駱愛玲,杜春園,趙雪梅,梁繼超,陳勇
?
miR-29b2c重組腺病毒的構(gòu)建及對(duì)胃癌細(xì)胞增殖和遷移的影響
駱愛玲,杜春園,趙雪梅,梁繼超,陳勇
湖北大學(xué)中藥生物技術(shù)省重點(diǎn)實(shí)驗(yàn)室生物資源綠色轉(zhuǎn)化湖北省協(xié)同創(chuàng)新中心,湖北武漢 430062
駱愛玲, 杜春園, 趙雪梅, 等. miR-29b2c重組腺病毒的構(gòu)建及對(duì)胃癌細(xì)胞增殖和遷移的影響. 生物工程學(xué)報(bào), 2017, 33(7): 1136–1144.Luo AL, Du CY, Zhao XM, et al. Effects of recombinant adenovirus Ad-miR-29b2c on HGC-27 cell proliferation and migration. Chin J Biotech, 2017, 33(7): 1136–1144.
構(gòu)建了miR-29b2c重組腺病毒Ad-miR-29b2c,考察了其對(duì)HGC-27、MGC-803胃癌細(xì)胞增殖及遷移的抑制作用。采用PCR從基因組擴(kuò)增miR-29b2c片段,并克隆至腺病毒穿梭載體pAdTrack-CMV中,構(gòu)建穿梭質(zhì)粒pAdT-29b2c,經(jīng)酶切及測(cè)序鑒定。穿梭質(zhì)粒經(jīng)Ⅰ線性化后與腺病毒骨架載體共轉(zhuǎn)化BJ5183感受態(tài),產(chǎn)生重組腺病毒質(zhì)粒Ad-miR-29b2c,再經(jīng)Ⅰ線性化后轉(zhuǎn)染293A細(xì)胞進(jìn)行包裝。重組腺病毒擴(kuò)增后感染HGC-27細(xì)胞,通過MTT及細(xì)胞遷移實(shí)驗(yàn)觀察Ad-miR-29b2c對(duì)HGC-27、MGC-803細(xì)胞增殖及遷移的影響。采用Western blotting檢測(cè)Ad-miR-29b2c對(duì)HGC-27、MGC-803細(xì)胞δ-catenin蛋白表達(dá)的影響。酶切、測(cè)序及熒光定量PCR結(jié)果表明重組腺病毒構(gòu)建成功,miR-29b及miR-29c在HGC-27細(xì)胞過表達(dá)。MTT實(shí)驗(yàn)表明Ad-miR-29b2c能顯著抑制HGC-27、MGC-803細(xì)胞增殖。細(xì)胞遷移實(shí)驗(yàn)表明Ad-miR-29b2c能顯著抑制HGC-27、MGC-803細(xì)胞遷移。此外,Ad-miR-29b2c能顯著降低HGC-27、MGC-803細(xì)胞δ-catenin蛋白表達(dá)水平。綜上所述,構(gòu)建了miR-29b2c的重組腺病毒,并發(fā)現(xiàn)其可以抑制胃癌細(xì)胞HGC-27和MGC-803的增殖及遷移,該作用可能與miR-29抑制HGC-27、MGC-803細(xì)胞δ-catenin蛋白表達(dá)有關(guān)。
miR-29,胃癌,重組腺病毒,基因治療
胃癌是一種發(fā)病率及死亡率極高的惡性腫瘤,每年約90萬人被診斷為胃癌,約70萬人死于胃癌[1]。目前對(duì)于胃癌的治療以手術(shù)為主,但無論是早期還是中晚期胃癌均存在術(shù)后復(fù)發(fā)的情況,尋找有效的早期診斷指標(biāo)及治療標(biāo)靶是胃癌處理中的一個(gè)難題。
miRNA是一類長18–25個(gè)核苷酸組成的內(nèi)源性非蛋白編碼RNA,在體內(nèi)分布廣泛,物種間高度保守。在病理及生理?xiàng)l件下,miRNA調(diào)節(jié)大量蛋白編碼基因的表達(dá),并形成復(fù)雜的調(diào)控網(wǎng)絡(luò),在發(fā)育、分化、增殖及凋亡等過程中起著非常重要的調(diào)節(jié)作用。miRNA是最大的一類基因表達(dá)轉(zhuǎn)錄后調(diào)控因子,自2002年發(fā)現(xiàn)miRNA表達(dá)異常與腫瘤相關(guān)以來,越來越多的研究表明多種miRNA均參與腫瘤的發(fā)生與發(fā)展[2-3]。
研究表明,miR-29家族與腫瘤密切相關(guān)。研究人員陸續(xù)報(bào)道了惡性膽管癌、鼻咽癌、肺癌、成神經(jīng)細(xì)胞瘤、橫紋肌肉瘤等多種腫瘤細(xì)胞中存在miR-29基因簇或單個(gè)基因表達(dá)異常[4-10]。miRNA-29家族是一類抑癌基因,對(duì)胃癌細(xì)胞的增殖和轉(zhuǎn)移發(fā)揮負(fù)調(diào)控作用[11]。最近有研究顯示,miR-29表達(dá)水平與胃癌患者生存率有密切關(guān)系,miR-29高表達(dá)胃癌患者與miR-29低表達(dá)胃癌患者相比,術(shù)后5年生存率更高,提示miR-29家族與胃癌的發(fā)生發(fā)展可能密切相關(guān)[12]。
miR-29家族包括miR-29a、miR-29b和miR-29c等3個(gè)成員,且分為miR-29b1a、miR-29b2c兩個(gè)基因簇位于不同的染色體上。本研究克隆了miR-29b2c基因片段,并構(gòu)建了重組腺病毒,發(fā)現(xiàn)Ad-miR-29b2c能顯著抑制胃癌細(xì)胞HGC-27和MGC-803的增殖和遷移。
1.1 材料及試劑
pAdTrack-CMV穿梭質(zhì)粒、pAdEasy-1腺病毒骨架質(zhì)粒、HGC-27細(xì)胞、293A細(xì)胞、BJ5183感受態(tài) (實(shí)驗(yàn)室保存)。限制性內(nèi)切酶Ⅱ、Ⅰ (Promega公司);Ⅰ、Ⅰ (NEB公司);DL2000、λ DNA/d Ⅲ核酸分子量標(biāo)準(zhǔn) (TaKaRa 公司);膠回收試劑盒 (AXYGEN公司);質(zhì)粒提取試劑盒 (QIAGEN公司);Lipofectamine 2000 (Invitrogen公司);man熒光定量PCR試劑盒 (Applied Biosystems公司);DMEM細(xì)胞培養(yǎng)基、胎牛血清 (GIBCO公司)。miRNA提取試劑盒 (Ambion公司);miRNA反轉(zhuǎn)錄及熒光定量檢測(cè)試劑盒 (Applied Biosystems公司)。PVDF膜 (Millipore公司),Anti-GAPDH、Anti-Catenin (BOSTER公司),鼠二抗、兔二抗 (KPL公司)。BCA試劑盒 (Thermo公司),超敏ECL化學(xué)發(fā)光試劑盒、RIPA裂解液、蛋白酶抑制劑PMSF、蛋白上樣緩沖溶液 (碧云天公司),蛋白酶抑制劑Cooktail (Roche公司)。
引物設(shè)計(jì)與合成:用于PCR擴(kuò)增miR-29b2c片段的引物如下,下劃線為引入的酶切位點(diǎn)。
29F:AGATCTGCCTACAGGGTCA TGGGAT;29R:TCTAGACCAGGGAC CACTTCTCATT。
插入載體的是前體序列,分別為miR-29b (GenBank Accession No. NR_029518.1) 和miR-29c (GenBank Accession No. NR_029832.1)。
1.2 穿梭表達(dá)載體pAdT-29b2c的構(gòu)建
PCR擴(kuò)增出的miR-29b2c片段經(jīng)Ⅱ/Ⅰ雙酶切后亞克隆到pAdTrack-CMV載體,構(gòu)建出重組穿梭質(zhì)粒pAdT-29b2c。重組質(zhì)粒經(jīng)測(cè)序鑒定,序列完全正確。
1.3 重組腺病毒Ad-miR-29b2c的構(gòu)建
pAdT-29b2c質(zhì)粒經(jīng)Ⅰ線性化后,與pAdEasy-1腺病毒骨架質(zhì)粒共轉(zhuǎn)化BJ5183感受態(tài)細(xì)胞,在胞內(nèi)進(jìn)行同源重組,涂卡那霉素平板后培養(yǎng)18–24 h,挑取較小單克隆,提取質(zhì)粒后經(jīng)Ⅰ酶切鑒定。得到重組腺病毒質(zhì)粒pAd-miR-29b2c。
1.4 重組腺病毒pAd-miR-29b2c的包裝和擴(kuò)增
取4 μg重組腺病毒質(zhì)粒pAd-miR-29b2c,經(jīng)Ⅰ酶切線性化,用乙醇進(jìn)行沉淀回收,按照Lipofectamine 2000轉(zhuǎn)染試劑要求,轉(zhuǎn)染至70%匯合度的293A細(xì)胞中,1–2周后可以觀察到擴(kuò)增斑。50%的細(xì)胞變圓并漂起后收集細(xì)胞,4次液氮/37 ℃反復(fù)凍融后離心得到第1代重組腺病毒。
1.5 細(xì)胞增殖實(shí)驗(yàn)
取對(duì)數(shù)生長期的HGC-27和MGC-803細(xì)胞,胰酶消化后接種于96孔板。實(shí)驗(yàn)分為5組,對(duì)照組給予含pAd-GFP的完全培養(yǎng)基,實(shí)驗(yàn)組用完全培養(yǎng)基配置不同滴度的上述收集的重組腺病毒pAd-miR-29b2c,用pAd-GFP調(diào)整實(shí)驗(yàn)組病毒總量,保證每組細(xì)胞感染了相同總量的重組腺病毒以降低實(shí)驗(yàn)誤差;每組設(shè)置5個(gè)平行復(fù)孔,在37 ℃、5% CO2條件下置于培養(yǎng)箱中培養(yǎng)24 h。然后,每孔加入20 μL 5 g/L MTT溶液,于培養(yǎng)箱中繼續(xù)培養(yǎng)4 h后,棄掉培養(yǎng)液,每孔加入150 μL DMSO,室溫振蕩混勻,用酶標(biāo)儀測(cè)定在570 nm處的吸光度,根據(jù)吸光值比較各組細(xì)胞增殖情況。
1.6 細(xì)胞遷移實(shí)驗(yàn)
取對(duì)數(shù)生長期的HGC-27和MGC-803細(xì)胞,胰酶消化后接種于6孔板 (過夜鋪滿)。翌日用干凈的藍(lán)槍頭均勻劃痕,將不同濃度的重組腺病毒pAd-miR-29b2c及空白對(duì)照置于含pAd-GFP的無血清培養(yǎng)基中繼續(xù)培養(yǎng),觀察24 h和48 h后遷移到劃痕區(qū)細(xì)胞的情況,每組設(shè) 3個(gè)重復(fù)孔。
1.7 實(shí)時(shí)定量PCR
采用miRNA分離提取試劑盒提取總miRNA,miRNA經(jīng)Applied Biosystems miRNA反轉(zhuǎn)錄試劑盒反轉(zhuǎn)錄后采用man探針法定量分析miR-29b及miR-29c水平。
1.8 蛋白印跡實(shí)驗(yàn)
取對(duì)數(shù)生長期的胃癌細(xì)胞,胰酶消化后接種于6孔板。翌日,分別轉(zhuǎn)染Ad-GFP和Ad-miR-29b2c。細(xì)胞融合至90%左右,取出6孔板,預(yù)冷PBS清洗2–3次,再加入預(yù)先配好的細(xì)胞裂解液,充分裂解后,經(jīng)BCA蛋白測(cè)定試劑盒測(cè)得總蛋白濃度。裂解液中加入蛋白上樣緩沖溶液,沸水浴10 min變性,進(jìn)行10% SDS-PAGE。電泳結(jié)束后,用濕轉(zhuǎn)法將凝膠上的蛋白轉(zhuǎn)移到PVDF膜上,電轉(zhuǎn)結(jié)束后用含5%脫脂奶粉的TBST溶液封閉2 h,將PVDF膜移至配好的GAPDH和Catenin一抗 (1∶1 000) 中,4 ℃孵育過夜。TBST溶液洗膜6次,8 min/次,分別加入鼠二抗、兔二抗 (1∶5 000) 于28 ℃孵育1 h,TBST溶液洗膜6次,8 min/次,加入超敏ECL化學(xué)發(fā)光液后置于暗室曝光。
2.1 pAdT-29b2c穿梭質(zhì)粒的構(gòu)建與鑒定
PCR擴(kuò)增出miR-29b2c片段,凝膠電泳檢測(cè),如圖1所示,片段大小與設(shè)計(jì)一致。目標(biāo)片段及pAd-Track-CMV空載體經(jīng)Ⅱ/Ⅰ雙酶切后用T4 DNA連接酶進(jìn)行連接,轉(zhuǎn)化大腸桿菌后挑取單克隆,小量提取質(zhì)粒,并用Ⅱ/Ⅰ雙酶切進(jìn)行初步鑒定。如圖2所示,質(zhì)粒經(jīng)Ⅱ/Ⅰ雙酶切后,出現(xiàn)了一條約1.3 kb的小片段。取陽性克隆送公司測(cè)序,結(jié)果證明插入序列與設(shè)計(jì)完全一致,沒有突變,插入方向正確。結(jié)果表明重組穿梭質(zhì)粒pAdT-29b2c構(gòu)建成功。
2.2 重組腺病毒載體的構(gòu)建及鑒定
重組穿梭質(zhì)粒pAdT-29b2c經(jīng)Ⅰ酶切線性化后凝膠電泳回收?;厥掌闻c100 ng腺病毒骨架載體pAdEasy-1混合后,電轉(zhuǎn)化BJ5183感受態(tài)細(xì)胞,挑菌、提取重組質(zhì)粒,重組質(zhì)粒經(jīng)Ⅰ酶切,電泳。如圖3所示,根據(jù)重組腺病毒包裝系統(tǒng)說明書,酶切產(chǎn)生4.5 kb的片段,說明腺病毒重組成功[13],命名為pAd-miR-29b2c。
圖1 miR-29b2c基因序列的擴(kuò)增
圖2 重組穿梭質(zhì)粒pAdT-29b2c的酶切鑒定
圖3 PacⅠ酶切重組質(zhì)粒pAd-miR-29b2c
2.3 重組腺病毒的包裝及擴(kuò)增
腺病毒重組質(zhì)粒經(jīng)Ⅰ酶切線性化后,轉(zhuǎn)染293A細(xì)胞進(jìn)行包裝,48 h后熒光顯微鏡下可見少量GFP (綠色熒光蛋白) 的表達(dá),1周后細(xì)胞基本都變綠,如圖4所示。50%的細(xì)胞漂起后收集細(xì)胞,反復(fù)凍融釋放病毒 (Ad-miR-29b2c),重新感染新鮮的293A細(xì)胞進(jìn)行病毒擴(kuò)增。
2.4 重組腺病毒在HGC-27細(xì)胞中的表達(dá)
培養(yǎng)HGC-27細(xì)胞,在對(duì)數(shù)生長期分別感染Ad-GFP及重組腺病毒Ad-miR-29b2c。24及48 h后收集細(xì)胞,提取總miRNA,采用man探針法對(duì)miR-29b及miR-29c進(jìn)行定量分析。如圖5所示,與感染Ad-GFP組相比,感染Ad-miR-29b2c組miR-29b及miR-29c表達(dá)水平明顯升高。
2.5 重組腺病毒對(duì)HGC-27和MGC-803細(xì)胞增殖的影響
HGC-27細(xì)胞分別感染Ad-GFP及Ad-miR-29b2c,24、48及72 h后MTT法檢測(cè)抑制效果。如圖6所示,與感染Ad-GFP組相比,感染Ad-miR-29b2c組對(duì)HGC-27和MGC-803細(xì)胞有明顯的抑制作用,48 h及72 h比24 h抑制作用更強(qiáng)。
2.6 重組腺病毒對(duì)HGC-27和MGC-803細(xì)胞遷移能力的影響
劃痕實(shí)驗(yàn)結(jié)果顯示 (圖7),與感染Ad-GFP組相比,感染Ad-miR-29b2c組HGC-27和MGC-803細(xì)胞遷移明顯受到了抑制。
圖4 線性化重組質(zhì)粒pAd-miR-29b2c轉(zhuǎn)染293A細(xì)胞3 d (A) 和5 d (B) 后的綠色熒光蛋白表達(dá)
圖5 Real-time PCR分析經(jīng)重組腺病毒感染后的HGC-27細(xì)胞中miR-29b和miR-29c表達(dá)水平
圖6 HGC-27和MGC-803細(xì)胞感染重組腺病毒后MTT分析細(xì)胞活力
圖7 HGC-27和MGC-803細(xì)胞中細(xì)胞遷移分析
2.7 重組腺病毒對(duì)HGC-27和MGC-803細(xì)胞Catenin蛋白表達(dá)的影響
Western blotting結(jié)果顯示,與感染Ad-GFP組相比,感染Ad-miR-29b2c組Catenin蛋白表達(dá)水平明顯降低,如圖8所示。
圖8 蛋白印跡分析δ-catenin在HGC-27和MGC-803細(xì)胞中的表達(dá)
胃癌是最常見的消化道惡性腫瘤之一[14],全球范圍內(nèi)發(fā)病率高,僅次于肺癌、乳腺癌及結(jié)直腸癌[15]。胃癌死亡率更是位居惡性腫瘤第二[16]。我國每年新發(fā)病例大約40萬,約占世界總發(fā)病例數(shù)的42%[17]。胃癌已經(jīng)嚴(yán)重威脅我國居民的生活健康。
miRNA的發(fā)現(xiàn)及其調(diào)控機(jī)制的闡明為深入理解很多生理病理過程提供了新的重要線索及視野[3,18-20]。近年來,研究發(fā)現(xiàn),多種miRNA的異常表達(dá)與胃癌的發(fā)生發(fā)展密切相關(guān) (miR-448[21]、miR-let-7a[22]、miR-133[23]、miR-206[24])。
miR-29家族包含miR-29a、miR-29b及miR-29c等3個(gè)成員。研究表明,miR-29家族通常扮演抑癌基因的角色,抑制多種腫瘤細(xì)胞的生長[25]。
目前,雖然miR-29c已被發(fā)現(xiàn)與胃癌細(xì)胞增殖相關(guān),但miR-29家族在體內(nèi)分布在不同的染色體上,miR-29b與miR-29a及miR-29c分別形成兩個(gè)miRNA簇,即miR-29b1a及miR-29b2c。miRNA通常在物種之間非常保守,主要通過其種子序列靶向結(jié)合于靶mRNA 3′非翻譯區(qū),抑制靶基因的翻譯。miR-29a、miR-29b及miR-29c種子序列完全一致,即5′-UAGCACCAU-3′。研究表明,miR-29家族成員在多種細(xì)胞內(nèi)可以同時(shí)靶向同1個(gè)靶mRNA,該調(diào)控模式的意義還有待研究。miR-29b1a和miR-29b2c存在于不同的基因簇,加工后分別表達(dá)miR-29b、miR-29a及miR-29b、miR-29c。為了研究miR-29b2c與胃癌之間的關(guān)系,本研究克隆了其片段,并包裝成重組腺病毒,模擬體內(nèi)miR-29b與miR-29c共表達(dá)的現(xiàn)象,通過細(xì)胞增殖及遷移實(shí)驗(yàn),發(fā)現(xiàn)miR-29b與miR-29c能顯著抑制胃癌細(xì)胞增殖及遷移,為實(shí)現(xiàn)腺病毒基因治療胃癌提供線索。miR-29b1a是否具有相同或類似的影響胃癌細(xì)胞增殖及遷移的活性,需要單獨(dú)包裝其腺病毒,作進(jìn)一步的研究。
研究表明,胃癌細(xì)胞的增殖、遷移受到多個(gè)信號(hào)通路的影響,如PI3K/Akt信號(hào)途徑。在胃癌、乳腺癌、肺癌等多種惡性腫瘤中均能檢測(cè)到PI3K/Akt途徑的活化[26-28],并通過其下游效應(yīng)分子調(diào)節(jié)腫瘤細(xì)胞的分化、侵襲轉(zhuǎn)移等,與臨床腫瘤預(yù)后密切相關(guān)。此外,HIF-1α/VEGF途徑在胃癌的發(fā)生、發(fā)展及侵襲轉(zhuǎn)移方面也發(fā)揮了重要作用。胃癌組織的低氧狀態(tài)誘導(dǎo)HIF-1α的活化,從而調(diào)節(jié)包括葡萄糖轉(zhuǎn)運(yùn)蛋白、血管內(nèi)皮生長因子等多種基因的表達(dá)水平,導(dǎo)致胃癌惡化、轉(zhuǎn)移[29]。
δ-catenin最初作為1個(gè)神經(jīng)特異性表達(dá)蛋白被發(fā)現(xiàn)。研究表明,δ-catenin可以與經(jīng)典的鈣粘素、鈣調(diào)節(jié)的細(xì)胞-細(xì)胞鏈接蛋白等相互作用,參與多種人類疾病的發(fā)生發(fā)展過程,如δ-catenin的表達(dá)異常與近視、阿爾茲海默病及精神分裂癥相關(guān)[30]。最新的研究表明,δ-catenin影響Wnt信號(hào)通路及參與Rho GTP酶的調(diào)節(jié),其突變及表達(dá)紊亂與包括胃癌在內(nèi)的多種腫瘤的增殖及轉(zhuǎn)移密切相關(guān)[31]。鑒于δ-catenin在胃癌發(fā)生發(fā)展中的重要性,以及其被預(yù)測(cè)為miR-29家族的潛在靶基因,我們?cè)谖赴┘?xì)胞中檢測(cè)了其表達(dá)水平是否受到miR-29家族的調(diào)控。
綜上所述,腺病毒介導(dǎo)的過表達(dá)miR-29b2c抑制HGC-27及MGC-803胃癌細(xì)胞增殖和遷移,該活性可能與δ-catenin蛋白表達(dá)水平有關(guān)。
[1] Herrero R, Parsonnet J, Greenberg ER. Prevention of gastric cancer. JAMA, 2014, 312(12): 1197–1198.
[2] Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 2010, 11(9): 597–610.
[3] David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev, 2010, 24(21): 2343–2364.
[4] Mott JL, Kobayashi S, Bronk SF, et al. miR-29 regulates Mcl-1 protein expression and apoptosis. Oncogene, 2007, 26(42): 6133–6140.
[5] Sengupta S, den Boon JA, Chen IH, et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA, 2008, 105(15): 5874–5878.
[6] Garzon R, Liu SJ, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directlyandand indirectly. Blood, 2009, 113(25): 6411–6418.
2)樹體萌芽期及時(shí)使用殺菌劑(推薦使用菌毒清、噻霉酮等,不能使用腐蝕性強(qiáng)的殺菌劑,以免影響愈傷組織形成)涂抹保護(hù)受凍部位,防止其他病害侵染。
[7] Pekarsky Y, Santanam U, Cimmino A, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated byand. Cancer Res, 2006, 66(24): 11590–11593.
[8] Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA, 2007, 104(40): 15805–15810.
[9] Xu H, Cheung IY, Guo HF, et al. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res, 2009, 69(15): 6275–6281.
[10] Wang HT, Garzon R, Sun H, et al. NF-κB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 2008, 14(5): 369–381.
[11] Gong JN, Li JX, Wang Y, et al. Characterization of microRNA-29 family expression and investigation of their mechanistic roles in gastric cancer. Carcinogenesis, 2014, 35(2): 497–506.
[13] Liang JC, Liu CZ, Qiao AJ, et al. MicroRNA-29a-c decrease fasting blood glucose levels by negatively regulating hepatic gluconeogenesis. J Hepatol, 2013, 58(3): 535–542.
[14] Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin, 2011, 61(2): 69–90.
[15] Dong ZW, Qiao YL, Li LD, et al. Report of Chinese cancer control strategy. Bull Chin Cancer, 2002, 11(5): 250–260 (in Chinese). 董志偉, 喬友林, 李連弟, 等. 中國癌癥控制策略研究報(bào)告. 中國腫瘤, 2002, 11(5): 250–260.
[16] Wu WKK, Lee CW, Cho CH, et al. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene, 2010, 29(43): 5761–5771.
[17] Zou WB, Li ZS. Progress in the incidence and mortality of gastric cancer in China. Chin J Prac Intern Med, 2014, 34(4): 408–415 (in Chinese). 鄒文斌, 李兆申. 中國胃癌發(fā)病率及死亡率研究進(jìn)展. 中國實(shí)用內(nèi)科雜志, 2014, 34(4): 408–415.
[18] Link A, Kupcinskas J, Wex T, et al. Macro-role of microRNA in gastric cancer. Dig Dis, 2012, 30(3): 255–267.
[19] Xie Y, Todd NW, Liu ZQ, et al. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer, 2010, 67(2): 170–176.
[20] Chen YC, Zhu XD, Zhang XJ, et al. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther, 2010, 18(9): 1650–1656.
[21] Wu XS, Tang HR, Liu GB, et al. miR-448 suppressed gastric cancer proliferation and invasion by regulating ADAM10. Tumor Biol, 2016, 37(8): 10545–10551.
[22] Tang R, Yang C, Ma X, et al. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer. Oncotarget, 2016, 7(5): 5972–5984.
[23] Liu YF, Zhang X, Zhang YJ, et al. Identification of miRNomes in human stomach and gastric carcinoma reveals miR-133b/a-3p as therapeutic target for gastric cancer. Cancer Lett, 2015, 369(1): 58–66.
[24] Zheng ZQ, Yan DS, Chen XY, et al. MicroRNA-206: effective inhibition of gastric cancer progression through the c-met pathway. PLoS ONE, 2015, 10(7): e0128751.
[25] Zhao JJ, Lin JH, Lwin T, et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood, 2010, 115(13): 2630–2639.
[26] Han ZW, Rong RZ, Kong PZ, et al. Expression of MUC15 and PI3K/Akt in gastric carcinoma and its association with clini-copathological characteristics and prognosis. Chin J Clin Oncol, 2016, 43(2): 56–61 (in Chinese). 韓志偉, 戎瑞洲, 孔鵬洲, 等. MUC15和PI3K/Akt表達(dá)與胃癌臨床病理特征及預(yù)后的相關(guān)性研究. 中國腫瘤臨床, 2016, 43(2): 56–61.
[27] Lin XD, Hu D, Chen G, et al. Association of SNP in the PI3K-PTEN-AKT-mTOR pathway with genetic susceptibility of gastric cancer. J Clin Exp Pathol, 2016, 32(4): 361–365, 369 (in Chinese). 林賢東, 胡丹, 陳剛, 等. PI3K-AKT-mTOR信號(hào)通路基因多態(tài)性與胃癌遺傳易感相關(guān)性. 臨床與實(shí)驗(yàn)病理學(xué)雜志, 2016, 32(4): 361–365, 369.
[28] Murakami D, Tsujitani S, Osaki T, et al. Expression of phosphorylated Akt (pAkt) in gastric carcinoma predicts prognosis and efficacy of chemotherapy. Gastric Cancer, 2007, 10(1): 45–51.
[29] Urano N, Fujiwara Y, Doki Y, et al. Overexpression of hypoxia-inducible factor-1 alpha in gastric adenocarcinoma. Gastric Cancer, 2006, 9(1): 44–49.
[30] Lu Q, Aguilar BJ, Li MC, et al. Genetic alterations of δ-catenin/NPRAP/Neurojungin (): functional implications in complex human diseases. Hum Genet, 2016, 135(10): 1107–1116.
[31] Reynolds AB, Roczniak-Ferguson A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene, 2004, 23(48): 7947–7956.
(本文責(zé)編 陳宏宇)
Effects of recombinant adenovirus Ad-miR-29b2c on HGC-27 cell proliferation and migration
Ailing Luo, Chunyuan Du, Xuemei Zhao, Jichao Liang, and Yong Chen
Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei University, Wuhan 430062, Hubei, China
We constructed recombinant adenoviruses expressing miR-29b2c (Ad-miR29b2c), and analyzed their effects on the proliferation and migration of HGC-27 and MGC-803 cells. miR-29b2c gene was amplified by PCR from genomic DNA and cloned into the pAdTrack-CMV vector to create the shuttle plasmid pAdT-29b2c. The recombinant plasmid was verified by restriction enzyme digestion and sequencing. The linearized shuttle vector was mixed with an adenoviral backbone plasmid (pAdEasy-1), followed by cotransformation into competent BJ5183 cells to generate the recombinant plasmid pAd-miR-29b2c. Finally, recombinant adenoviral vectors were generated by transfecting the recombinant plasmid into 293A packaging cell line. HGC-27 and MGC-803 cells were infected with the recombinant adenoviruses expressing pAd-miR-29b2c, then MTT and wound-healing assay were used to analyze the effects of pAd-miR-29b2c on the proliferation and migration of HGC-27 and MGC-803 cells. The miR-29b and miR-29c levels were significantly increased in HGC-27 cells after infected with pAd-miR-29b2c. MTT and wound-healing analysis also revealed a significant decrease in proliferation and migration of HGC-27 and MGC-803 cells compared to the control Ad-GFP-infected cells. Furthermore, western blotting results demonstrated that the protein expression level of δ-catenin was reduced in pAd-miR-29b2c transfected HGC-27 and MGC-803 cells. Taken together, the recombinant adenoviral vector was generated, and it can significantly inhibit the proliferation and migration of HGC-27 and MGC-803 cells.
miR-29, gastric cancer, recombinant adenovirus, gene therapy
January 4, 2017; Accepted:April 6, 2017
Jichao Liang. Tel/Fax: +86-27-88663590; E-mail: liang529114@163.com Yong Chen. Tel/Fax: +86-27-88663882; E-mail: cy101610@qq.com
Supported by:Young Talent Project of the Education Department of Hubei Province (No. Q20141002).
湖北省教育廳科學(xué)技術(shù)研究計(jì)劃青年人才項(xiàng)目 (No. Q20141002) 資助。
網(wǎng)絡(luò)出版時(shí)間:2017-04-18
http://kns.cnki.net/kcms/detail/11.1998.Q.20170418.1109.001.html