277-284. DOI:10.7506/spkx1002-6630-201713045. http://www.spkx.net.cn
ZHANG Jing, HUANG Jianan, LIU Zhonghua. Progress in understanding inhibitory effects of tea functional components on protein aggregation and misfolding diseases[J]. Food Science, 2017, 38(13): 277-284. (in Chinese with English abstract)
10.7506/spkx1002-6630-201713045. http://www.spkx.net.cn
2016-05-16
國家現(xiàn)代農(nóng)業(yè)(茶葉)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-23-11B);湖南省植物功能成分利用協(xié)同創(chuàng)新項(xiàng)目(HNCR-2014003)
張靜(1989—),女,博士研究生,主要從事茶葉功能成分藥理研究。E-mail:zhangjingjing8509@163.com
*通信作者:劉仲華(1965—),男,教授,博士,主要從事茶葉深加工及功能成分利用研究。E-mail:larkin-liu@163.com