孔祥乾, 陳 齊, 許士洪, 李登新
(東華大學(xué) a.環(huán)境科學(xué)與工程學(xué)院;b.國家環(huán)境保護(hù)紡織污染防治工程技術(shù)中心, 上海201620)
BiOBr/g-C3N4納米薄片復(fù)合光催化劑的制備及性能
孔祥乾a, b, 陳 齊a, b, 許士洪a, b, 李登新a, b
(東華大學(xué) a.環(huán)境科學(xué)與工程學(xué)院;b.國家環(huán)境保護(hù)紡織污染防治工程技術(shù)中心, 上海201620)
用化學(xué)剝離法處理石墨相氮化碳制得納米薄片, 在超聲條件下與BiOBr復(fù)合制備得到BiOBr/g-C3N4(CNBi)復(fù)合光催化劑.采用X射線衍射(XRD)、透射電子顯微鏡(TEM)、掃描電子顯微鏡(SEM)、紫外可見漫反射光譜(UV-vis)等測(cè)試手段對(duì)該光催化劑進(jìn)行了表征和分析;以甲基橙為模擬污染物, 評(píng)價(jià)樣品的可見光(λ>420 nm)催化性能.XRD和TEM結(jié)果顯示, 經(jīng)濃硫酸處理后g-C3N4被剝離為納米薄片, 并且與BiOBr成功復(fù)合形成納米異質(zhì)結(jié).UV-vis結(jié)果顯示, CNBi樣品的吸收邊為425 nm(禁帶寬度約為2.93 eV), 介于BiOBr和g-C3N4納米薄片之間.光催化試驗(yàn)結(jié)果表明, 與單純的BiOBr和g-C3N4納米薄片相比, CNBi復(fù)合光催化劑具有更高的催化活性, BiOBr含量為30%的催化劑在2 h內(nèi)對(duì)甲基橙的降解效率接近100%.
光催化劑;溴氧鉍;石墨相氮化碳納米片;甲基橙
光催化劑技術(shù)是一項(xiàng)具有廣闊發(fā)展前景的綠色科技, 在解決能源危機(jī)以及環(huán)境污染問題方面擁有巨大的潛能.石墨相氮化碳(g-C3N4)作為一種半導(dǎo)體光催化材料以其優(yōu)異的可見光響應(yīng)性能、良好的熱穩(wěn)定性和化學(xué)穩(wěn)定性而廣受關(guān)注[1].并且g-C3N4制備工藝簡單, 原料廉價(jià)易得, 對(duì)環(huán)境無毒無害, 其在能源獲取和污染物降解等領(lǐng)域都有大量研究和應(yīng)用[2-5].然而直接煅燒制備得到的g-C3N4存在光生電子-空穴對(duì)復(fù)合嚴(yán)重等問題, 使其光催化效率不高, 從而限制了其推廣應(yīng)用[6-7].目前, 科研工作者嘗試了多種方法用以提高g-C3N4的光催化效率, 例如納米化改性[8-9]、制備優(yōu)化[10-11]以及金屬或非金屬摻雜[12-14]等.
鹵氧化鉍BiOX(X=F, Cl, Br, I)是一類新型的半導(dǎo)體材料, 它特殊的電子結(jié)構(gòu)和能帶結(jié)構(gòu)使其擁有優(yōu)異的可見光催化性能.其中, BiOBr具有適當(dāng)?shù)慕麕挾?、制備工藝簡單以及化學(xué)穩(wěn)定性良好等特性, 所以其在光解水制氫和光催化降解有機(jī)污染物等方面都有廣泛應(yīng)用[15-16].
經(jīng)硫酸剝離后的g-C3N4表現(xiàn)出了更優(yōu)異的可見光催化活性, 因此, 本文嘗試將硫酸剝離后制得的氮化碳納米薄片與溴氧鉍進(jìn)行復(fù)合來考察其光催化性能.在常溫條件下以五水合硝酸鉍(Bi(NO3)3· 5H2O)和溴化鉀(KBr)為前驅(qū)體制備BiOBr, 使其在g-C3N4納米薄片上原位生長形成納米異質(zhì)結(jié)制備得到BiOBr/g-C3N4納米薄片復(fù)合光催化劑.在可見光照射下(λ>420 nm)以甲基橙為模擬污染物研究了不同BiOBr負(fù)載量時(shí)的光催化降解效果.
1.1 樣品的制備
1.1.1 g-C3N4納米薄片的制備
在管式爐中煅燒(4 h, 550 ℃)雙氰胺(化學(xué)純, 國藥集團(tuán)化學(xué)試劑有限公司)制得g-C3N4.將300 mg 已經(jīng)制備好的g-C3N4和12 mL濃硫酸加入50 mL的燒杯中磁力攪拌30 min, 之后緩慢倒入100 mL去離子水中, 利用濃硫酸溶于水瞬間放出的大量熱量剝離g-C3N4.所得懸浮液靜置沉淀2 h后離心分離, 并用去離子水和無水乙醇各洗滌3次.制得的淺黃色粉末狀樣品在60 ℃條件下干燥12 h, 得到g-C3N4納米片.
1.1.2 BiOBr/g-C3N4納米異質(zhì)結(jié)復(fù)合光催化劑的 制備
稱取200 mg制備好的 g-C3N4納米片置于100 mL 燒杯中, 加入50 mL去離子水以及79 mg KBr, 磁力攪拌形成懸浮液A.將319 mg Bi(NO3)3·5H2O和3 mL冰醋酸置于50 mL燒杯中, 加入20 mL 去離子水, 攪拌溶解形成溶液B.將溶液B逐滴滴入上述懸浮液A中, 磁力攪拌30 min.靜置沉淀2 h后離心分離, 分別用去離子水和乙醇洗滌3次.所得樣品在60 ℃條件下干燥12 h.制備得到BiOBr質(zhì)量分?jǐn)?shù)分別為10%, 30%, 50%和70%的BiOBr/g-C3N4納米異質(zhì)結(jié)復(fù)合光催化劑(以下簡稱CNBi)樣品.物理性混合樣品是將BiOBr和g-C3N4納米片充分研磨制得.
1.1.3 BiOBr樣品的制備
BiOBr樣品的制備和CNBi的制備過程基本一致, 但在懸浮液B的制備過程中無需加入g-C3N4納米片.
1.2 樣品的表征
紫外漫反射光譜(UV-vis)采用Lambda 35型紫外-可見光譜儀測(cè)試;X射線衍射(XRD)采用D/max-2550 PC型X射線衍射儀, 采用Cu(Kα,λ=0.154 06 nm)靶, 管壓為40 kV, 管流為200 mA, 掃描范圍為2θ=0°~ 80°;采用TENSOR 27型傅里葉變換紅外光譜儀(FT-IR)測(cè)試;采用JEM-2100型透射電子顯微鏡(TEM)和高分辨透射電子顯微鏡(HRTEM)對(duì)樣品進(jìn)行形貌分析;TGA采用梅特勒-托利多熱重分析儀對(duì)樣品進(jìn)行熱穩(wěn)定性測(cè)試(升溫速率為15 ℃/min;反應(yīng)氣體為空氣, 流速為50 mL/min).
1.3 樣品光催化活性的測(cè)定
光催化試驗(yàn)在直徑85 mm、高40 mm的石英反應(yīng)器中進(jìn)行.在反應(yīng)器中加入50 mL質(zhì)量濃度為10 mg/L 的甲基橙溶液(methyl orange, MO)和25 mg 催化劑樣品, 在黑暗處磁力攪拌至吸附/脫附平衡.然后將反應(yīng)器置于光照下, 光源為350 W氙燈, 并使用1 mol/L的NaNO2溶液濾掉紫外光(λ<400 nm).每隔30 min取一次樣, 離心分離取上清液采用UV-7504型紫外-可見分光光度計(jì)測(cè)其在465.2 nm波長處的吸光度A, 再換算成甲基橙質(zhì)量濃度c(c=13.825A-0.021).
2.1 物理化學(xué)特性
g-C3N4、 g-C3N4納米片、CNBi和BiOBr樣品的XRD圖譜如圖1所示.由圖1可知, g-C3N4樣品在2θ=13.1°處的弱衍射峰是由層內(nèi)三嗪結(jié)構(gòu)單元形成的;在2θ=27.65°附近有明顯的衍射峰, 是由π共軛平面的層間堆積引起的, 與石墨相氮化碳材料(JCPDS No.87-1526)特征峰一致[17].g-C3N4納米片樣品在2θ=13.1°處的衍射峰幾乎消失, 在2θ=27.65°處的衍射峰強(qiáng)度明顯減弱, 這說明g-C3N4樣品的層間堆積結(jié)構(gòu)和層內(nèi)周期性排列結(jié)構(gòu)被破壞, 從而表明g-C3N4被成功剝離[18].單一BiOBr樣品的衍射峰, 與四方晶體BiOBr標(biāo)準(zhǔn)卡(JCPDS No.09-0393)保持一致[19].g-C3N4納米片與BiOBr復(fù)合后, BiOBr在(001)、(002)、(101)、(102)、(110)、(112)、(200)、(212)晶面處的衍射峰均有所減弱, g-C3N4納米薄片在(002)晶面處的衍射峰幾乎完全消失.這是由于經(jīng)化學(xué)剝離后的g-C3N4片層更薄, 導(dǎo)致結(jié)晶度下降, 且復(fù)合之后被衍射峰強(qiáng)度更強(qiáng)的BiOBr掩蓋所致[20].
圖1 g-C3N4、 g-C3N4 納米片、 CNBi和BiOBr的XRD圖譜Fig.1 XRD patterns of g-C3N4, g-C3N4 nanosheet, CNBi and BiOBr
為進(jìn)一步了解催化劑樣品的復(fù)合情況, 對(duì)樣品進(jìn)行了TEM和SEM測(cè)試, 結(jié)果如圖2~4所示.圖2是g-C3N4剝離前后的TEM照片, 由圖2可知, 剝離前的g-C3N4為尺寸較大的塊狀結(jié)構(gòu), 而剝離之后的g-C3N4為幾十到幾百納米的薄片狀.從BiOBr樣品的TEM照片(圖3(a))可以看出, BiOBr樣品的結(jié)構(gòu)是由片狀結(jié)構(gòu)堆疊而成;從CNBi樣品的HRTEM照片(圖3(b))中可明顯觀察到BiOBr的(001)晶面(d=0.276 nm).圖4(a)和4(b)是CNBi樣品的TEM照片和SEM照片.通過對(duì)比g-C3N4納米片和BiOBr的形貌特征, 可以看出CNBi是由g-C3N4納米片和BiOBr復(fù)合在一起形成納米異質(zhì)結(jié).
圖2 g-C3N4剝離前后的透射電子顯微鏡照片F(xiàn)ig.2 TEM photos of g-C3N4 nanosheets and g-C3N4
圖3 BiOBr的TEM圖和HRTEM圖Fig.3 TEM and HRTEM photos of BiOBr
圖4 CNBi的TEM圖和SEM圖Fig.4 TEM and SEM photos of CNBi
圖4(a)中圓圈標(biāo)識(shí)部分的EDS圖譜如圖5所示.從圖5中可以看出, 所制備的樣品中存在C、N、O、Br和Bi等元素, 并未引入其他元素物質(zhì), 從而進(jìn)一步說明所制備的復(fù)合光催化劑樣品是由g-C3N4納米片和BiOBr組成.
圖5 CNBi樣品的EDS圖譜Fig.5 EDS spectrum of CNBi
4種樣品的紅外光譜圖如圖6所示.在g-C3N4光譜中, 3 000~3 600 cm-1之間的吸收帶對(duì)應(yīng)于g-C3N4表面吸附的H2O分子和未聚合的終端氨基(—NH2或者=NH);1 571和1 630 cm-1處是C=C伸縮振動(dòng)特征吸收峰;1 200-1 650 cm-1是C—N雜環(huán)伸縮振動(dòng)特征吸收帶;810 cm-1處是三嗪環(huán)的伸縮振動(dòng)特征吸收峰[21-22].由圖6可知, g-C3N4和g-C3N4納米薄片具有相似的紅外光譜圖, 說明剝離后的g-C3N4的分子結(jié)構(gòu)并未遭到破壞.在BiOBr光譜中, 3 455 cm-1處是表面羥基(—OH)的伸縮振動(dòng)特征吸收峰;1 632 cm-1處是H2O分子的彎曲振動(dòng)特征吸收峰;510 cm-1處是Bi—O的伸縮振動(dòng)特征吸收峰[23].CNBi光譜中可以明顯觀察到g-C3N4的特征吸收峰以及BiOBr在510 cm-1處的特征吸收峰.在碳氮雜環(huán)區(qū)基本相同的特征峰說明g-C3N4和BiOBr復(fù)合并未改變其物質(zhì)結(jié)構(gòu)[24].這種現(xiàn)象與XRD分析結(jié)果一致, 說明成功制備出了g-C3N4納米片及CNBi復(fù)合光催化劑.
圖6 g-C3N4、 g-C3N4 納米片、 CNBi和BiOBr紅外光譜圖Fig.6 FT-IR spectra of g-C3N4, g-C3N4 nanosheet, CNBi and BiOBr
為表征樣品的光學(xué)吸收性質(zhì), 測(cè)定了樣品的紫外-可見吸收光譜如圖7所示, 這里僅選取有代表性的樣品的吸收光譜.
圖7 g-C3N4, g-C3N4 納米片, CNBi和BiOBr的紫外-可見漫反射光譜圖Fig.7 UV-vis diffuse reflectance spectra of g-C3N4, g-C3N4 nanosheet, CNBi and BiOBr
從圖7中可以看出,各樣品的吸收邊都在可見光區(qū), 與g-C3N4相比, g-C3N4納米片的吸收邊發(fā)生藍(lán)移, 由450 nm(禁帶寬度約為2.77 eV)減小至430 nm(禁帶寬度約為2.90 eV).這可能是因?yàn)閯冸x后的g-C3N4呈納米薄片結(jié)構(gòu), 其共軛長度減小、量子限制效應(yīng)增強(qiáng)所致[18].BiOBr樣品的吸收邊為420 nm(禁帶寬度約為2.97 eV).CNBi樣品的吸收邊為425 nm(禁帶寬度約為2.93 eV),介于g-C3N4納米片和BiOBr兩者之間.CNBi樣品在420~500 nm波段的吸收顯著增強(qiáng), 對(duì)可見光的利用率顯著提高, 因此有利于提高其在可見光下的光催化能力.
熱穩(wěn)定性是評(píng)價(jià)催化劑性能的一個(gè)重要指標(biāo), CNBi樣品的TGA曲線圖如圖8所示.由圖8可知, 當(dāng)溫度為150 ℃左右時(shí)CNBi樣品損失了約5%的質(zhì)量, 這可能是由于樣品中水分的失去所致.當(dāng)溫度為450 ℃ 左右時(shí)樣品開始分解, 510 ℃左右時(shí)樣品分解加劇, 700 ℃之后樣品質(zhì)量達(dá)到穩(wěn)定狀態(tài), 殘余物質(zhì)量分?jǐn)?shù)約為30%.這表明試驗(yàn)所制備的CNBi樣品具有較好的熱穩(wěn)定性.
圖8 CNBi樣品的TGA曲線圖Fig.8 TGA curves of CNBi
2.2 光催化活性
為探究不同樣品對(duì)污染物光催化降解效果的差異, 以樣品去除水中MO的效果作為評(píng)價(jià)標(biāo)準(zhǔn).試驗(yàn)結(jié)果如圖9所示, 這里c0為MO于暗處吸附平衡后的質(zhì)量濃度,c為光照時(shí)間t時(shí)MO的質(zhì)量濃度.由圖9可知, 暗反應(yīng)達(dá)到吸附/脫附平衡以后, MO質(zhì)量濃度不再變化.剝離后的g-C3N4納米薄片的光催化活性明顯強(qiáng)于g-C3N4, 2 h內(nèi)對(duì)MO的去除率可達(dá)93%;BiOBr在2 h內(nèi)對(duì)MO的去除率為78%;物理性混合(30% BiOBr +70% g-C3N4)樣品的催化活性介于BiOBr和g-C3N4之間.CNBi(30%BiOBr)光催化活性最強(qiáng), 2 h內(nèi)對(duì)MO的去除率可達(dá)99.7%, 這是因?yàn)間-C3N4納米片與BiOBr復(fù)合之后形成了異質(zhì)結(jié).CNBi在可見光照射下產(chǎn)生光生電子和空穴, 由于g-C3N4納米片和BiOBr的能帶結(jié)構(gòu)能夠良好匹配, 所以光生電子由g-C3N4納米片的導(dǎo)帶(CB)轉(zhuǎn)移到BiOBr的導(dǎo)帶上, 而空穴由BiOBr的價(jià)帶(VB)轉(zhuǎn)移到g-C3N4納米片的價(jià)帶上.光生電子和空穴在異質(zhì)結(jié)中的分離和遷移機(jī)理如圖10所示.由于異質(zhì)結(jié)的存在使得光生電子-空穴對(duì)的遷移、分離效率提高, 從而增強(qiáng)了復(fù)合光催化劑的催化降解能力[15].
圖9 樣品的光催化活性Fig.9 Photocatalytic activity of the samples
圖10 異質(zhì)結(jié)中光生電子和空穴的分離和遷移Fig.10 Schematic diagram of the separation and transfer of photo-generated charges in the heterojunction
復(fù)合光催化劑樣品中BiOBr質(zhì)量分?jǐn)?shù)不同時(shí)的光催化活性對(duì)比如圖11所示.由圖11可知, 隨著BiOBr質(zhì)量分?jǐn)?shù)的增加, CNBi的催化活性逐漸增強(qiáng), BiOBr質(zhì)量分?jǐn)?shù)為30%時(shí)最佳, 2 h內(nèi)對(duì)MO的去除率接近100%.隨著BiOBr質(zhì)量分?jǐn)?shù)的增加, CNBi催化活性有所下降.可能是由于過量BiOBr相互團(tuán)聚占據(jù)g-C3N4納米片表面上的活性位點(diǎn), 使光生電子-空穴的遷移、分離效率減弱, 導(dǎo)致光催化活性降低.
圖11 CNBi中BiOBr質(zhì)量分?jǐn)?shù)不同時(shí)對(duì)光催化活性的影響Fig.11 Effect of photocatalytic activity with different BiOBr content of the CNBi
將石墨相氮化碳納米片和BiOBr進(jìn)行復(fù)合, 形成異質(zhì)結(jié), 提高了催化劑中光生電子和空穴的遷移、分離效率.采用XRD, TEM, HRTEM, SEM, FT-IR, UV-vis和TGA等測(cè)試手段對(duì)所制樣品的物理、化學(xué)特性進(jìn)行表征和分析.在可見光照射條件下, 通過催化降解有機(jī)污染物(甲基橙)來測(cè)定催化劑樣品的光催化活性,主要結(jié)論如下:
(1) 試驗(yàn)過程中制備得到的復(fù)合光催化劑樣品是由石墨相氮化碳納米片和BiOBr組成, 并且復(fù)合光催化劑中石墨相氮化碳納米片以及BiOBr均保持了原有的物理、化學(xué)性質(zhì).
(2) 熱重分析結(jié)果表明, 試驗(yàn)所制得的CNBi復(fù)合光催化劑樣品具有良好的熱穩(wěn)定性.
(3) 與單純的石墨相氮化碳納米片以及BiOBr比較, 試驗(yàn)所制得的CNBi復(fù)合光催化劑樣品具有更高的光催化活性,其中BiOBr質(zhì)量分?jǐn)?shù)為30%的復(fù)合光催化劑樣品具有最高的光催化活性, 在2h內(nèi)可以使甲基橙溶液的質(zhì)量濃度降低99.7%.
(4) 由于異質(zhì)結(jié)的存在, 所制得的復(fù)合光催化劑樣品具有更高的光催化活性, 其對(duì)甲基橙溶液的降解效率遠(yuǎn)高于物理性混合的光催化劑樣品.
[1] WANG X C, MEADA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen producton from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80.
[2] ZHAO S S, CHEN S, YU H T, et al. g-C3N4/TiO2hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation[J]. Separation and Purification Technology, 2012, 99(41): 50-54.
[3] ZHAI H S, CAO L, XIA X H, et al. Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction[J]. Chinese Chemical Letters, 2013, 24(2): 103-106.
[4] XU J, SHEN K, XUE B, et al. Microporous carbon nitride as an effective solid base catalyst for knoevenagel condensation reactions[J]. Journal of Molecular Catalysis A: Chemical, 2013, 372: 105-113.
[5] FANG L M, OHFUJI H, SHINMEI T, et al. Experimental study on the stability of graphitic C3N4under high pressure and high temperature[J]. Diamond and Related Materials, 2011, 20(5/6): 819-825.
[6] LI U G, NIU P, SUN C, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4[J]. Journal of the American Chemical Society, 2010, 132(33): 11642-11648.
[7] YAN S C, LI Z S, ZOU Z G, et al. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4under visible light irradiation[J]. Langmuir, 2010, 26(6): 3894-3901.
[8] ZHANG Y, THOMAS A, ANTONIETTI M, et al. Activation of carbon nitride solids by protonation: Morphology changes, enhanced ionic conductivity and photoconduction experiments[J]. Journal of the American Chemical Society, 2009, 131(1): 50-51.
[9] YAN H J. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2evolution under visible light[J]. Chemical Communications, 2012, 48(28): 3430-3432.
[10] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17): 10397-10401.
[11] GOU Q, XIE Y, WANG X, et al. Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures[J]. Chemical Physics Letters, 2003, 380: 84-87.
[12] LEI G, HAN C C, LIU J, et al. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4loaded with Ag nanoparticles[J]. Applied Catalysis A: General, 2011, 409: 215-222.
[13] YANG N, LI G Q, WANG W L, et al. Photophysical and enhanced daylight photocatalytic properties of N-doped TiO2/g-C3N4composites[J]. Journal of Physics and Chemistry of Solids, 2011, 72(11): 1319-1324.
[14] LI J H, SHEN B, HONG Z H, et al. A facile approach to synthesize novel oxygen-doped g-C3N4with superior visible-light photoreactivity[J]. Chemical Communications, 2012, 48(98): 12017-12019.
[15] ZHANG X, AI Z H, JIA F L, et al. Generalized one-pot synthesis, characterization and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. Journal of Physical Chemistry C, 2008, 112(3): 747-753.
[16] AO Y H, WANG H D, WANG P F, et al. Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7compositephotocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation[J]. Applied Catalysis B: Environmental, 2016, 194(2): 157-168.
[17] XU Y G, XU H, WANG L, et al. The CNT modified white C3N4composite photocatalyst with enhanced visible-light response photoactivity[J]. Dalton Transactions, 2013, 42(21): 7604-7613.
[18] XU J, ZHANG L W, SHI R, et al. Chemical exfoliation of graphitic carbon nitride for encient heterogeneous photocatalysis[J]. Journal of Materials Chemistry A, 2013, 1(46): 14766-14772.
[19] ZHANG J, SHI F J, LIN J, et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst[J]. Chemistry of Materials, 2008, 20(9): 2937-2941.
[20] SUN Y J, ZHANG W D, XIONG T, et al. Growth of BiOBr nanosheets on C3N4nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal[J]. Journal of Colloid and Interface Science, 2014, 418: 317-323.
[21] SU F Z, MATHAW S C, LENNART M, et al. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light[J]. Angewandte Chemie-International Edition, 2011, 50(3): 657-660.
[22] WANG Y, WANG X C, ANTONIETTI M, et al. Polymeric graphitic carbon nitride as a heterogeneous organicatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angewandte-Chemie International Edition, 2012, 51(1): 68-89.
[23] DI J, XIA J X, XIN S, et al. A g-C3N4/BiOBr visible-light-driven composite: Synthesis via a reachable ionic liquid and improved photocatalytic activity[J]. Rsc Advances, 2013, 3(42): 19624-19631.
[24] FU J, TIAN Y L, CHANG B B, et al. BiOBr-carbon nitride heterojunctions: Synthesis, enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry, 2012, 22(39): 21159-21166.
[25] LI C, YANG B J, YANG X G, et al. Synthesis and characterization of nitrogen-rich graphitic carbon nitride[J].Materials Chemistry and Physics, 2007, 103(2/3): 427-432.
(責(zé)任編輯: 楊 靜)
Preparation and Property of BiOBr/g-C3N4Nanosheets Composite Photocatalyst
KONGXiangqiana, b,CHENQia, b,XUShihonga, b,LIDengxina, b
(a. School of Environmental Science and Engineering; b. State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China)
A BiOBr/g-C3N4(CNBi) composite photocatalyst was prepared by the chemically exfoliated graphite carbon nitride (g-C3N4) nanosheets under ultrasonic condition. The prepared samples were characterized by X-ray diffraction (XRD), transmission electronic microscope (TEM), scanning electronic microscope (SEM), UV-vis absorption spectra (UV-vis) and other test methods. The photocatalytic activities of the samples under the visible light irradiation(λ>420 nm)were evaluated by removal of methyl orange (MO). Characterization results of the XRD and TEM indicated that exfoliated g-C3N4nanosheets played important roles to generate the nano-heterojunction composite of CNBi. UV-vis results showed that the absorption edge of CNBi sample was 425 nm (about 2.93 eV), and between BiOBr and g-C3N4. The photocatalytic results exhibited enhanced photocatalytic activity as compared to pure BiOBr and g-C3N4nanosheets alone. To optimum methyl orange degradation (100%) was achieved by 30% loading of BiOBr photocatalyst about 2 h.
photocatalyst;BiOBr;g-C3N4nanosheets;methyl orange
1671-0444 (2017)03-0382-06
2015-05-09
教育部博士點(diǎn)基金資助項(xiàng)目(20130075110006);上海市教育創(chuàng)新計(jì)劃資助項(xiàng)目(12ZZ096);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)基金資助項(xiàng)目(15D111321)
孔祥乾(1991—),男,河北廊坊人,碩士研究生,研究方向?yàn)榧{米材料及光催化.E-mail:670308593@qq.com 許士洪(聯(lián)系人),男,副教授,E-mail:shxu@dhu.edu.cn
X 522
A