趙均海姜志琳 張常光 曹雪葉
(長(zhǎng)安大學(xué)建筑工程學(xué)院,西安710061)
固體力學(xué)
不同拉壓特性的厚壁圓筒極限內(nèi)壓統(tǒng)一解1)
趙均海2)姜志琳 張常光 曹雪葉
(長(zhǎng)安大學(xué)建筑工程學(xué)院,西安710061)
厚壁圓筒在實(shí)際工程領(lǐng)域中應(yīng)用廣泛,若能精確計(jì)算出極限內(nèi)壓,對(duì)預(yù)防事故發(fā)生,降低風(fēng)險(xiǎn)有重要意義.工程中存在許多材料,其拉壓強(qiáng)度和拉壓模量均存在差異,這些差異對(duì)極限內(nèi)壓的大小有顯著影響.以往研究表明,僅考慮拉壓強(qiáng)度與拉壓模量的一個(gè)方面,計(jì)算結(jié)果與實(shí)際情況存在一定的誤差.本文基于雙剪統(tǒng)一強(qiáng)度理論,綜合考慮中間主應(yīng)力效應(yīng)及材料拉壓強(qiáng)度和拉壓模量的不同,推導(dǎo)了內(nèi)壓作用下厚壁圓筒的彈、塑性狀態(tài)的應(yīng)力分布及彈性極限內(nèi)壓、塑性極限內(nèi)壓與安定極限內(nèi)壓的統(tǒng)一解,通過與其他文獻(xiàn)對(duì)比分析驗(yàn)證了本文計(jì)算結(jié)果的正確性,分析了半徑比、統(tǒng)一強(qiáng)度理論參數(shù)、拉壓強(qiáng)度比與拉壓模量系數(shù)對(duì)彈性極限內(nèi)壓、塑性極限內(nèi)壓及安定極限內(nèi)壓的影響.結(jié)果表明:統(tǒng)一解均隨半徑比和統(tǒng)一強(qiáng)度理論參數(shù)的增大而增大,隨拉壓強(qiáng)度比的增大而減小,彈性極限內(nèi)壓隨材料拉壓模量系數(shù)的增大而減小,當(dāng)壁厚增加到一定值后,安定極限內(nèi)壓隨材料拉壓模量系數(shù)的增大而減??;材料的拉壓模量不同、拉壓強(qiáng)度差異對(duì)厚壁圓筒的安定性影響顯著,考慮中間主應(yīng)力效應(yīng)可使材料的潛能得到更充分發(fā)揮,極限內(nèi)壓隨半徑比的變化規(guī)律可為選擇合理壁厚提供參考,該結(jié)論可為厚壁圓筒的工程應(yīng)用提供理論依據(jù).
厚壁圓筒,雙剪統(tǒng)一強(qiáng)度理論,拉壓強(qiáng)度,拉壓模量,極限內(nèi)壓
本文采用雙剪統(tǒng)一強(qiáng)度理論,假定材料為理想彈塑性,綜合考慮中間主應(yīng)力效應(yīng)、拉壓強(qiáng)度的不同及拉壓模量的差異,推導(dǎo)了厚壁圓筒的彈性極限內(nèi)壓、塑性極限內(nèi)壓及安定極限內(nèi)壓統(tǒng)一解,分析了半徑比、統(tǒng)一強(qiáng)度理論參數(shù)、拉壓強(qiáng)度比與拉壓模量系數(shù)對(duì)統(tǒng)一解的影響.
俞茂宏于1991年以雙剪單元體和雙剪屈服準(zhǔn)則為基礎(chǔ),考慮作用于雙剪單元體上的全部應(yīng)力分量及其對(duì)材料破壞的影響,建立了雙剪統(tǒng)一強(qiáng)度理論,該理論充分考慮了中間主應(yīng)力σ2的影響,幾乎適用于各種不同特性的材料.其數(shù)學(xué)表達(dá)式為[27]
其中
式中,σ1,σ2與σ3分別為第一、第二(即中間)及第三主應(yīng)力;α為材料的拉壓強(qiáng)度比;σt,σc與τ0分別為材料的抗拉強(qiáng)度極限、抗壓強(qiáng)度極限及剪切強(qiáng)度極限;b為統(tǒng)一強(qiáng)度理論參數(shù),反映了中間主剪應(yīng)力及其相應(yīng)面上的正應(yīng)力對(duì)材料破壞的影響程度,0≤b≤1.b取不同值時(shí),可退化為不同的強(qiáng)度準(zhǔn)則,即對(duì)應(yīng)π平面的極限線不同,b=0時(shí)退化為Mohr-Coulomb準(zhǔn)則,b=0,α=1時(shí)退化為Tresca準(zhǔn)則,b=1時(shí)退化為雙剪強(qiáng)度準(zhǔn)則,0<b<1時(shí)為一系列有序的新強(qiáng)度準(zhǔn)則.
設(shè)有一無(wú)限長(zhǎng)厚壁圓筒,由拉壓強(qiáng)度及拉壓模量均不相同的理想彈塑性材料制成,并假定材料各向同性,塑性體積不可壓縮,忽略微小的彈性體積變形,其內(nèi)半徑為ra、外半徑為rb,受均勻內(nèi)壓p作用(如圖1所示).令:u為徑向位移,σθ為環(huán)向應(yīng)力,σr為徑向應(yīng)力,σz為軸向應(yīng)力.
圖1 厚壁圓筒模型Fig.1 Modelof thick-walled cylinder
2.1 彈性極限分析
由厚壁圓筒的幾何形狀與受力情況可知,厚壁圓筒處于軸對(duì)稱平面應(yīng)變狀態(tài)[28].其平衡方程(不考慮體力)為
幾何方程為
廣義彈性定律為[29]
其中
由式(3)和式(4)可得
由式(6)可得
將式(7)和式(8)代入式(2)可得
將式(10)代入式(6)可得應(yīng)力分量為
式中,β為拉壓模量系數(shù).當(dāng)β=1即E+=E-和ν+=ν-時(shí),表示材料受拉與受壓時(shí)彈性模量相同;當(dāng)β≠1即E+≠E-或ν+≠ν-時(shí),表示材料受拉與受壓時(shí)彈性模量不相等.
由式(11)可知,環(huán)向應(yīng)力σθ>0,徑向應(yīng)力σr<0.若規(guī)定σ1≥σ2≥σ3,則
厚壁圓筒僅受內(nèi)壓作用時(shí),其內(nèi)壁r=ra處的應(yīng)力最大,即內(nèi)壁r=ra處最先進(jìn)入塑性狀態(tài).為計(jì)算彈性極限內(nèi)壓pe,將r=ra代入式(11)得到此處的應(yīng)力分量為
將式(15)代入強(qiáng)度準(zhǔn)則式(14)得
化簡(jiǎn)求得厚壁圓筒的彈性極限內(nèi)壓pe為
式中,κ=(1+b-0.5αb)β,η=α(0.5b+1).
2.2 彈塑性分析
當(dāng)內(nèi)壓p>pe時(shí),塑性區(qū)的范圍從r=ra處向外擴(kuò)大.設(shè)彈塑性交界處的半徑為rc,則ra≤r≤rc范圍內(nèi)厚壁圓筒處于塑性狀態(tài),rc≤r≤rb范圍內(nèi)厚壁圓筒處于彈性狀態(tài),如圖2所示.
圖2 厚壁圓筒彈塑性分界Fig.2 Elastic plastic boundary of thick-walled cylinder
由式(1a)、式(2)、式(12)可得
該方程的解為
其中C為待定常數(shù).
式中,ra≤r≤rc.
彈性區(qū)可視為受內(nèi)壓pc作用,內(nèi)半徑為rc,外半徑為rb的厚壁圓筒.pc為彈塑性交界即r=rc處的彈性極限內(nèi)壓.將ra=rc代入式(17)可得
將式(21)代入式(11),可得彈性區(qū)的應(yīng)力為
式中,rc≤r≤rb.
由于厚壁圓筒在彈塑性交界處內(nèi)力連續(xù),即式(20)與式(22)在r=rc處相等,故塑性區(qū)半徑rc與內(nèi)壓p的關(guān)系為
2.3 塑性極限分析
隨著內(nèi)壓p的繼續(xù)增大,塑性區(qū)范圍逐漸往外擴(kuò)展,當(dāng)rc=rb時(shí),厚壁圓筒達(dá)到塑性極限狀態(tài).將rc=rb代入式(23)可得塑性極限內(nèi)壓pp為
式中,α<1.
由文獻(xiàn)[33]可知,α=1時(shí),塑性極限內(nèi)壓為
故
由式(26)可知,厚壁圓筒達(dá)到塑性極限狀態(tài)時(shí),拉壓模量的不同對(duì)塑性極限內(nèi)壓pp無(wú)影響,半徑比、拉壓強(qiáng)度比及統(tǒng)一強(qiáng)度理論參數(shù)對(duì)塑性極限內(nèi)壓pp是有影響的.
3.1 殘余應(yīng)力
厚壁圓筒加載至彈塑性狀態(tài)然后卸載,卸載應(yīng)力可由彈性解確定.卸載應(yīng)力由式(11)確定,加載應(yīng)力由式(20)和式(22)確定,疊加即可得殘余應(yīng)力[28].塑性區(qū)殘余應(yīng)力為
式中,ra≤r≤rc.
彈性區(qū)殘余應(yīng)力為
式中,rc≤r≤rb.
3.2 安定性
考察殘余應(yīng)力,厚壁圓筒內(nèi)壁處因殘余應(yīng)力而首先進(jìn)入塑性狀態(tài)[13,26],將r=ra代入式(27)可得該處殘余應(yīng)力為
初始加載時(shí),厚壁圓筒所受的內(nèi)壓不能使其達(dá)到塑性極限狀態(tài);卸載后,厚壁圓筒亦不能出現(xiàn)新的塑性變形,故厚壁圓筒的安定極限內(nèi)壓pm為
4.1 解的退化驗(yàn)證
為了驗(yàn)證本文結(jié)果的正確性,將本文結(jié)果與文獻(xiàn)[13,17,24]進(jìn)行比較.當(dāng)α=1,b=0時(shí),雙剪統(tǒng)一強(qiáng)度理論退化為Tresca準(zhǔn)則,將其代入式(17)和式(26)得
本文退化結(jié)果式(32)與文獻(xiàn)[17]所對(duì)應(yīng)結(jié)果相同.
將β=1代入式(17)和式(26)得
本文退化結(jié)果式(33)與文獻(xiàn)[24]所對(duì)應(yīng)結(jié)果相同.
文獻(xiàn)[13]中厚壁圓筒拉壓模量相同,但其內(nèi)壁處環(huán)向殘余應(yīng)力、卸載時(shí)圓筒不產(chǎn)生新的塑性變形的極限內(nèi)壓pt的計(jì)算式應(yīng)為
式中
式(29)和式(30)退化所得結(jié)果與修正后文獻(xiàn)[13]結(jié)果相同,本文結(jié)果可退化為拉壓模量相同的厚壁圓筒安定性分析的解析解,即式(35)與式(36)相同.
本文所得結(jié)果考慮了材料的拉壓強(qiáng)度及拉壓模量的不同,可退化為不同材料厚壁圓筒的彈性極限內(nèi)壓、塑性極限內(nèi)壓及安定極限內(nèi)壓的解析解,故本文所建立的解析解可作為厚壁圓筒安定性分析的統(tǒng)一解.
4.2 解的對(duì)比驗(yàn)證
為驗(yàn)證本文理論分析的可靠性,采用文獻(xiàn)[17,34-36]對(duì)彈塑性狀態(tài)下環(huán)向應(yīng)力σθ公式(20)和(22)和彈塑性極限內(nèi)壓公式(17)和(26)進(jìn)行驗(yàn)證.
將本文計(jì)算的環(huán)向應(yīng)力結(jié)果與文獻(xiàn)[34]進(jìn)行比較.由文獻(xiàn)[34]取相關(guān)參數(shù),材料為理想彈塑性,基于統(tǒng)一強(qiáng)度理論,采用ABAQUS軟件,模擬得到在內(nèi)壓p=1.1645kPa作用下的環(huán)向應(yīng)力σθ,內(nèi)半徑ra=0.1m,外半徑rb=0.2m,彈性模量E=240MPa,泊松比ν=0.2,抗拉強(qiáng)度極限σt=1.4 kPa,拉壓強(qiáng)度比α=0.49,統(tǒng)一強(qiáng)度理論參數(shù)b取0,0.5和1;除上述參數(shù)外,本文取拉壓彈性模量E+=E-=240MPa,泊松比ν+=ν-=0.2,即拉壓模量系數(shù)β=1,結(jié)果比較如圖3所示.
由式(26)可得,統(tǒng)一強(qiáng)度理論參數(shù)b取0,0.5和1時(shí),塑性極限內(nèi)壓pp分別為1.164,1.289,1.362 kPa.在內(nèi)壓p=1.1645kPa作用下,b=0時(shí)厚壁圓筒處于完全塑性狀態(tài),b=0.5和1時(shí)處于彈塑性狀態(tài),塑性區(qū)半徑分別為0.149m,0.139m.從圖3可知,在塑性區(qū),本文計(jì)算的環(huán)向應(yīng)力與文獻(xiàn)[34]數(shù)值模擬結(jié)果均隨半徑的增大而增大;在彈性區(qū),本文計(jì)算的環(huán)向應(yīng)力與文獻(xiàn)[34]數(shù)值模擬結(jié)果均隨半徑的增大而減小;b取不同值時(shí),對(duì)應(yīng)π平面的極限線不同,b越大則中間主應(yīng)力效應(yīng)越強(qiáng),材料的強(qiáng)度越高,故在內(nèi)壓p=1.1645 kPa作用下,隨著b的增大,厚壁圓筒由完全塑性狀態(tài)轉(zhuǎn)化為彈塑性狀態(tài),且塑性區(qū)半徑逐漸減小.文獻(xiàn)[34]數(shù)值模擬結(jié)果與本文計(jì)算結(jié)果的比值/σθ的范圍在0.958~1.060之間,二者吻合較好,說(shuō)明式(20)和式(22)的計(jì)算精度較高.
圖3 本文結(jié)果與文獻(xiàn)[34]比較Fig.3 Comparison between the results in thispaperand the Ref.[34]
將本文結(jié)果與文獻(xiàn)[17]計(jì)算結(jié)果、文獻(xiàn)[35]試驗(yàn)結(jié)果及文獻(xiàn)[36]FLAC數(shù)值模擬結(jié)果比較,如表1、表2及圖4所示.其中:文獻(xiàn)[17]采用Tresca準(zhǔn)則,材料為理想彈塑性,半徑比rb/ra=2,抗拉強(qiáng)度極限σt=5.77MPa;文獻(xiàn)[35]的圓筒由馬氏體時(shí)效鋼制成,對(duì)圓筒進(jìn)行了爆破試驗(yàn),測(cè)得其爆破內(nèi)壓,該材料的抗拉強(qiáng)度極限σt=2128MPa;文獻(xiàn)[36]基于統(tǒng)一強(qiáng)度理論采用FLAC軟件,模擬得到彈、塑性極限內(nèi)壓,材料為理想彈塑性,半徑比rb/ra=2,彈性模量E=240MPa,泊松比ν=0.2,黏聚力c=1.0kPa,內(nèi)摩擦角φ=20°,由此可得抗拉強(qiáng)度極限σt=1.4kPa,拉壓強(qiáng)度比α=0.49;除上述參數(shù)外,本文取拉壓彈性模量E+=E-=240MPa,泊松比ν+=ν-=0.2,即拉壓模量系數(shù)β=1.
表2 本文計(jì)算結(jié)果與文獻(xiàn)[35]比較Table2 Comparison between the calculated results in this paperand the Ref.[35]
圖4 本文計(jì)算結(jié)果與文獻(xiàn)[36]比較Fig.4 Comparison between the calculated results in thispaperand the resultsof Ref.[36]
由表1可知,拉壓模量系數(shù)β取不同的值時(shí),本文計(jì)算的彈、塑性極限內(nèi)壓與文獻(xiàn)[17]彈、塑性極限內(nèi)壓的比值均為1.00;由表2可知,統(tǒng)一強(qiáng)度理論參數(shù)b為0.3,0.5,0.7時(shí)本文計(jì)算的塑性極限內(nèi)壓與文獻(xiàn)[35]試驗(yàn)結(jié)果的平均比值分別為0.96,1.02及1.07,說(shuō)明b取不同值時(shí)對(duì)極限內(nèi)壓的結(jié)果是有影響的,且文獻(xiàn)[35]中的馬氏體時(shí)效鋼比較符合參數(shù)b=0.5時(shí)的統(tǒng)一強(qiáng)度理論;由圖4可知,兩者的相對(duì)誤差僅在塑性狀態(tài)下b=0、半徑比rb/ra=1.25處是9.34%,其余均在0.04%~4.24%之間,二者吻合較好.綜上,從表1、表2、圖4(a)、圖4(b)說(shuō)明了特定條件下本文公式的正確性;本文計(jì)算公式考慮了拉壓強(qiáng)度不同、拉壓模量不同及中間主應(yīng)力的影響,可較準(zhǔn)確地計(jì)算不同材料下厚壁圓筒的彈、塑性極限內(nèi)壓,故本文所建立的解析解可作為厚壁圓筒安定性分析的統(tǒng)一解.
4.3 厚壁圓筒的應(yīng)力分布
采用文獻(xiàn)[34]的數(shù)據(jù),其中內(nèi)半徑ra=0.1m,外半徑rb=0.2m,抗拉強(qiáng)度極限σt=1.4kPa,拉壓強(qiáng)度比α=0.49,再附加拉壓模量系數(shù)β=0.5.統(tǒng)一強(qiáng)度理論參數(shù)b為0,0.5,1時(shí),由式(17)可得彈性極限內(nèi)壓pe分別為0.70,0.78,0.83 kPa,由式(26)可得塑性極限內(nèi)壓pp分別為1.16,1.29,1.36 kPa,由此可知在內(nèi)壓p=1.00kPa作用下,取b為0,0.5,1時(shí)厚壁圓筒均處于彈塑性狀態(tài);彈性極限狀態(tài)下徑向應(yīng)力σr與環(huán)向應(yīng)力σθ隨半徑r的變化規(guī)律如圖5(a)所示;彈塑性狀態(tài)下環(huán)向應(yīng)力σθ與徑向應(yīng)力σr隨半徑r的變化規(guī)律如圖5(b)所示;塑性極限狀態(tài)下徑向應(yīng)力σr與環(huán)向應(yīng)力σθ隨半徑r的變化規(guī)律如圖5(c)所示.
由圖5(a)可知,彈性極限狀態(tài)下,環(huán)向應(yīng)力σθ與徑向應(yīng)力σr均隨半徑r的增大而減小,隨統(tǒng)一強(qiáng)度理論參數(shù)b的增大而增加;由圖5(b)可知,彈塑性狀態(tài)下,塑性區(qū)的環(huán)向應(yīng)力σθ隨半徑r的增大而增大,彈性區(qū)的環(huán)向應(yīng)力σθ隨半徑r的增大而減小,塑性區(qū)及彈性區(qū)的徑向應(yīng)力σr均隨半徑r的增大而減小,塑性區(qū)半徑rc隨著統(tǒng)一強(qiáng)度理論參數(shù)b的增大而減小,環(huán)向應(yīng)力的峰值隨著統(tǒng)一強(qiáng)度理論參數(shù)b的增大而增大,b的值越大,對(duì)應(yīng)π平面的極限線范圍越大,中間主應(yīng)力效應(yīng)越強(qiáng),材料的強(qiáng)度越高,故塑性區(qū)半徑rc減小,環(huán)向應(yīng)力的峰值越大;由圖5(c)可知,塑性極限狀態(tài)下,環(huán)向應(yīng)力σθ隨半徑r的增大而增大,徑向應(yīng)力σr隨半徑r的增大而減小,環(huán)向應(yīng)力σθ與徑向應(yīng)力σr均隨著統(tǒng)一強(qiáng)度理論參數(shù)b的增大而增大,說(shuō)明隨著b的增大極限內(nèi)壓增加,從而使環(huán)向應(yīng)力σθ和徑向應(yīng)力σr增加.
圖5 彈、塑性極限狀態(tài)下應(yīng)力分布Fig.5 Stressdistribution in elastic and plastic lim itstate
4.4 彈性極限內(nèi)壓的參數(shù)分析
采用式(17)分析pe/σt隨半徑比rb/ra、統(tǒng)一強(qiáng)度理論參數(shù)b、拉壓強(qiáng)度比α與材料拉壓模量系數(shù)β的變化規(guī)律,結(jié)果如圖6所示.
由圖6可以看出,當(dāng)厚壁圓筒的材料一定時(shí),pe/σt隨rb/ra的增大而增大,如令β=1.6,當(dāng)rb/ra從1.6增大到2時(shí)pe/σt增大了17.51%,但rb/ra增大到一定值后,pe/σt的變化趨勢(shì)逐漸趨于平穩(wěn),說(shuō)明不能僅僅通過增加壁厚來(lái)提高厚壁圓筒的彈性極限內(nèi)壓;當(dāng)厚壁圓筒的內(nèi)外半徑一定,材料拉壓強(qiáng)度比α、統(tǒng)一強(qiáng)度理論參數(shù)b不變時(shí),pe/σt隨β的增大而減小,如令rb/ra=2.4,β從1增大到1.6時(shí)pe/σt減小了13.78%,且隨著壁厚的增加,β對(duì)pe/σt的影響越顯著.由圖6(c)和圖6(d)可知,pe/σs隨b的增大而增加,如令β=1.6、α=0.4,b從0變化到1時(shí)pe/σt增大了14.30%;隨α的增大而減小,如令β=1.6,b=0.5,α從0.6變化到1時(shí)pe/σt減小了8.05%,也就是說(shuō)中間主應(yīng)力、材料拉壓強(qiáng)度不同均顯著影響厚壁圓筒的彈性極限承載能力.因此,對(duì)厚壁圓筒進(jìn)行彈性極限分析時(shí)應(yīng)考慮材料的拉壓強(qiáng)度不同、拉壓模量不同及中間主應(yīng)力的影響.
圖6 pe/σt與rb/ra,α,b,β間的關(guān)系Fig.6 Correlation of pe/σtwithrb/ra,α,b andβ
4.5 塑性極限內(nèi)壓的參數(shù)分析
由式(26)可知,塑性極限內(nèi)壓pp/σt與半徑比rb/ra、統(tǒng)一強(qiáng)度理論參數(shù)b、拉壓強(qiáng)度比α均有關(guān),其變化規(guī)律如圖7所示.
圖7 pp/σt與rb/ra,α,b間的關(guān)系Fig.7 Correlation of pp/σtwithrb/ra,αand b
由圖7(a)可知,pp/σt隨α的增大而減小,隨rb/ra的增大而增大;令rb/ra=2,α從0.6變化到1時(shí)pp/σt減小了7.78%,令α=0.4,rb/ra從1.6變化到2時(shí)pp/σt增大了59.15%;當(dāng)rb/ra增大到一定值時(shí),pp/σt的增長(zhǎng)趨勢(shì)逐漸變緩,增加壁厚已不能明顯提高厚壁圓筒的塑性極限承載能力,可由此選擇合理壁厚.由圖7(b)可知,pp/σt隨b的增大而增加,令rb/ra=2.4,b從0變化到1時(shí)pp/σt增大了14.71%,因此實(shí)際工程中應(yīng)根據(jù)實(shí)驗(yàn)確定b值以選取合適的強(qiáng)度準(zhǔn)則,使厚壁圓筒的受力情況更接近實(shí)際.
圖7 pp/σt與rb/ra,α,b間的關(guān)系(續(xù))Fig.7 Correlation of pp/σtwithrb/ra,αand b(continued)
4.6 安定極限內(nèi)壓的參數(shù)分析
采用式(26)、式(30)及式(31)分析pm/σt隨半徑比rb/ra、統(tǒng)一強(qiáng)度理論參數(shù)b、拉壓強(qiáng)度比α與拉壓模量系數(shù)β的變化規(guī)律,結(jié)果如圖8所示.
圖8 pm/σt與rb/ra,α,b,β間的關(guān)系Fig.8 Correlation of pm/σtwithrb/ra,α,b andβ
由圖8(a)和圖8(b)可得,對(duì)同一材料的厚壁圓筒,pm/σt隨rb/ra的增大而增大,如令β=1.6,rb/ra從1.6增大到2時(shí)pm/σt增大了42.28%,當(dāng)rb/ra增大到一定值后,pm/σt逐漸趨于平穩(wěn);在其他條件不變的情況下,一定壁厚范圍內(nèi),安定極限內(nèi)壓pm/σt的值與β無(wú)關(guān),當(dāng)壁厚增加到一定值后,pm/σt隨β的增大而減小,如令rb/ra=2.4,β從1增大到1.6時(shí)pm/σt減小了13.78%.由圖8(c)和圖8(d)可得,pm/σt隨b的增大而增大,如令β=1.6,α=0.4,b從0變化到1時(shí)pm/σt增大了13.90%,考慮中間主應(yīng)力效應(yīng)使材料的潛能得到更充分發(fā)揮;當(dāng)b,β及rb/ra不變時(shí),pm/σt隨α的增大而減小,如令β=1.6,b=0.5,α從0.6變化到1時(shí)pm/σt減小了11.03%,說(shuō)明考慮拉壓強(qiáng)度比時(shí)可增大安定極限內(nèi)壓pm/σt從而充分利用材料的潛能.
(1)基于雙剪統(tǒng)一強(qiáng)度理論,并考慮中間主應(yīng)力效應(yīng)及材料拉壓強(qiáng)度和拉壓模量不同的影響,本文得到內(nèi)壓作用下厚壁圓筒的彈性極限內(nèi)壓、塑性極限內(nèi)壓及安定極限內(nèi)壓的統(tǒng)一解.通過參數(shù)變化,該解可退化為拉壓模量相等及不同屈服準(zhǔn)則的解析解;通過與文獻(xiàn)對(duì)比驗(yàn)證,說(shuō)明了本文計(jì)算公式的正確性.
(2)彈性極限內(nèi)壓、塑性極限內(nèi)壓與安定極限內(nèi)壓均隨半徑比rb/ra的增大而增加;當(dāng)壁厚增大到一定值后,半徑比對(duì)彈性限內(nèi)壓、塑性極限內(nèi)壓及安定極限內(nèi)壓的影響逐漸趨于平穩(wěn),因此實(shí)際工程中可根據(jù)該變化規(guī)律來(lái)選擇合理壁厚.
(3)彈性極限內(nèi)壓、塑性極限內(nèi)壓與安定極限內(nèi)壓均隨拉壓強(qiáng)度比α的增大而減小,說(shuō)明不考慮拉壓強(qiáng)度的不同會(huì)使極限內(nèi)壓的計(jì)算值偏?。浑S強(qiáng)度理論參數(shù)b的增大而增加,說(shuō)明考慮中間主應(yīng)力的影響可使厚壁圓筒的受力更接近實(shí)際,充分發(fā)揮材料的性能;彈性極限內(nèi)壓隨拉壓模量系數(shù)β的增大而減小,壁厚在一定范圍內(nèi)時(shí),拉壓模量系數(shù)β對(duì)安定極限內(nèi)壓無(wú)影響,當(dāng)壁厚增加到一定值后,安定極限內(nèi)壓隨拉壓模量系數(shù)β的增大而減小,說(shuō)明當(dāng)β≤1時(shí)考慮拉壓模量的不同可提高極限內(nèi)壓值以便充分利用材料的性能,β≥1時(shí)不考慮拉壓模量的不同使計(jì)算值偏大從而導(dǎo)致事故的發(fā)生;因此對(duì)厚壁圓筒進(jìn)行安定性分析時(shí)應(yīng)考慮材料的拉壓強(qiáng)度差異、拉壓模量不同及中間主應(yīng)力的影響.
本文所推導(dǎo)的厚壁圓筒極限內(nèi)壓統(tǒng)一解是針對(duì)一般材料的通用解,僅考慮了材料拉壓強(qiáng)度、拉壓模量的不同,且假定材料符合理想彈塑性模型,針對(duì)具體材料的特性如應(yīng)變硬化及Bauschinger效應(yīng)等,可在此基礎(chǔ)上進(jìn)行拓展研究.對(duì)于公式的驗(yàn)證,本文計(jì)算結(jié)果僅與已有文獻(xiàn)的理論、相關(guān)試驗(yàn)及FLAC、ABAQUS數(shù)值軟件模擬結(jié)果進(jìn)行了對(duì)比分析,對(duì)于同時(shí)考慮拉壓強(qiáng)度不同、拉壓模量不同及中間主應(yīng)力等因素的驗(yàn)證分析,有待借助FLAC或ABAQUS軟件的二次開發(fā)模擬進(jìn)一步全面驗(yàn)證.
1 Sharma R,Aggarwal AK,Sharma S,et al.Thermo creep transition in functionally graded thick-walled circular cylinder under external pressure.Annals of the Faculty Engineering Hunedoara-International JournalofEngineering,2014,12(4):335-342
2 Zamani J,Soltani B,Aghaei M.Analytical investigation of elastic thin-walled cylinder and truncated cone shell intersection under internalpressure.Journal ofPressure Vessel Technology,2014,136(5):051201
3王建梅,苗克軍,徐俊良等.非均勻載荷下厚壁圓筒穩(wěn)態(tài)蠕變應(yīng)力的計(jì)算.西安交通大學(xué)學(xué)報(bào),2015,49(9):8-13(Wang Jianmei,M iao Kejun,Xu Junliang,etal.Steady-state creep stresscalculation of thick-walled cylinder under non-uniform load.Journal ofXi’an Jiaotong University,2015,49(9):8-13(in Chinese))
4 Zhu Q,Zhao JH,Zhang CG,etal.Elastic-brittle-plastic analysisof double-layered combined thick-walled cylinder under internalpressure.JournalofPressure Vessel Technology,2016,138(1):011201
5 ZareHR,DarijaniH.A novelautofrettagemethod forstrengthening and design of thick-walled cylinders.Materials&Design,2016,105:366-374
6 PankajT.Elastic-plastic transition stressesina transversely isotropic thick-walled cylinder subjected to internalpressureand steady-state temperature.Thermal Science,2009,13(4):107-118
7李偉.基于有限元法的超高壓容器設(shè)計(jì)與優(yōu)化.[碩士論文].包頭:內(nèi)蒙古科技大學(xué),2014(LiWei.The design and optimization of ultra-high pressure vessel based on FEM.[Master Thesis].Baotou:University of Scienceand Technology of the InnerMongol,2014(in Chinese))
8鄺臨源,蘇東川,王東輝等.反應(yīng)堆壓力容器管座過盈量對(duì)應(yīng)力的影響研究.核動(dòng)力工程,2015,36(s2):131-134(Kuang Linyuan,Su Dongchuan,Wang Donghui,et al.E ff ect of interference tolerance on stress of penetration of reactor pressure vessel.Nuclear Power Engineering,2015,36(s2):131-134(in Chinese))
9朱倩,趙均海,張常光等.雙層組合厚壁圓筒彈脆塑性極限內(nèi)壓統(tǒng)一解.工程力學(xué),2015,32(9):68-75(Zhu Qian,Zhao Junhai,Zhang Changguang,et al.Elastic-brittle-plastic unifie solutions of lim it internal pressure for double-layered combined thick-walled cylinder.Engineering Mechanics,2015,32(9):68-75(in Chinese))
10焦健.超高壓反應(yīng)管爆破壓力試驗(yàn)研究.[碩士論文].廣州:華南理工大學(xué),2015(Jiao Jian.The experimental study on burst pressure of UHP reaction tube.[Master Thesis].Guangzhou:South China University of Technology,2015(in Chinese))
11朱瑞林,朱國(guó)林.熱預(yù)應(yīng)力自增強(qiáng)厚壁圓筒研究.機(jī)械工程學(xué)報(bào),2016,52(17):168-175(Zhu Ruilin,Zhu Guolin.Study on autofrettaged thick-walled cylindersw ith thermal pre-stresses.Journal of MechanicalEngineering,2016,52(17):168-175(in Chinese))
12徐栓強(qiáng),俞茂宏.統(tǒng)一強(qiáng)度準(zhǔn)則下厚壁圓筒的彈脆塑性承載能力分析.力學(xué)季刊,2004,25(4):490-495(Xu Shuanqiang,Yu Maohong.Elasto-brittle-plastic carrying capacity analysis for a thick walled cylinder under unifie theory criterion.Chinese Quarterly ofMechanics,2004,25(4):490-495(in Chinese))
13徐栓強(qiáng),俞茂宏.厚壁圓筒安定問題的統(tǒng)一解析解.機(jī)械工程學(xué)報(bào),2004,40(9):23-27(Xu Shuanqiang,Yu Maohong.Unifie analytical solution to shakedown problem of thick-walled cylinder.Chinese JournalofMechanicalEngineering,2004,40(9):23-27(in Chinese))
14楊宇宙,錢林方,徐亞棟等.復(fù)合材料厚壁圓筒的疲勞損傷研究.應(yīng)用力學(xué)學(xué)報(bào),2013,30(3):378-383(Yang Yuzhou,Qian Linfang,Xu Yadong,et al.Fatigue failure analysis of composite material tube.Chinese JournalofApplied Mechanics,2013,30(3):378-383(in Chinese))
15中華人民共和國(guó)住房和城鄉(xiāng)建設(shè)部.GB50010-2010混凝土結(jié)構(gòu)設(shè)計(jì)規(guī)范.北京:中國(guó)建筑工業(yè)出版社,2010(ThePeople’sRepublic of China M inistry of Housing and Urban-Rural Development.GB 50010-2010 Code for design of concrete structures.Beijing:China Construction Industry Publishing House,2010(in Chinese))
16何曉婷.拉壓不同模量彈性結(jié)構(gòu)的非線性力學(xué)行為研究.[博士論文].重慶:重慶大學(xué),2007(HeXiaoting.Study on nonlinearmechanicsbehavior of elasticstructurew ith di ff erent tension and compressionmoduli.[PhD Thesis].Chongqing:Chongqing University.Collegeof CivilEngineering,2007(in Chinese))
17楊釗,陳海明,王麗欣.材料拉壓不同模量及理想塑性的圓筒變形分析.地下空間與工程學(xué)報(bào),2009,5(2):239-243(Yang Zhao,Chen Haim ing,Wang Lixin.Analysison the deformation of cylinder in perfectly plasticmaterialw ith di ff erentelasticmodulus in tension and compression.Chinese Journal ofUnderground Space and Engineering,2009,5(2):239-243(in Chinese))
18殷有泉,陳朝偉.軟化材料厚壁筒的解析解及其穩(wěn)定性分析.力學(xué)學(xué)報(bào),2010,42(1):56-64(Yin Youquan,Chen Chaowei.Theanalyticalsolutionsof thick-walled cylinder of softeningmaterialand itsstability.Chinese JournalofTheoreticaland Applied Mechanics,2010,42(1):56-64(in Chinese))
19陳四利,李艷宇,張精禹.基于三參數(shù)雙τ2強(qiáng)度理論的厚壁圓筒極限壓力分析.沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào),2016,38(5):556-559(Chen Sili,Li Yanyu,Zhang Jingyu.Lim it stress analysis for thick-wall cylinder based on triparameter and tw inτ2strength theory.JournalofShenyang University ofTechnology,2016,38(5):556-559(in Chinese))
20胡向東,舒暢,佘思源.均布荷載下拋物線形FGM凍結(jié)壁彈塑性解.煤炭學(xué)報(bào),2012,37(3):379-384(Hu Xiangdong,Shu Chang,She Siyuan.Elasto-plastic analytical solution for functionally graded material frozensoilwallw ith parabolic property under uniform load.JournalofChina Coal Society,2012,37(3):379-384(in Chinese))
21胡向東,舒暢.考慮FGM特性的雙排管豎井凍結(jié)壁應(yīng)力場(chǎng)分析.工程力學(xué),2014,31(1):145-153(Hu Xiangdong,Shu Chang.Stress fiel analysisof functionally gradedmaterial frozen soilwall in double-row-pipe shaft freezing.Engineering Mechanics,2014,31(1):145-153(in Chinese))
22 Zhu Ruilin,Zhu Guolin.Onautofrettageof cylindersby limiting circum ferential residualstressbased on M ises yield criterion.Journal ofTheoreticaland Applied Mechanics,2013,51(3):697-710
23錢凌云,劉全坤,王成勇等.厚壁圓筒自增強(qiáng)壓力的優(yōu)化分析.中國(guó)機(jī)械工程,2012,23(4):474-479(Qian Lingyun,Liu Quankun,Wang Chengyong,etal.Optimization analysisof autofrettage pressure for thick walled cylinder.China Mechanical Engineering,2012,23(4):474-479(in Chinese))
24趙均海,張永強(qiáng),李建春等.拉壓強(qiáng)度不等材料的厚壁圓筒的統(tǒng)一極限解.力學(xué)與實(shí)踐,1999,21(6):45-47(Zhao Junhai,Zhang Yongqiang,Li Jianchun,et al.Unifie lim it solutions ofmaterials w ith di ff erent tension and compression strengths.Mechanics in Engineering,1999,21(6):45-47(in Chinese))
25陳昌富,肖淑君.基于統(tǒng)一強(qiáng)度理論考慮拉壓模量不同散體材料樁承載力計(jì)算.工程力學(xué),2007,24(10):105-111(Chen Changfu,Xiao Shujun.Bearing capacity of aggregate pilew ith di ff erent ratio of tension modulus to compression modulus based on unifie strength theory.Engineering Mechanics,2007,24(10):105-111(in Chinese))
26曹雪葉,趙均海,李艷等.不同拉壓特性的厚壁球殼分析.應(yīng)用力學(xué)學(xué)報(bào),2016,33(3):378-383(Cao Xueye,Zhao Junhai,LiYan,et al.Analysisof thick-walled sphericalshellw ith di ff erentbehaviour in tension and compression.Chinese JournalofApplied Mechanics,2016,33(3):378-383(in Chinese))
27 Yu MH.Unifie Strength Theory and its Applications.Berlin:Springer Press,2004
28徐秉業(yè),劉信聲.應(yīng)用彈塑性力學(xué).北京:清華大學(xué)出版社,1995(Xu Bingye,Liu Xinsheng.Application of Elastic-Plastic Mechanics.Beijing:Tsinghua University Press,1995(in Chinese))
29阿姆巴爾楚米揚(yáng).不同模量彈性理論.鄔瑞鋒,張?jiān)收孀g.北京:中國(guó)鐵道出版社,1986(Amu Barr Chu M iyang C A.Elastic Theory w ith Di ff erentModuli in Tension and Compression.Wu Ruifeng,Zhang Yunzhen,Trans.Beijing:ChinaRailway Press,1986(in Chinese))
30陳子蔭.圍巖力學(xué)分析中的解析方法.北京:煤炭工業(yè)出版社,1994(Chen Ziyin.AnalyticalMethod for Rock Mechanical Analysis.Beijing:China Coal Industry Publishing House,1994(in Chinese))
31俞茂宏.雙剪理論及其應(yīng)用.北京:科學(xué)出版社,1998(Yu Maohong.Tw in-Shear Theory and Its Applications.Beijing:Science Press,1998(in Chinese))
32趙均海,朱倩,張常光等.基于統(tǒng)一強(qiáng)度理論的組合厚壁圓筒彈塑性統(tǒng)一解.固體力學(xué)學(xué)報(bào),2014,35(1):63-70(Zhao Junhai,Zhu Qian,Zhang Changguang,etal.Elastic-plastic unifie solutions for combined thick wall cylinderbased on unifie strength theory.Chinese JournalofSolid Mechanics,2014,35(1):63-70(in Chinese))
33鄒韶明,朱瑞林.統(tǒng)一強(qiáng)度理論在厚壁圓筒自增強(qiáng)中的應(yīng)用.機(jī)械科學(xué)與技術(shù),2013,32(8):1200-1206(Zou Shaom ing,Zhu Ruilin.Application of the unifie strength theory in autofrettage of the thick wall cylinder shell.Mechanical Science and Technology for Aerospace Engineering,2013,32(8):1200-1206(in Chinese))
34 Lin C,LiYM.A returnmapping algorithm for unifie strength theory model.International Journal for Numerical Methods in Engineering,2015,104(8):749-766
35 Wang LZ,Zhang YQ.Plastic collapseanalysisof thin-walled pipes based on unifie yield criterion.International Journal ofMechanical Sciences,2011,53(5):348-354
36 Yu MH,Li JC.Computational Plasticity.Hangzhou:Zhejiang University Press,2012
UNIFIED SOLUTIONSOF LIM IT INTERNAL PRESSURE FOR THICK-WALLED CYLINDERW ITH DIFFERENT BEHAVIOUR IN TENSION AND COMPRESSION1)
Zhao Junhai2)Jiang Zhilin Zhang Changguang Cao Xueye
(SchoolofCivil Engineering,Chang’an University,Xi’an 710061,China)
Thick-walled cylinder is w idely used in practical engineerings.If the lim it internal pressure is calculated accurately,it is great significanc to preventaccidents and reduce risk.There aremany engineeringmaterials that the tensile strength and tensilemodulus are di ff erent.These di ff erences have a significan e ff ect on the ultimate internal pressure.Previous studies have shown thatonly considering one aspectof the tension and compression strength and the modulusof tension and compression has a certain errorw ith the actual situation.W ith consideration of the intermediate principalstressand thedi ff erentelasticmodulusand di ff erentstrength in tensionand compression,elasticand plastic stress distribution,theunifie analyticalsolutionsof theelastic lim it internalpressure,theplastic limit internalpressureand the shakedown lim itinternalpressureof thick-walled cylinderunder internalpressurearededuced based on tw in shearunifie strength theory.The correctness of the calculation results is proved through the verificatio and comparative analysisw ith other literatures.The influenc of radius ratio,unifie strength theory parameter,tension-compression ratio and coe ffi cientof tensile-compressionmodulusofmaterialson the solutions isanalyzed.Itisshown thateach unifie solution increasesw ith increasing the radius ratio and unifie strength theory parameterbutdecreasesw ith increasing the tensioncompression ratio.The elastic limit internal pressure decreasesw ith increasing the coe ffi cient of tension-compression modulus.When the wall thickness increases to a certain value,the shakedown lim it internal pressure decreases w ith increasing the coe ffi cient of tension-compression modulus.The di ff erent elastic modulus and strength in tension and compression havesignifican influenc on thestability of the thick-walled cylinders.Theconsideration of the intermediate principalstresse ff ectcanmakematerialsgive full play to their potential.The variable law of the limit internal pressure withradius ratio provides reference for selecting reasonablewall thickness.The conclusion furnishes some theoretical basis for the engineering application of thick-walled cylinders.
thick-walled cylinder,tw in shear unifie strength theory,strengths in tension and compression,modulus in tension and compression,lim it internalpressure
O346
A
10.6052/0459-1879-17-006
2017-01-03收稿,2017-04-20錄用,2017-04-23網(wǎng)絡(luò)版發(fā)表.
1)國(guó)家自然科學(xué)基金(51508028,41202191)、中國(guó)博士后科學(xué)基金(2016T90879,2014M 562357)、中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(310828173402)資助項(xiàng)目.
2)趙均海,教授,主要研究方向:固體力學(xué)、強(qiáng)度理論、結(jié)構(gòu)工程等.E-mail:zhaojh@chd.edu.cn
趙均海,姜志琳,張常光,曹雪葉.不同拉壓特性的厚壁圓筒極限內(nèi)壓統(tǒng)一解.力學(xué)學(xué)報(bào),2017,49(4):836-847
Zhao Junhai,Jiang Zhilin,Zhang Changguang,Cao Xueye.Unifie solutions of limit internal pressure for thick-walled cylinderwith di ff erentbehaviour in tension and compression.Chinese JournalofTheoreticaland Applied Mechanics,2017,49(4):836-847