馬天雪蘇曉星董浩文汪越勝,2)張傳增
?(北京交通大學(xué)工程力學(xué)所,北京100044)?(德國錫根大學(xué)土木工程系,德國錫根D-57076)
創(chuàng)刊60周年專欄
聲光子晶體帶隙特性與聲光耦合作用研究綜述1)
馬天雪?蘇曉星?董浩文?汪越勝?,2)張傳增?
?(北京交通大學(xué)工程力學(xué)所,北京100044)?(德國錫根大學(xué)土木工程系,德國錫根D-57076)
聲光子晶體是一種同時(shí)具有光子和聲子帶隙的周期性結(jié)構(gòu).聲光子晶體為同時(shí)控制電磁波和彈性波的傳播提供了一個(gè)系統(tǒng)的平臺(tái),并在光學(xué)、聲學(xué)及聲光多功能器件、腔光力學(xué)等領(lǐng)域展現(xiàn)了十分廣闊的應(yīng)用前景.論文首先介紹了聲光子晶體的基本概念,包括聲光子晶體的材料、空間周期分類、能帶結(jié)構(gòu)的計(jì)算方法等;闡述了不同體系下聲光子晶體雙重帶隙的特性,以及拓?fù)鋬?yōu)化方法在聲光子晶體帶隙優(yōu)化方面的應(yīng)用;然后簡要介紹了腔光力學(xué),以及計(jì)算聲光耦合作用的準(zhǔn)靜態(tài)方法和光力耦合系數(shù)方法,并針對(duì)當(dāng)前各種聲光子晶體結(jié)構(gòu)中聲光耦合作用的研究進(jìn)行了闡述;還進(jìn)一步介紹了聲光子晶體波導(dǎo)和傳感器的相關(guān)研究;最后,基于當(dāng)前聲光子晶體的研究進(jìn)展對(duì)未來的研究方向進(jìn)行了展望,其中涉及到增強(qiáng)聲光子晶體諧振腔的聲光相互作用、三維聲光子晶體的研究、聲光超構(gòu)材料的設(shè)計(jì)、聲光子晶體器件設(shè)計(jì)與應(yīng)用等.
光子晶體,聲子晶體,聲光子晶體,聲光雙重帶隙,聲光耦合,腔光力學(xué)
作為能量的載體,波動(dòng)(如電磁波、聲波、彈性波等)與人們的生活密不可分.為了實(shí)現(xiàn)對(duì)波動(dòng)行為的操控,研究者相繼提出了光子晶體(photonic crystal,PTC)[12]和聲子晶體(phononic crystal,PNC)[3]的概念,隨后展開了廣泛且深入的研究.光子/聲子晶體是由光學(xué)/力學(xué)(或聲學(xué))參數(shù)不同的介質(zhì)在空間上周期排列所形成的,其中光子/聲子晶體可以控制電磁波/彈性波(或聲波)的傳播.光子/聲子晶體與傳統(tǒng)晶體類似,只是光子/聲子晶體的組成單元是宏觀介質(zhì)材料.光子/聲子晶體的一個(gè)重要物理特性是具有帶隙(bandgap),帶隙頻率范圍內(nèi)的波在晶體中的傳播行為將被禁止.除了光子/聲子帶隙外,光子/聲子晶體還可以實(shí)現(xiàn)諸如缺陷效應(yīng)[4-5]、波的引導(dǎo)和彎折[6-7]、負(fù)折射[8-9]等物理現(xiàn)象,并在光學(xué)/聲學(xué)器件領(lǐng)域具有廣泛的應(yīng)用前景.
光子晶體與聲子晶體具有諸多相似性,兩者的研究方法也具有一定的相通性.在相當(dāng)長的時(shí)間里,光子晶體與聲子晶體的研究相互借鑒,但是一直平行獨(dú)立地發(fā)展,很少有研究涉及到兩個(gè)領(lǐng)域的交叉問題.實(shí)際上,當(dāng)電磁波和彈性波(或聲波)在同一介質(zhì)內(nèi)傳播時(shí)兩者容易發(fā)生相互作用,這從光電子和通信等領(lǐng)域中各種聲光調(diào)制器、傳感器的發(fā)展可以看出[1011].最簡單的,彈性波(或聲波)產(chǎn)生的變形或位移可以調(diào)控電磁波的相位.除此之外,兩者之間還可以發(fā)生非線性作用,如布里淵散射(Brillouin scattering)效應(yīng)[1213].若電磁波和彈性波(或聲波)同時(shí)被局域在微納米尺度的結(jié)構(gòu)中,由于態(tài)密度的增大可以導(dǎo)致兩者間的相互作用增強(qiáng)[14].
隨著微納米加工技術(shù)的不斷發(fā)展,光學(xué)以及聲學(xué)元器件越來越小型化.在微納米尺度下,對(duì)于某些能同時(shí)傳播電磁波和彈性波(或聲波)的介質(zhì)(如透明材料、半導(dǎo)體材料等),若其光學(xué)、力學(xué)(或聲學(xué))參數(shù)同時(shí)發(fā)生周期性變化,則同一個(gè)周期結(jié)構(gòu)可能同時(shí)產(chǎn)生光子和聲子帶隙.這種同時(shí)具有光子和聲子帶隙的周期結(jié)構(gòu)被稱為聲光子晶體(phoxonic crystal,PXC)[15].聲光子晶體是一種能夠同時(shí)操控電磁波和彈性波(或聲波)傳播的周期性結(jié)構(gòu),其中字母“x”代表“t”和“n”,意味著聲光子晶體既是光子晶體又是聲子晶體.在一些文獻(xiàn)中也會(huì)采用光力學(xué)晶體或光機(jī)(械)晶體(optomechanical crystal,OMC)的概念[16].2006年,Maldovan和Thomas[17-18]通過分析空氣孔周期排列在硅基體中和硅柱周期排列在空氣中這兩種體系,第一次從理論上證實(shí)了上述周期結(jié)構(gòu)可以同時(shí)產(chǎn)生光子和聲子帶隙,并通過引入點(diǎn)缺陷實(shí)現(xiàn)了電磁波和彈性波在缺陷位置的同時(shí)局域化.2009年,Sadat-Saleh等[15]第一次明確提出了聲光子晶體的概念.同年,Eichenfiel等[16,19]提出了光力學(xué)晶體的概念,并通過理論和實(shí)驗(yàn)結(jié)果展示了光力學(xué)晶體(或聲光子晶體)結(jié)構(gòu)作為超高精度力或質(zhì)量傳感器的可能性;他們還指出,光力學(xué)晶體概念還可以廣泛地應(yīng)用于可調(diào)節(jié)光子系統(tǒng)、光通訊、增強(qiáng)光學(xué)非線性效應(yīng)和光緩存等領(lǐng)域.除此之外,由于聲光子晶體同時(shí)具有光子晶體和聲子晶體的特性,還可以將聲光子晶體作為基礎(chǔ)單元設(shè)計(jì)多功能(即光學(xué)和聲學(xué)功能)器件,如波導(dǎo)[2021]、傳感器[22]等.
聲光子晶體是由光學(xué)和力學(xué)(或聲學(xué))材料性質(zhì)不同的介質(zhì)在空間上周期排列而形成的,其最重要的物理特性是同時(shí)具有光子和聲子帶隙.聲光子晶體中相互連通的部分為基體,相互不連通的部分為散射體.通常情況下,聲光子晶體的結(jié)構(gòu)尺度屬于微納米級(jí)別,其結(jié)構(gòu)形式是在固體基體中周期性地移除基體材料(或者說在基體內(nèi)周期性地形成孔洞),其中形成的孔洞通常視為空氣或真空.由于彈性波(或聲波)可以在絕大多數(shù)固體介質(zhì)中傳播,因此聲光子晶體的基體材料通常是光子晶體的基體材料,如硅[16,20,23]、金剛石[24-25]、藍(lán)寶石[26]、氮化硅[19]、氮化鋁[27]和鈮酸鋰[15]等.
與光子晶體和聲子晶體類似,根據(jù)聲光子晶體的空間周期性,可以將其分為一維、二維和三維體系三類,如圖1所示.一維聲光子晶體是由材料參數(shù)不同的均勻介質(zhì)層組成的多層結(jié)構(gòu),比如兩種不同介質(zhì)沿一個(gè)方向交替層疊而成的結(jié)構(gòu),如圖1(a)所示.二維聲光子晶體的特征是材料參數(shù)在兩個(gè)方向上呈周期性變化(見圖1(b)),柱體散射體在平面內(nèi)可以以正方晶格、長方晶格、三角晶格或蜂窩晶格等形式排列.三維聲光子晶體的特征是材料參數(shù)在3個(gè)方向上均呈周期性變化(見圖1(c)),散射體的空間點(diǎn)陣結(jié)構(gòu)則可以是簡立方、面心立方或體心立方等形式.
圖1 一維、二維和三維聲光子晶體的示意圖Fig.1 Schematic diagramsof one-dimensional,two-dimensionaland three-dimensionalphoxonic crystals
聲光子晶體的最小周期尺寸為晶格常數(shù),組成周期結(jié)構(gòu)的最小單元稱為單胞(或基元).一般來說,聲光子晶體的光子帶隙和聲子帶隙對(duì)應(yīng)的波長與晶格常數(shù)處在同一個(gè)數(shù)量級(jí).若在完美的聲光子晶體中引入缺陷,如點(diǎn)缺陷或線缺陷,周期性的破壞可能導(dǎo)致同時(shí)產(chǎn)生光和聲的缺陷態(tài),即電磁波和彈性波(或聲波)同時(shí)局限在點(diǎn)缺陷位置或者沿線缺陷傳播.缺陷中的電磁波和彈性波對(duì)應(yīng)的波長相近,且與晶格常數(shù)同屬于一個(gè)數(shù)量級(jí).然而,由于在固體介質(zhì)中電磁波與彈性波(或聲波)的傳播速度相差幾個(gè)數(shù)量級(jí),導(dǎo)致聲光子晶體結(jié)構(gòu)中的電磁波和彈性波(或聲波)的頻率差異巨大.以通訊應(yīng)用為例,電磁波的工作波長約為1550nm(194THz),則令光子帶隙的中心頻率約為194THz,而聲子帶隙對(duì)應(yīng)的頻率僅為幾個(gè)吉赫茲[16,20].
能帶結(jié)構(gòu)(band structure),也稱頻散關(guān)系或色散關(guān)系(dispersion relations).在光子晶體和聲子晶體的研究中,能帶結(jié)構(gòu)通常表示為本征頻率ω與Bloch波矢k之間的關(guān)系,如圖2所示.由于結(jié)構(gòu)的平移周期性和點(diǎn)群對(duì)稱性,波矢k遍歷不可約布里淵區(qū),即可獲得本征頻率ω隨波矢k變化的曲線,即能帶結(jié)構(gòu).可以證明,當(dāng)波矢k在布里淵區(qū)高對(duì)稱點(diǎn)上時(shí),本征頻率取極值.因此,如果只為確定帶隙,波矢k遍歷不可約布里淵區(qū)的邊界即可.
圖2 (a)二維聲光子晶體的聲子能帶結(jié)構(gòu),(b)對(duì)應(yīng)的不可約布里淵區(qū)Fig.2(a)Phononic band structureof a2D phoxonic crystal,and(b)the corresponding Brillouin zone
光子和聲子能帶結(jié)構(gòu)是分析聲光子晶體光學(xué)和聲學(xué)特性的基礎(chǔ).設(shè)電磁波和彈性波以諧波形式在無源的聲光子晶體中傳播,電磁波的控制方程為
其中,E為電場強(qiáng)度,ε和μ分別為介質(zhì)的相對(duì)介電常數(shù)張量和相對(duì)磁導(dǎo)率張量,c為真空中的光速,r為位置矢量,彈性波的控制方程為
其中,u為位移矢量,C和ρ分別為介質(zhì)的彈性張量和質(zhì)量密度.計(jì)算光子和聲子能帶結(jié)構(gòu)也就是求解電磁波和彈性波在周期結(jié)構(gòu)中的本征頻率問題.自光子晶體和聲子晶體的概念提出以來,已經(jīng)發(fā)展出了多種比較成熟的數(shù)值方法用于計(jì)算光子和聲子能帶結(jié)構(gòu),計(jì)算方法主要分為本征函數(shù)展開法和離散方法[28].前者包括平面波展開法(planewave expansion,PWE)[2930]、多散射法(multiple scattering theory,MST)[3132]、狄利克雷--紐曼映射法(Dirichlet to Neumann,DtN)[3334]、廣義多極子法(generalizedmultipole technique,GMT)[3536]等;后者包括邊界元法(boundary elementmethod,BEM)[3738]、時(shí)域有限差分法(fi nite di ff erence time domain,FDTD)[3942]、有限元法(fi nite elementmethod,FEM)[4345]、無網(wǎng)格法(meshfree method)[4647]等.上述方法均可以計(jì)算聲光子晶體的光子和聲子能帶結(jié)構(gòu).
同時(shí)產(chǎn)生光子和聲子帶隙(也稱為雙重帶隙)是實(shí)現(xiàn)聲光子晶體眾多應(yīng)用的基礎(chǔ),如何使聲光子晶體同時(shí)產(chǎn)生更寬的光子和聲子帶隙是帶隙調(diào)控的一個(gè)重要目標(biāo).需要指出的是,實(shí)現(xiàn)電磁波和彈性波的局域化并不一定需要完全帶隙(completebandgap,沿任意方向傳播的任意模式的波都將被禁止),利用模式帶隙(mode bandgap,關(guān)于結(jié)構(gòu)的對(duì)稱面呈某種對(duì)稱性的電磁波或彈性波將被禁止)也可以實(shí)現(xiàn)波的局域化.這為聲光子晶體雙重帶隙的調(diào)控和結(jié)構(gòu)設(shè)計(jì)提供了更廣的設(shè)計(jì)空間.正如上一節(jié)所指出的,聲光子晶體多為空氣/電介質(zhì)(如硅)體系,且基體材料的選擇范圍相對(duì)較小,因此光子和聲子帶隙的調(diào)控以改變單胞的結(jié)構(gòu)形式和幾何參數(shù)為主,包括了晶格的排列形式和單胞的拓?fù)浣Y(jié)構(gòu)(多數(shù)情況下可認(rèn)為是空氣孔的分布和形狀).
2.1 一維和二維聲光子晶體
與二維體系相比,對(duì)一維聲光子晶體帶隙特性的研究相對(duì)較少.在聲光子晶體的概念提出之前,Trigo等[48]通過實(shí)驗(yàn)觀測到電磁波和彈性波可以同時(shí)局限在光子--聲子諧振腔內(nèi)(見圖3(a)),但是由于結(jié)構(gòu)中的電磁波和彈性波對(duì)應(yīng)的晶格尺度不同,上述結(jié)構(gòu)并不是嚴(yán)格意義上的聲光子晶體.Psarobas等[49]從理論上證實(shí)了由硅與二氧化硅層交替排列所構(gòu)成的一維聲光子晶體可以同時(shí)產(chǎn)生光子和聲子帶隙,如圖3(b)所示.Tang等[50]的研究表明,由壓電材料和壓磁材料組成的三相一維聲光子晶體可以同時(shí)產(chǎn)生微波光子帶隙和聲子帶隙(見圖3(c)).
圖3 一維聲光子晶體[48-50]Fig.3 1D phoxonic crystals[48-50]
對(duì)于二維聲光子晶體,Maldovan等[1718]于2006年第一次從理論上證明了周期結(jié)構(gòu)可以同時(shí)產(chǎn)生光子和聲子帶隙,他們分別討論了空氣圓孔周期排列在硅基體中和硅柱周期分布在空氣中的情況.隨后,Sadat-Saleh等[15]系統(tǒng)地研究了晶格形式和幾何參數(shù)對(duì)空氣/鈮酸鋰體系聲光子晶體帶隙的影響(見圖4(a)),他們指出在六角晶格中引入不同尺寸的散射體有利于同時(shí)產(chǎn)生光子和聲子帶隙,但由于鈮酸鋰的折射率小于硅,上述結(jié)構(gòu)不易得到光子完全帶隙.Bria等[26]指出,空氣/藍(lán)寶石和空氣/硅體系的聲光子晶體分別可以在微波和光通訊波段產(chǎn)生光子和聲子帶隙.然而,上述研究僅考慮了圓形孔或圓形散射體的情況,所得到的光子和聲子帶隙相對(duì)較窄,甚至某些條件下不能得到光子或聲子完全帶隙.類比紋理連接的光子晶體結(jié)構(gòu)[5153],Ma等[54]研究了紋理拓?fù)湫问?或者稱為網(wǎng)絡(luò)拓?fù)湫问?的二維聲光子晶體的帶隙特性,如圖4(b)所示.他們的研究表明,與傳統(tǒng)的圓形孔聲光子晶體相比,紋理拓?fù)湫问降穆暪庾泳w有利于同時(shí)產(chǎn)生較寬的光子和聲子完全帶隙,在正方晶格下其相對(duì)帶隙寬度(帶隙寬度與帶隙中心頻率之比)隨幾何參數(shù)的變化如圖5所示.
圖4 二維聲光子晶體[15,54]Fig.4 2D phoxonic crystals[15,54]
一維或二維聲光子晶體作為一種理想結(jié)構(gòu),較難在實(shí)驗(yàn)上得以驗(yàn)證.光子晶體光纖(photonic crystal fiber則是一類與二維聲光子晶體相類似的準(zhǔn)三維結(jié)構(gòu)[5556],如圖6所示.光纖由高純度的二氧化硅構(gòu)成,其中不僅可以傳輸電磁波,也可以傳輸彈性波(或聲波),當(dāng)光纖中傳輸?shù)碾姶挪◤?qiáng)度較高時(shí)會(huì)發(fā)生受激布里淵散射[1213].Russell課題組[57-60]的研究表明,光子晶體光纖也可以產(chǎn)生聲子帶隙,并開展了一系列光子晶體光纖中受激布里淵散射現(xiàn)象的實(shí)驗(yàn)研究.此外,在光子晶體光纖中傳播的彈性波(或聲波)的性質(zhì)近年來也開始受到關(guān)注[6163].
圖5 紋理拓?fù)湫问铰暪庾泳w的相對(duì)帶隙寬度隨幾何參數(shù)的變化[54]Fig.5 Variationsof the relativebandgap w idthsas the functionsof geometricalparameters for the phoxonic crystalsw ith veins[54]
圖6 光子晶體光纖[55]Fig.6 Photonic crystal fiber[55]
2.2 聲光子晶體梁和板
目前光子晶體梁或板結(jié)構(gòu)的加工工藝已經(jīng)相對(duì)成熟,這使得聲光子晶體梁或板結(jié)構(gòu)的制作和實(shí)驗(yàn)更容易實(shí)現(xiàn).與一維和二維體系不同,聲光子晶體梁和板具有有限的厚度,其中梁結(jié)構(gòu)沿一個(gè)方向具有周期性,而板結(jié)構(gòu)沿兩個(gè)方向具有周期性,如圖7所示.聲光子晶體梁或板結(jié)構(gòu)可以在硅基板上通過刻蝕等手段形成周期分布的空氣孔而實(shí)現(xiàn).
圖7 聲光子晶體梁[66,68]((a),(b))和板[71,75,77]((c)~(e))Fig.7 Phoxonic crystalbeams[66,68]((a),(b))and slabs[71,75,77]((c)~(e))
對(duì)于聲光子晶體梁,目前應(yīng)用最廣泛的結(jié)構(gòu)形式是在硅基體上刻蝕圓形孔(或橢圓形孔)[24,6467],如圖7(a)所示.雖然這類結(jié)構(gòu)易于加工,但是通常只能產(chǎn)生光子和聲子的模式帶隙.與此類似的還有在硅基體上刻蝕矩形孔的情況[16,19].利用模式帶隙可以實(shí)現(xiàn)電磁波和彈性波的局域化,然而在樣品加工過程中不可避免出現(xiàn)誤差,這可能導(dǎo)致具有不同對(duì)稱性模式間的相互耦合,為實(shí)際應(yīng)用帶來不利影響[14].以諧振腔結(jié)構(gòu)為例,加工誤差主要引起聲學(xué)(或力學(xué))諧振腔模式的能量耗散并降低品質(zhì)因子.若利用完全帶隙(尤其是聲子完全帶隙),則可以降低加工誤差造成的不利影響,同時(shí)提高諧振腔的性能.為了得到聲子完全帶隙,Pennec等[68]在具有圓形孔的聲光子晶體梁左右兩側(cè)各設(shè)置了一系列的振子(見圖7(b));他們指出,具有圓形孔的聲光子晶體梁可以產(chǎn)生光子偶模帶隙,而通過引入振子則可以產(chǎn)生聲子完全帶隙.
與聲光子晶體梁類似,目前為止報(bào)道最多的聲光子晶體板結(jié)構(gòu)也是在硅基體上刻蝕圓形孔(或橢圓形孔)而形成的[2074],如圖7(c)所示.Mohammadi等[69]和Pennec等[70]系統(tǒng)研究了具有圓形孔的硅基聲光子晶體板,討論了結(jié)構(gòu)幾何參數(shù)和晶格形式對(duì)光子和聲子帶隙的影響.結(jié)果表明:正方晶格和蜂窩晶格的聲光子晶體板有利于產(chǎn)生光子和聲子模式帶隙,蜂窩晶格體系更適合產(chǎn)生光子和聲子完全帶隙,然而在光子晶體領(lǐng)域應(yīng)用最廣泛的三角晶格體系并不利于同時(shí)產(chǎn)生光子和聲子帶隙.Safavi-Naeim i等[75]和Mayer-A legre等[76]用彈簧-質(zhì)量結(jié)構(gòu)取代圓形孔,并提出了一種具有十字形孔和雪花形孔的聲光子晶體板結(jié)構(gòu)(見圖7(d));與圓形孔結(jié)構(gòu)相比,這類結(jié)構(gòu)可以產(chǎn)生更寬的光子模式帶隙和聲子完全帶隙,且結(jié)構(gòu)可設(shè)計(jì)性更強(qiáng).El Hassouani等[77]在二氧化硅基板上周期放置硅柱(見圖7(e)),理論上證明了這類聲光子晶體板可以在較廣的幾何參數(shù)范圍內(nèi)產(chǎn)生較寬的光子和聲子帶隙.
2.3 三維聲光子晶體
三維聲光子晶體可以從真正意義上實(shí)現(xiàn)在3個(gè)空間維度上對(duì)電磁波和彈性波(或聲波)的操控.由于在設(shè)計(jì)、制備和計(jì)算等方面存在諸多困難,三維聲光子晶體的研究仍處于起步階段.Papanikolaou等[78]從理論上預(yù)測將金屬球周期置于環(huán)氧樹脂基體可以得到光子和聲子完全帶隙.Akimov等[79]的研究證實(shí)了蛋白石結(jié)構(gòu)的二氧化硅光子晶體可以同時(shí)產(chǎn)生光子和聲子方向帶隙,如圖8(a)所示.針對(duì)空氣/硅體系,Ma等[80]提出了紋理拓?fù)湫问降娜S聲光子晶體結(jié)構(gòu)(見圖8(b)),同時(shí)指出這類結(jié)構(gòu)可以同時(shí)產(chǎn)生較寬的光子和聲子完全帶隙,圖9顯示了其相對(duì)帶隙寬度隨幾何參數(shù)的變化情況.
圖8 三維聲光子晶體[79-80]Fig.8 3D phoxonic crystals[79-80]
圖9 紋理拓?fù)湫问铰暪庾泳w的相對(duì)帶隙寬度隨幾何參數(shù)的變化[80]Fig.9 Variationsof the relativebandgap w idthsas the functionsof geometricalparameters for the phoxonic crystalsw ith veins[80]
2.4 聲光子準(zhǔn)晶
光子晶體和聲子晶體概念的提出也引起了人們對(duì)準(zhǔn)周期結(jié)構(gòu)中波的傳播特性產(chǎn)生興趣,并相應(yīng)地提出了光子準(zhǔn)晶(photonicquasicrystal)[8185]和聲子準(zhǔn)晶(phononic quasicrystal)[8690]的概念.電磁波和彈性波(或聲波)在光子準(zhǔn)晶和聲子準(zhǔn)晶中傳播也會(huì)發(fā)生一些奇特的物理現(xiàn)象,如帶隙[8182]、局域化[82-83]、負(fù)折射[91]等.2016年,Yu等[92]研究了具有8重旋轉(zhuǎn)對(duì)稱性的二維聲光子準(zhǔn)晶(phoxonic quasicrystal),發(fā)現(xiàn)準(zhǔn)晶結(jié)構(gòu)可以同時(shí)產(chǎn)生光子和聲子帶隙,并指出無缺陷聲光子準(zhǔn)晶可以實(shí)現(xiàn)電磁波和彈性波(或聲波)的局域化,如圖10所示.同年,Wang等[93]的研究表明,即使以折射率較小的鈮酸鋰為基體,具有8重旋轉(zhuǎn)對(duì)稱性的二維聲光子準(zhǔn)晶同樣可以產(chǎn)生光子和聲子帶隙,并且通過引入點(diǎn)缺陷分析了光子和聲子的局域化模式.
圖10 二維聲光子準(zhǔn)晶[92]Fig.10 2D phoxonic quasicrystals[92]
2.5 聲光子晶體的拓?fù)鋬?yōu)化設(shè)計(jì)
光子和聲子能帶結(jié)構(gòu)很大程度上依賴于單胞的拓?fù)湫螤?,因此設(shè)計(jì)單胞的拓?fù)湫螤钍谦@取更優(yōu)帶隙特性的一個(gè)重要途徑.拓?fù)鋬?yōu)化(topology optim ization)作為一種數(shù)值方法可以同時(shí)有效地處理結(jié)構(gòu)的幾何和物理性質(zhì)的改變,目前已經(jīng)廣泛應(yīng)用于光子和聲子晶體的結(jié)構(gòu)設(shè)計(jì)領(lǐng)域.將拓?fù)鋬?yōu)化應(yīng)用于聲光子晶體領(lǐng)域,傳統(tǒng)的經(jīng)驗(yàn)和直觀設(shè)計(jì)可以轉(zhuǎn)變?yōu)榛跀?shù)學(xué)模型的自動(dòng)優(yōu)化設(shè)計(jì)方法,從而獲得性能卓越的結(jié)構(gòu),并探索出新的拓?fù)湫问?Dong等[94]于2014年首次針對(duì)空氣/硅體系的二維聲光子晶體的帶隙和諧振腔進(jìn)行了多目標(biāo)優(yōu)化設(shè)計(jì),得到了理想的結(jié)構(gòu)形式,如圖11(a)所示.隨后,Zhang等[95]基于多級(jí)子結(jié)構(gòu)策略,對(duì)二維聲光子晶體的帶隙特性也進(jìn)行了多目標(biāo)優(yōu)化設(shè)計(jì)(見圖11(b)).Dong等[96]于2017年研究了旋轉(zhuǎn)對(duì)稱性對(duì)二維聲光子晶體拓?fù)鋬?yōu)化的影響,研究結(jié)果顯示,引入旋轉(zhuǎn)對(duì)稱性可獲得帶隙較寬的聲光子晶體,如圖11(c)所示.
圖11 拓?fù)鋬?yōu)化的聲光子晶體結(jié)構(gòu)[94-96]Fig.11 Topology optimized phoxonic crystals[94-96]
聲光子晶體結(jié)構(gòu)中的聲光耦合問題與近年來迅速發(fā)展的腔光力學(xué)或腔光機(jī)械(cavity optomechanics)密不可分.聲光子晶體為腔光力學(xué)注入了新的研究內(nèi)容,與此同時(shí)腔光力學(xué)的發(fā)展也促進(jìn)了聲光子晶體的研究.
3.1 腔光力學(xué)
早在400年前,開普勒在解釋為什么彗尾方向總是背離太陽時(shí)就已經(jīng)提出了光壓(optical pressure)的假設(shè).然而由于光的力學(xué)效應(yīng)太過微弱,直到1960年激光問世,光的力學(xué)效應(yīng)才真正開始被利用[97].近年來,隨著先進(jìn)鍍膜技術(shù)和微納米加工技術(shù)的發(fā)展,光學(xué)諧振腔的光學(xué)諧振模式和力學(xué)(或聲學(xué))諧振模式之間通過光壓發(fā)生的相互作用受到了廣泛關(guān)注,并導(dǎo)致了腔光力學(xué)這一研究領(lǐng)域的迅速發(fā)展[98-101].
圖12給出了經(jīng)典的法布里--珀羅(Fabry-P′erot)腔光力學(xué)系統(tǒng),其中一面鏡子固定而另一面鏡子(相當(dāng)于力學(xué)振子)可以自由移動(dòng).光學(xué)諧振腔模式的共振頻率依賴于自由鏡子(力學(xué)振子)的位置,一旦諧振腔內(nèi)光場產(chǎn)生的光壓改變自由鏡子的位置,則諧振腔失諧,于是諧振腔內(nèi)光場強(qiáng)度發(fā)生改變從而導(dǎo)致光壓改變,反過來影響鏡子的位置.即諧振腔的力學(xué)模式在改變其光學(xué)模式的同時(shí)光學(xué)模式也在改變力學(xué)模式.這種反饋機(jī)制,不但使得腔光力學(xué)系統(tǒng)可以囚禁、冷卻力學(xué)振子,還展示出豐富的非線性物理現(xiàn)象.盡管微鏡子、納米梁等力學(xué)振子在光壓作用下運(yùn)動(dòng)模式十分復(fù)雜,可能涉及到各種振動(dòng)、扭轉(zhuǎn)模式,但實(shí)驗(yàn)上發(fā)現(xiàn)只要其力學(xué)模式的品質(zhì)因子(quality factor)足夠高,則可以用一個(gè)單模的阻尼振子來描述其運(yùn)動(dòng)[102103].目前為止,科研工作者已經(jīng)在不同尺度范圍上實(shí)現(xiàn)了腔光力學(xué)系統(tǒng),其中包括引力波探測器[104]、微鏡子[105106]、光學(xué)微諧振腔[107-108]等.聲光子晶體為系統(tǒng)地設(shè)計(jì)諧振腔的光學(xué)和聲學(xué)(力學(xué))模式提供了可能,并豐富了腔光力學(xué)的研究內(nèi)容.
圖12 法布里--珀羅腔光力學(xué)系統(tǒng)Fig.12 Fabry-P′erotoptomechanicalsystem
3.2 計(jì)算聲光耦合作用的方法
對(duì)于聲光子晶體結(jié)構(gòu)中的聲光相互作用問題,通常需要考慮移動(dòng)界面效應(yīng)(moving interface e ff ect)和光彈效應(yīng)(photoelastic e ff ect)[14,64],其中前者也被稱為移動(dòng)邊界效應(yīng)(moving boundary e ff ect).移動(dòng)界面效應(yīng)為表面效應(yīng)(surface e ff ect),表現(xiàn)為在彈性波擾動(dòng)作用下電介質(zhì)體--空氣界面形狀發(fā)生改變;光彈效應(yīng)為體效應(yīng)(bulk e ff ect),表現(xiàn)為由應(yīng)變引起的電介質(zhì)體內(nèi)部折射率(或介電常數(shù))的改變.折射率的改變量與應(yīng)變有如下關(guān)系[10]
其中,nij為折射率張量,Skl為應(yīng)變張量,pijkl為光彈系數(shù)張量.需要指出的是,實(shí)際上其他一些效應(yīng)(熱--力效應(yīng)、熱--光效應(yīng)、表面效應(yīng)、殘余應(yīng)力等)也會(huì)影響耦合強(qiáng)度[109111],但是在多數(shù)情況下忽略其影響.
目前為止,研究聲光子晶體結(jié)構(gòu)中聲光耦合作用強(qiáng)度的方法主要有準(zhǔn)靜態(tài)方法和計(jì)算光力耦合系數(shù)(optomechanical coupling coe ffi cient)方法[14].對(duì)于準(zhǔn)靜態(tài)方法,由于聲光子晶體諧振腔中電磁波的工作頻率比彈性波高約5個(gè)數(shù)量級(jí),因此對(duì)于電磁波來說,彈性波擾動(dòng)過程可以視為準(zhǔn)靜態(tài)過程.利用準(zhǔn)靜態(tài)方法計(jì)算聲光耦合問題的具體方法如下.
(1)分別計(jì)算聲光子晶體諧振腔結(jié)構(gòu)的光學(xué)和聲學(xué)(力學(xué))腔模式的本征頻率和本征場.
(2)通過合理施加單頻彈性波擾動(dòng),激發(fā)出聲光子晶體諧振腔的聲學(xué)腔模式.
(3)將一個(gè)聲學(xué)腔模式的周期劃分為不同的相位(時(shí)間步),得到每個(gè)相位對(duì)應(yīng)的位移場和應(yīng)變場分布,以及結(jié)構(gòu)在變形后的幾何模型.通過式(3)計(jì)算得到諧振腔變形后新的折射率分布.
(4)針對(duì)每個(gè)相位,基于變形后幾何模型和新的折射率分布重新計(jì)算光學(xué)腔模式,并得到聲擾動(dòng)作用下光學(xué)腔模式的本征頻率.在計(jì)算過程中,若只考慮變形后的幾何模型則結(jié)果對(duì)應(yīng)移動(dòng)界面效應(yīng)的影響;若只考慮折射率的變化則結(jié)果對(duì)應(yīng)光彈效應(yīng)的影響;若同時(shí)考慮上述兩個(gè)方面則對(duì)應(yīng)移動(dòng)界面和光彈效應(yīng)共同作用下的結(jié)果.
對(duì)于計(jì)算光力耦合系數(shù)g,Eichenfiel等[16]和Chan等[64]基于一階電磁波問題的微擾理論分別給出了在移動(dòng)界面效應(yīng)和光彈效應(yīng)作用下光力耦合系數(shù)的表達(dá)式.基于移動(dòng)界面效應(yīng)的光力耦合系數(shù)的具體形式如下
其中,n為界面(電介質(zhì)域邊界)的外法向單位向量,E||為平行于界面的電場分量,D⊥為垂直于界面的電位移場分量,?ε=ε1-ε2為電介質(zhì)與空氣介電常數(shù)之差,為電介質(zhì)與空氣介電常數(shù)倒數(shù)之差,表示在所有考慮的諧振腔邊界(電介質(zhì)/空氣界面)上作面積分,表示力學(xué)/聲學(xué)模式(振子/諧振腔)的零點(diǎn)運(yùn)動(dòng)(zero-point motion)的振幅,或者說單一聲子的最大位移,其中meff為聲學(xué)(力學(xué))諧振腔模式的等效質(zhì)量,ωm為力學(xué)模式的頻率,?為約化普朗克常數(shù).基于光彈效應(yīng)的光力耦合系數(shù)的具體形式如下
移動(dòng)界面效應(yīng)和光彈效應(yīng)共同作用下的光力耦合系數(shù)g可以由下面的關(guān)系計(jì)算得到
光力耦合系數(shù)g反映了聲學(xué)(力學(xué))振子(或者說諧振腔模式)零點(diǎn)運(yùn)動(dòng)引起的光學(xué)模式頻率的變化,或者說由振子的零點(diǎn)運(yùn)動(dòng)引發(fā)的單一光子與單一聲子間相互作用的強(qiáng)度.
3.3 聲光子晶體結(jié)構(gòu)中的聲光耦合作用
Psarobas等[49]理論上研究了一維聲光子晶體諧振腔中的聲光耦合作用,并指出諧振腔中產(chǎn)生的非線性耦合效應(yīng)(多聲子交換)是光彈效應(yīng)和多層結(jié)構(gòu)界面縱向振動(dòng)共同作用的結(jié)果;利用彈性波可以有效地對(duì)電磁波進(jìn)行調(diào)控,在彈性波擾動(dòng)作用下電磁波諧振腔模式的頻率發(fā)生明顯地改變,如圖13所示.A lmpanis等[112]利用一維聲光子晶體諧振腔模型,理論上分析了非線性聲光作用產(chǎn)生的條件,即提高彈性波激勵(lì)的強(qiáng)度或者通過諧振腔模式的對(duì)稱性令一階聲光耦合作用消失.Rolland等[113]和El-Jallal等[114]系統(tǒng)研究了二維聲光子晶體點(diǎn)缺陷諧振腔中的聲光耦合作用,研究表明諧振腔模式的對(duì)稱性,尤其是聲學(xué)模式的對(duì)稱性,是影響聲光耦合作用的關(guān)鍵因素.區(qū)別于體波模式,Ma等[115]設(shè)計(jì)了聲光子晶體表面模式諧振腔,電磁波和彈性波可以同時(shí)局域在諧振腔表面,并研究了諧振腔中的聲光耦合作用.
圖13 在非共振頻率(虛線)和共振頻率(實(shí)線)的彈性波作用下電磁波諧振腔模式頻率隨時(shí)間的變化[49]Fig.13 Variationsof theelectromagnetic cavitymode frequency asa function of time for theelastic waveexcitation o ff-resonance(dashed line)and at resonance(solid line)[49]
與上述一維或二維體系相比,更多學(xué)者將注意力放在一維聲光子晶體納米梁諧振腔上.目前為止,已經(jīng)有多種不同的一維聲光子晶體納米梁諧振腔的理論[24,67,116-120]和實(shí)驗(yàn)[16,19,23,64-66,121-127]研究,如圖14所示.Eichenfiel等[16,19]的開創(chuàng)性工作(見圖14(a)和圖14(b)),將聲光子晶體(光子和聲子帶隙概念)引入了腔光力學(xué)領(lǐng)域,降低了力學(xué)模式的能量耗損,減小了力學(xué)模式的等效質(zhì)量,最終提升了腔光力學(xué)系統(tǒng)(諧振腔)對(duì)力變化的靈敏度.Gomis-Bresco等[23]在光子模式帶隙和聲子完全帶隙的基礎(chǔ)上設(shè)計(jì)了聲光子晶體納米梁諧振腔(見圖14(c)),并通過實(shí)驗(yàn)分析了諧振腔中的聲光耦合作用,指出利用聲子完全帶隙可以大幅降低力學(xué)模式的能量損失.與此不同,Wu等[123]設(shè)計(jì)并實(shí)驗(yàn)驗(yàn)證了可以檢測扭轉(zhuǎn)力的分離型--納米梁諧振腔(見圖14(e)),其中納米梁的振動(dòng)方向垂直于周期平面.
Chan等[64]提出了一個(gè)新的提高力學(xué)模式品質(zhì)因子的方法,即在諧振腔的外側(cè)設(shè)置聲子屏障(即在所關(guān)注的頻率范圍內(nèi)具有聲子完全帶隙的聲子晶體結(jié)構(gòu)),如圖14(d)所示.該方法可以在不降低光學(xué)諧振腔模式性能的同時(shí)提高力學(xué)模式的品質(zhì)因子,此外通過調(diào)節(jié)聲子帶隙的頻率,聲子屏障可以用于各種納米梁諧振腔結(jié)構(gòu).聲光子晶體諧振腔的變形模式以在周期平面內(nèi)為主.
在討論聲光子晶體板諧振腔之前,需要指出有部分工作研究了光子晶體板諧振腔中的聲光(光力)耦合作用[71-72,128-132].然而上述結(jié)構(gòu)通常存在諧振腔力學(xué)模式品質(zhì)因子較低的問題.El-Jallal等[73]理論研究了正方晶格聲光子晶體板諧振腔中的聲光耦合作用,分析了模式對(duì)稱性、聲光和移動(dòng)界面效應(yīng)對(duì)耦合強(qiáng)度的影響.利用具有雪花形孔的聲光子晶體板,Safavi-Naeini等[133]設(shè)計(jì)了聲光子晶體板諧振腔(見圖14(g)),并在理論和實(shí)驗(yàn)上研究了諧振腔中的聲光耦合作用.
Hsiao等[134]理論研究了聲光子晶體納米梁中的聲光耦合作用,并指出波導(dǎo)結(jié)構(gòu)較低的群速度使得聲光相互作用時(shí)間增長從而提高了耦合強(qiáng)度.Lin等[135]的研究表明,二維聲光子晶體波導(dǎo)中傳播的聲波可以有效地對(duì)波導(dǎo)中傳播的光波進(jìn)行調(diào)節(jié).基于聲子與光子間的相互作用,Safavi-Naeini等[136]通過將波導(dǎo)與諧振腔結(jié)構(gòu)相結(jié)合設(shè)計(jì)了聲子--光子轉(zhuǎn)換器.
圖14 不同的聲光子晶體諧振腔[16,19,23,64,123,125,130,133]Fig.14 Di ff erentphoxonic crystalcavities[16,19,23,64,123,125,130,133]
聲光子晶體器件的相關(guān)研究尚處于起步階段,目前研究較多的兩類應(yīng)用是聲光子晶體波導(dǎo)[20-21,137]和聲光子晶體傳感器[22,138140].需要指出的是,本節(jié)所討論的聲光子晶體器件的工作機(jī)理不涉及聲光耦合效應(yīng).
作為多功能器件,聲光子晶體波導(dǎo)可以同時(shí)有效控制電磁波和彈性波(或聲波)的傳輸路徑;此外,也可以作為未來集成光路或集成聲路中重要的組成元件.Laude等[20]研究發(fā)現(xiàn)二維聲光子晶體板波導(dǎo)可以同時(shí)實(shí)現(xiàn)慢光和慢聲效應(yīng),即在波導(dǎo)中電磁波和彈性波均以較低的群速度傳播,如圖15(a)所示.Escalante等[21]設(shè)計(jì)了兩類聲光子晶體板波導(dǎo)(見圖15(b)),波導(dǎo)不僅具有較低的群速度,還可以獲得單模的電磁波和彈性波導(dǎo)波模式(意味著頻率范圍內(nèi)只存在一種導(dǎo)波模式,不會(huì)耦合成為其他導(dǎo)波模式).Ma等[137]研究了三維聲光子晶體的線缺陷態(tài),并指出上述結(jié)構(gòu)可以作為電磁波和彈性波的波導(dǎo),如圖15(c)所示.
在傳感器方面,Lucklum等[22]從理論和實(shí)驗(yàn)上向人們展示了聲光子晶體諧振腔作為雙重傳感器的可行性.這里雙重的含義是指傳感器可以同時(shí)檢測液體的光學(xué)性質(zhì)(光折射率)和聲學(xué)性質(zhì)(聲速).Amoudache等[138]提出了基于二維聲光子晶體諧振腔的液體傳感器(見圖16(a)).2016年,Amoudache等[139]指出,可以利用聲光子晶體板的法諾共振(Fano resonance)效應(yīng)實(shí)現(xiàn)液體光學(xué)性質(zhì)和聲學(xué)性質(zhì)的高靈敏度檢測,如圖16(b)所示.區(qū)別于上述基于體波模式的傳感器,Ma等[140]設(shè)計(jì)了基于光表面波和聲表面波的聲光子晶體液體傳感器(見圖16(c)).
圖15 不同的聲光子晶體波導(dǎo)[20-21,137]Fig.15 Di ff erentphoxonic crystalwaveguides[20-21,137]
圖16 不同的聲光子晶體傳感器[138-140]Fig.16 Di ff erentphoxonic crystalsensors[138-140]
聲光子晶體不僅可以同時(shí)操控電磁波和彈性波,還可以增強(qiáng)聲光相互作用,因此在近年來備受廣大科研工作者關(guān)注.本文著重介紹了聲光子晶體的基本概念、光子和聲子帶隙的特性、聲光相互作用的機(jī)理與研究方法、不同聲光子晶體結(jié)構(gòu)中的聲光耦合作用、以及相關(guān)的器件設(shè)計(jì)等方面內(nèi)容,以期為聲光子晶體的研究和器件設(shè)計(jì)提供一定的參考和借鑒.
(1)增強(qiáng)微結(jié)構(gòu)中的聲光相互作用仍然是今后聲光子晶體研究的一個(gè)重要方向.目前,在絕大多數(shù)聲光子晶體諧振腔的研究中光力耦合系數(shù)是基于一階微擾理論得到的,即假設(shè)聲光相互作用較弱,僅考慮聲光之間的線性相互作用.若聲光間作用較強(qiáng),或者說聲光之間的非線性相互作用不可忽略,則需要計(jì)算由二階甚至高階微擾理論得到的光力耦合系數(shù)[14,141].為了提高聲光非線性作用,需要設(shè)計(jì)具有合適變形模式和電磁場分布的聲光子晶體諧振腔.此外,利用軟物質(zhì)為基體制備聲光子晶體結(jié)構(gòu),則可以在光力的作用下產(chǎn)生更大的變形,并提高聲光非線性耦合強(qiáng)度.
(2)雖然只有三維聲光子晶體可以產(chǎn)生三維完全帶隙并真正意義上實(shí)現(xiàn)光子和聲子的三維操控,但是目前為具有完全帶隙的三維聲光子晶體還沒有被實(shí)驗(yàn)證實(shí).可以說關(guān)于三維聲光子晶體的理論與實(shí)驗(yàn)研究仍處于起步階段.與此類似的還有聲光子準(zhǔn)晶的研究.
(3)類比于聲光子晶體,設(shè)計(jì)同時(shí)具有新奇聲光特性的聲光超構(gòu)材料也是未來發(fā)展的一個(gè)方向.這類材料同時(shí)具有負(fù)的光學(xué)和聲學(xué)等效材料參數(shù),可以在亞波長尺度下同時(shí)操控電磁波和彈性波(或聲波),并在多功能器件設(shè)計(jì)等領(lǐng)域發(fā)揮作用.
聲光子晶體發(fā)展的另外一個(gè)方向是與實(shí)際應(yīng)用與器件設(shè)計(jì)相結(jié)合,將聲光子晶體應(yīng)用在全光信號(hào)處理、光子--聲子集成回路中的光力學(xué)元件、雙重傳感器以及聲光多功能器件等方面.
1 Yablonovitch E.Inhibited spontaneous em ission in solid-state physics and electronics.Physical Review Letters,1987,58(20):2059-2062
2 John S.Strong localization of photons in certain disordered dielectric superlattices.PhysicalReview Letters,1987,58(23):2486-2489
3 Kushwaha MS,Halevi P,Dobrzynski L,etal.Acoustic band structure of periodic elastic composites.Physical Review Letters,1993,71(13):2022-2025
4 Qi MH,Lidorikis E,Rakich PT,et al.A three-dimensional optical photonic crystal w ith designed point defects.Nature,2004,429(6991):538-542
5 Khelif A,Choujaa A,Djafari-Rouhani B,etal.Trapping and guiding of acoustic wavesby defectmodes in a full-band-gap ultrasoniccrystal.PhysicalReview B,2003,68(21):214301
6 Notomi M,Yamada K,Shinya A,et al.Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs.PhysicalReview Letters,2001,87(25):253902
7 Khelif A,W ilm M,Laude V,etal.Guided elasticwavesalong a rod defect of a two-dimensional phononic crystal.Physical Review E,2004,69(6):067601
8 Cubukcu E,Aydin K,Ozbay E,etal.Electromagneticwaves:Negative refraction by photonic crystals.Nature,2003,423(6940):604-605
9 Yang S,Page JH,Liu Z,etal.Focusing of sound in a 3D phononic crystal.PhysicalReview Letters,2004,93(2):024301
10 Yariv A,Yeh P.OpticalWaves in Crystals-Propagation and Control of LaserRadiation.New York:Wiley,1984
11 Royer D,Dieulesaint E.Elastic Waves in Solids II-Generation Acousto-Optic Interaction Applications.Berlin:Springer,2000
12 Boyd RW.Nonlinear Optics.2nd ed.San Diego:Academ ic Press,2003
13 Damzen MJ,V lad VI,Babin V,etal.Stimulated Brillouin Scattering.London:IOPPublishing,2003
14 Pennec Y,Laude V,Papanikolaou N,et al.Modeling light-sound interaction in nanoscale cavities and waveguides.Nanophotonics,2014,3(6):413-440
15 Sadat-Saleh S,Benchabane S,Baida FI,etal.Tailoring simultaneous photonic and phononic band gaps.Journal ofApplied Physics,2009,106(7):074912
16 Eichenfiel M,Chan J,Camacho RM,etal.Optomechanical crystals.Nature,2009,462(7269):78-82
17 Maldovan M,Thomas EL.Simultaneous complete elastic and electromagnetic band gaps in periodic structures.Applied Physics B,2006,83(4):595-600
18 Maldovan M,ThomasEL.Simultaneous localizationofphotonsand phonons in two-dimensional periodic structures.Applied Physics Letters,2006,88(25):251907
19 Eichenfiel M,Camacho R,Chan J,et al.A picogram-and nanometre-scale photonic-crystal optomechanical cavity.Nature,2009,459(7246):550-556
20 Laude V,Beugnot JC,Benchabane S,etal.Simultaneous guidance ofslow photonsand slow acoustic phonons in silicon phoxonic crystalslabs.Optics Express,2011,19(10):9690-9698
21 Escalante JM,Martinez A,Laude V.Design of single-modewaveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs.JournalofApplied Physics,2014,115(6):064302
22 Lucklum R,Zubtsov M,Oseev A.Phoxonic crystals—A new platform for chem icaland biochemicalsensors.Analyticaland BioanalyticalChemistry,2013,405(20):6497-6509
23 Gomis-Bresco J,Navarro-Urrios D,Oudich M,et al.A onedimensionaloptomechanicalcrystalw ith a completephononic band gap.Nature Communications,2014,5:4452
24 Kipfstuhl L,Guldner F,Riedrich-Moller J,et al.Modeling of optomechanicalcoupling in a phoxonic crystalcavity in diamond.Optics Express,2014,22(10):12410-12423
25 Rath P,Ummethala S,Diewald S,et al.Diamond electrooptomechanical resonators integrated in nanophotonic circuits.Applied Physics Letters,2014,105(25):251102
26 Bria D,Assouar MB,Oudich M,et al.Opening of simultaneous photonic and phononic band gap in two-dimensional square lattice periodic structure.Journal ofApplied Physics,2011,109(1):014507
27 Bochmann J,Vainsencher A,Awschalom DD,et al.Nanomechanical coupling betweenm icrowave and optical photons.Nature Physics,2013,9(11):712-716
28王艷鋒.含共振單元聲子晶體的帶隙特性及設(shè)計(jì).[博士論文].北京:北京交通大學(xué),2015(Wang Yanfeng.Bandgap propertiesand design of phononic crystalswithresonantunits.[PhD thesis].Beijing:Beijing Jiaotong University,2015(in Chinese))
29 John SG,Fan S,Villeneuve PR,et al.Guided modes in photonic crystalslabs.PhysicalReview B,1999,60(8):5751-5757
30 Zhou XZ,Wang YS,Zhang CZ.E ff ects ofmaterial parameters on elastic band gapsof two-dimensionalsolid phononic crystals.JournalofApplied Physics,2009,106(1):014903
31 Zhang X,LiLM,Zhang ZQ,etal.Surfacestatesin two-dimensional metallodielectric photonic crystals studied by amultiple-scattering method.PhysicalReview B,2001,63(12):125114
32 Liu Z,Chan CT,Sheng P,etal.Elastic wave scattering by periodic structures of spherical objects:Theory and experiment.Physical Review B,2000,62(4):2446-2457
33 Yuan JH,Lu YY.Photonic bandgap calculationsw ith Dirichlet-to-Neumannmaps.Journalofthe Optical Society ofAmerica A,2006,23(12):3217-3222
34 Zhen N,Li FL,Wang YS,etal.Bandgap calculation form ixed inplanewavesin2D phononic crystalsbased on Dirichlet-to-Neumann map.Acta Mechanica Sinica,2012,28(4):1143-1153
35 Shi ZJ,Wang YS,Zhang CZ.Band structure calculation of scalar waves in two-dimensional phononic crystals based on generalized multipole technique.Applied Mathematics and Mechanics,2013,34(9):1123-1144
36 Shi ZJ,Wang YS,Zhang CZ.Application of the generalized multipole technique in band structure calculation of two-dimensional solid/flui phononic crystals.MathematicalMethods in the Applied Sciences,2015,38(15):1099-1476
37 LiFL,Wang YS,Zhang CZ.Boundary elementmethod forbandgap computation of photonic crystals.Optics Communications,2012,285(5):527-532
38 Li FL,Wang YS,Zhang CZ,et al.Boundary elementmethod for band gap calculations of two-dimensional solid phononic crystals.Engineering Analysis with Boundary Elements,2013,37(2):225-235
39 Oskooi AF,Roundy D,Ibanescu M,etal.Meep:A fl xible freesoftware package for electromagnetic simulations by the FDTD method.Computer Physics Communications,2010,181(3):687-702
40 Tafl ve A,Hagness SC.Computational Electrodynam ics—The Finite-Di ff erence Time-Domain Method.3rd ed.Norwood:Artech House,2005
41 Tanaka Y,Tomoyasu Y,Tamura S.Band structureof acousticwaves in phononic lattices:Two-dimensionalcompositesw ith largeacousticm ismatch.PhysicalReview B,2000,62(11):7387-7392
42 Su XX,Wang YF,Wang YS.E ff ects of Poisson’s ratio on the band gapsand defectstates in two-dimensionalvacuum/solid porous phononic crystals.Ultrasonics,2012,52(2):255-265
43 Andonegui I,Garcia-Adeva AJ.The finit elementmethod applied to the study of two-dimensionalphotonic crystalsand resonantcavities.OpticsExpress,2013,21(4):4072-4092
44 Khelif A,Aoubiza B,MohammadiS,etal.Complete band gaps in two-dimensional phononic crystal slabs.Physical Review E,2006,74(4):046610
45 Wu TT,Hsu JC,Sun JH.Phononic platewaves.IEEE Transactions on Ultrasonics Ferroelectricsand Frequency Control,2011,58(10):2146-2161
46 Zheng H,Zhang CZ,Wang YS,et al.A meshfree local RBF collocationmethod for anti-plane transverse elastic wave propagation analysis in2D phononic crystals.JournalofComputationalPhysics,2016,305:997-1014
47 Zheng H,Zhang CZ,Wang YS,et al.Band structure computation of in-plane elastic waves in 2D phononic crystalsby ameshfree local RBF collocationmethod.Engineering Analysiswith Boundary Elements,2016,66:77-90
48 Trigo M,Bruchhausen A,Fainstein A,etal.Confinemen of acoustical vibrations in a semiconductor planar phonon cavity.Physical Review Letters,2002,89(22):227402
49 Psarobas IE,Papanikolaou N,Stefanou N,etal.Enhanced acoustooptic interactions in a one-dimensional phoxonic cavity.Physical Review B,2010,82(17):174303
50 Tang ZH,Jiang ZS,Chen T,et al.Simultaneousmicrowave photonic and phononic band gaps in piezoelectric-piezomagnetic superlatticesw ith three typesof domains in aunitcell.Physics Letters A,2016,380:1757-1762
51 Qiu M,He S.Optimal design of a two-dimensional photonic crystalof square latticew ith a large complete two-dimensionalbandgap.JournaloftheOpticalSociety ofAmerica B,2000,17(6):1027-1030
52 Chau YF.Intersecting veins e ff ects of a two-dimensional photonic crystal w ith a large two-dimensional complete bandgap.Optics Communications,2009,282(21):4296-4298
53 Chau YF,Wu FL,Jiang ZH,etal.Evolution of the complete photonic bandgap of two-dimensionalphotonic crystal.Optics Express,2011,19(6):4862-4867
54 Ma TX,Wang YS,Zhang CZ.Investigation of dual photonic and phononic bandgaps in two-dimensional phoxonic crystalsw ith veins.OpticsCommunications,2014,312:68-72
55 Russell PSJ.Photonic-crystal fibers JournalofLightwave Technology,2006,24(12):4729-4749
56 Poli F,Cucinotta A,Selleri S.Photonic Crystal Fibers——Propertiesand Applications.Dordrecht:Springer,2007
57 RussellP,Marin E,Diez A,etal.Sonic band gaps in PCFpreforms:Enhancing the interaction of sound and light.Optics Express,2003,11(20):2555-2560
58 Dainese P,Russell PS,Wiederhecker GS,et al.Raman-like light scattering from acoustic phonons in photonic crystal fibe.Optics Express,2006,14(9):4141-4150
59 Dainese P,Russell PSJ,Joly N,et al.Stimulated brillouin scattering frommulti-Ghz-guided acoustic phonons in nanostructured photonic crystal fibres Nature Physics,2006,2(6):388-392
60 Kang MS,Nazarkin A,Brenn A,et al.Tightly trapped acoustic phonons in photonic crystal fibre as highly nonlinear artificia Raman oscillators.Nature Physics,2009,5(4):276-280
61 Laude V,Khelif A,Benchabane S,etal.Phononic band-gap guidance of acousticmodes in photonic crystal fibers Physical Review B,2005,71(4):045107
62 Wilm M,Khelif A,Ballandras S,et al.Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials.PhysicalReview E,2003,67(6):065602
63 Khelif A,Djafari-Rouhani B,Laude V,et al.Coupling characteristics of localized phonons in photonic crystal fibers Journal of Applied Physics,2003,94(12):7944-7946
64 Chan J,Safavi-Naeini AH,Hill JT,et al.Optimized optomechanical crystal cavity w ith acoustic radiation shield.Applied Physics Letters,2012,101(8):081115
65 Fan LR,Sun XK,Xiong C,etal.Aluminum nitride piezo-acoustophotonic crystal nanocavity with high quality factors.Applied Physics Letters,2013,102(15):153507
66 Davanco M,Ates S,Liu Y,et al.Si3N4 optomechanical crystals in the resolved-sideband regime.Applied Physics Letters,2014,104(4):041101
67 Papanikolaou N,Almpanis E,Gantzounis G,etal.Dual photonicphononic nanocavities for tailoring the acousto-optic interaction.Microelectronic Engineering,2016,159:80-83
68 Pennec Y,Djafari-Rouhani B,Li C,et al.Band gaps and cavity modes in dual phononic and photonic strip waveguides.AIP Advances,2011,1(4):041901
69 Mohammadi S,Eftekhar AA,Khelif A,et al.Simultaneous twodimensional phononic and photonic band gaps in opto-mechanical crystalslabs.Optics Express,2010,18(9):9164-9172
70 Pennec Y,Djafari-RouhaniB,El BoudoutiEH,etal.Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs.Optics Express,2010,18(13):14301-14310
71 Gavartin E,Braive R,Sagnes I,et al.Optomechanical coupling in a two-dimensional photonic crystal defect cavity.Physical Review Letters,2011,106(20):203902
72 Li Y,Zheng JJ,Gao J,et al.Design of dispersive optomechanicalcoupling and cooling in ultrahigh-Q/V slot-typephotonic crystal cavities.Optics Express,2010,18(23):23844-23856
73 El-Jallal S,Oudich M,Pennec Y,et al.Analysis of optomechanicalcoupling in two-dimensionalsquare latticephoxonic crystalslab cavities.PhysicalReview B,2013,88(20):205410
74 Rolland Q,Dupont S,Gazalet J,et al.Simultaneous bandgaps in LiNbO3phoxonic crystal slab.Optics Express,2014,22(13):16288-16297
75 Safavi-NaeiniAH,PainterO.Designofoptomechanicalcavitiesand waveguides on a simultaneous bandgap phononic-photonic crystal slab.Optics Express,2010,18(14):14926-14943
76 A legre TPM,Safavi-Naeini A,Winger M,et al.Quasi-twodimensional optomechanical crystals w ith a complete phononic bandgap.Optics Express,2011,19(6):5658-5669
77 ElHassouani Y,LiC,Pennec Y,etal.Dualphononic and photonic band gaps in a periodic array of pillars deposited on a thin plate.PhysicalReview B,2010,82(15):155405
78 Papanikolaou N,Psarobas IE,Stefanou N.Absolutespectralgaps for infrared lightand hypersound in three-dimensionalmetallodielectric phoxonic crystals.Applied Physics Letters,2010,96(23):231917
79 Akimov AV,Tanaka Y,Pevtsov AB,et al.Hypersonicmodulation of light in three-dimensional photonic and phononic band-gapmaterials.PhysicalReview Letters,2008,101(3):033902
80 Ma TX,Wang YS,Wang YF,et al.Three-dimensional dielectric phoxonic crystals w ith network topology.Optics Express,2013,21(3):2727-2732
81 Zhang X,Zhang ZQ,Chan CT.Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals.Physical Review B,2001,63(8):081105
82 BayindirM,Cubukcu E,Bulu I,etal.Photonic band-gap e ff ect,localization,and waveguiding in the two-dimensional penrose lattice.PhysicalReview B,2001,63(16):161104
83 Wang Y,Hu X,Xu X,et al.Localized modes in defect-free dodecagonalquasiperiodic photonic crystals.PhysicalReview B,2003,68(16):165106
84 DellaVillaA,Enoch S,Tayeb G,etal.Band gap formationandmultiplescattering in photonic quasicrystalsw ith a Penrose-type lattice.PhysicalReview Letters,2005,94(18):183903
85 Ledermann A,Wegener M,von Freymann G.Rhombicuboctahedral three-dimensionalphotonic quasicrystals.Advanced Materials,2010,22(21):2363-2366
86 Lai Y,Zhang X,Zhang ZQ.Large sonic band gaps in 12-fold quasicrystals.JournalofApplied Physics,2002,91(9):6191-6193
87 Sutter-Widmer D,Deloudi S,Steurer W.Prediction of braggscattering-induced band gaps in phononic quasicrystals.Physical Review B,2007,75(9):094304
88 Chen AL,Wang YS,Guo YF,et al.Band structures of Fibonacci phononic quasicrystals.Solid State Communications,2008,145(3):103-108
89 Peng SS,MeiXF,Pang P,etal.Experimental investigation of negative refraction and imaging of 8-fold-symmetry phononic quasicrystals.Solid State Communications,2009,149(17-18):667-669
90 Zhang MD,Zhong W,Zhang XD.Defect-free localized modes and coupled-resonator acoustic waveguides constructed in twodimensional phononic quasicrystals.Journal of Applied Physics,2012,111(10):104314
91 Feng ZF,Zhang XD,Wang YQ,etal.Negative refraction and imaging using 12-fold-symmetry quasicrystals.PhysicalReview Letters,2005,94(24):247402
92 Yu T,Wang Z,Liu W,et al.Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals.Optics Express,2016,24(8):7951-7959
93 Wang Z,Liu WX,Yu TB,et al.Simultaneous localization of photons and phononsw ithin the transparency bands of LiNbO3phoxonic quasicrystals.Optics Express,2016,24(20):23353-23360
94 Dong HW,Wang YS,Ma TX,et al.Topology optim ization of simultaneous photonic and phononic bandgaps and highly e ff ective phoxonic cavity.Journalofthe OpticalSociety ofAmerica B,2014,31(12):2946-2955
95 Zhang S,Yin J,Zhang HW,et al.Multi-objective optim ization of two-dimensional phoxonic crystalsw ithmulti-level substructure scheme.International Journal ofModern Physics B,2016,30(9):1650046
96 Dong HW,Wang YS,Zhang CZ.Topology optim ization of chiral phoxonic crystalsw ith simultaneously large phononic and photonic bandgaps.IEEEPhotonics Journal,2017,9(2):4700116
97 Maiman TH.Stimulated optical radiation in ruby.Nature,1960,187:493-494
98 Kippenberg TJ,Vahala KJ.Cavity opto-mechanics.Optics Express,2007,15(25):17172-17205
99 Kippenberg TJ,Vahala KJ.Cavity optomechanics:Back-action at themesoscale.Science,2008,321(5893):1172-1176
100 MetcalfeM.Applicationsof cavity optomechanics.Applied Physics Reviews,2014,1(3):031105
101 AspelmeyerM,Kippenberg TJ,Marquard F.Cavity optomechanics.ReviewsofModern Physics,2014,86(4):1391-1452
102 Cleland AN,Roukes ML.External control of dissipation in a nanometer-scale radiofrequencymechanical resonator.Sensorsand Actuators A,1999,72(3):256-261
103 Cleland AN,Roukes ML.Noise processes in nanomechanical resonators.JournalofApplied Physics,2002,92(5):2758-2769
104 Abramovici1 A,Althouse1WE,Drever RWP,et al.LIGO:The laser interferometer gravitationalwave observatory.Science,1992,256(5055):325-333
105 Arcizet O,Cohadon PF,Briant T,et al.Radiation-pressure cooling and optomechanical instability of amicromirror.Nature,2006,444(7115):71-74
106 Gigan S,Bohm HR,Paternostro M,et al.Self-cooling of amicromirrorby radiation pressure.Nature,2006,444(7115):67-70
107 Kippenberg TJ,RokhsariH,Carmon T,etal.Analysisof radiationpressure induced mechanical oscillation of an opticalmicrocavity.PhysicalReview Letters,2005,95(3):033901
108 Schliesser A,Del’haye P,NooshiN,etal.Radiation pressure cooling of a micromechanical oscillator using dynamical backaction.PhysicalReview Letters,2006,97(24):243905
109 Camacho RM,Chan J,Eichenfiel M,etal.Characterization of radiation pressure and thermal e ff ects in a nanoscale optomechanical cavity.Optics Express,2009,17(18):15726-15735
110 Eichenfiel M.Cavity optomechanics in photonic and phononic crystals:engineering the interaction of light and sound at the nanoscale.[PhD thesis].Pasadena:California Institute of Technology,2010
111 Tsvirkun V.Optomechanics in hybrid fully-integrated twodimensionalphotonic crystal resonators.[PhD Thesis].Paris:Universit′e Paris-Sud XI,2015
112 A lmpanis E,Papanikolaou N,Stefanou N.Breakdown of the linear acousto-optic interaction regime in phoxonic cavities.Optics Express,2014,22(26):31595-31607
113 Rolland Q,Oudich M,El-Jallal S,etal.Acousto-optic couplings in two-dimensionalphoxonic crystalcavities.Applied Physics Letters,2012,101(6):061109
114 El-Jallal S,Oudich M,Pennec Y,et al.Optomechanical interactions in two-dimensional siand gaas phoxonic cavities.Journal of Physics-Condensed Matter,2014,26(1):015005
115 Ma TX,Zou K,Wang YS,etal.Acousto-optical interaction of surfaceacoustic and opticalwaves in a two-dimensionalphoxonic crystal hetero-structure cavity.Optics Express,2014,22(23):28443-28451
116 Oudich M,El-Jallal S,Pennec Y,etal.Optomechanic interaction in a corrugated phoxonic nanobeam cavity.Physical Review B,2014,89(24):245122
117 Li YZ,Cui KY,Feng X,et al.Optomechanical crystal nanobeam cavity w ith high optomechanical coupling rate.Journal ofOptics,2015,17(4):045001
118 Lin TR,Lin CH,Hsu JC.Strong optomechanical interaction in hybrid plasmonic-photonic crystal nanocavitiesw ith surface acoustic waves.Scientifi Reports,2015,5:13782
119 Huang ZL,Cui KY,Li YZ,et al.Strong optomechanical coupling in nanobeam cavitiesbased on hetero optomechanical crystals.Scientifi Reports,2015,5:15964
120 Hsu JC,Lu TY,Lin TR.Acousto-optic coupling in phoxonic crystal nanobeam cavitiesw ith plasmonic behavior.Optics Express,2015,23(20):25814-25826
121 Chan J,A legre TPM,Safavi-Naeini AH,et al.Laser cooling of a nanomechanical oscillator into its quantum ground state.Nature,2011,478(7367):89-92
122 Safavi-NaeiniAH,Groblacher S,Hill JT,etal.Squeezed light from asiliconmicromechanical resonator.Nature,2013,500(7461):185-189
123 Wu M,Hryciw AC,Healey C,et al.Dissipative and dispersive optomechanics in a nanocavity torque sensor.Physical Review X,2014,4(2):021052
124 Balram KC,Davanco M,Lim JY,etal.Moving boundary and photoelastic coupling in gaasoptomechanical resonators.Optica,2014,1(6):414-420
125 Grutter KE,Davanco M I,Srinivasan K.Slot-mode optomechanical crystals:A versatile platform formultimode optomechanics.Optica,2015,2(11):994-1001
126 Schneider K,Seidler P.Strong optomechanicalcoupling in a slotted photonic crystal nanobeam cavity w ith an ultrahigh quality factorto-mode volume ratio.Optics Express,2016,24(13):13850-13865
127 Huang Z,Cui K,BaiG,et al.High-mechanical-frequency characteristicsof optomechanical crystal cavity w ith coupling waveguide.Scientifi Reports,2016,6:34160
128 NomuraM.GaAs-based air-slotphotonic crystalnanocavity foroptomechanicaloscillators.OpticsExpress,2012,20(5):5204-5212
129 Zheng JJ,Sun XK,LiY,etal.Fem togram dispersive L3-nanobeam optomechanicalcavities:Design and experimentalcomparison.Optics Express,2012,20(24):26486-26498
130 Sun XK,Zheng JJ,Poot M,et al.Fem togram doubly clamped nanomechanical resonatorsembedded in a high-Q two-dimensional photonic crystalnanocavity.Nano Letters,2012,12(5):2299-2305
131 Shim izu W,Nagai N,Kohno K,et al.Waveguide coupled air-slot photonic crystal nanocavity for optomechanics.Optics Express,2013,21(19):21961-21969
132 Pitanti A,Fink JM,Safavi-Naeini AH,et al.Strong opto-electromechanicalcoupling in a silicon photonic crystal cavity.Optics Express,2015,23(3):3196-3208
133 Safavi-Naeini AH,Hill JT,Meenehan S,et al.Two-dimensional phononic-photonic band gap optomechanical crystal cavity.PhysicalReview Letters,2014,112:153603
134 Hsiao FL,Hsieh CY,Hsieh HY,et al.High-e ffi ciency acoustooptical interaction in phoxonic nanobeam waveguide.Applied Physics Letters,2012,100(17):171103
135 Lin TR,Lin CH,Hsu JC.Enhanced acousto-optic interaction in twodimensionalphoxonic crystalsw ith a linedefect.JournalofApplied Physics,2013,113(5):053508
136 Safavi-Naeini AH,Painter O.Proposal for an optomechanical travelingwavephonon-photon translator.New JournalofPhysics,2011,13:013017
137 Ma TX,Wang YS,Zhang CZ.Simultaneousguiding of slow elastic and lightwaves in three-dimensional topology-type phoxonic crystalsw ith a line defect.JournalofOptics,2014,16(8):085002
138 Amoudache S,Pennec Y,Djafari-Rouhani B,et al.Simultaneous sensing of lightand sound velocitiesof fluid in a two-dimensional phoxonic crystal w ith defects.Journal of Applied Physics,2014,115(13):134503
139 Amoudache S,Moiseyenko R,Pennec Y,etal.Opticaland acoustic sensing using fano-like resonances in dual phononic and photonic crystalplate.JournalofApplied Physics,2016,119(11):114502
140 Ma TX,Wang YS,Zhang CZ,etal.Theoretical research on a twodimensional phoxonic crystal liquid sensor by utilizing surface opticaland acoustic waves.Sensorsand Actuators A,2016,242:123-131
141 Kalaee M,Para¨?so TK,Pfeifer H.Design of a quasi-2D photonic crystal optomechanical cavity w ith tunable,large x2-coupling.Optics Express,2016,24(19):21308-21328
REVIEW OFBANDGAPCHARACTERISTICSAND ACOUSTO-OPTICAL COUPLING IN PHOXONIC CRYSTALS1)
Ma Tianxue?Su Xiaoxing?Dong Haowen?Wang Yuesheng?,2)Zhang Chuanzeng??
(Institute ofEngineering Mechanics,Beijing Jiaotong University,Beijing 100044,China)?(Departmen to fCivil Engineering,University ofSiegen,D-57076Siegen,Germany)
Phoxonic crystals are periodic structures which possess photonic and phononic bandgaps simultaneously.Phoxonic crystals can be applied as systematic platforms formanipulating electromagnetic and elasticwaves simultaneously,and can beutilized in various field such asoptical,acoustic and acouto-opticaldevices,and cavity optomechanics.This paper firstl introduces the basic concepts of phoxonic crystals,including the constitutingmaterials,their classifi cations according to spatial periodicity,the numerical calculationmethods of band structures.We elaborate the characteristics of phoxonic dual bandgaps for di ff erent systems,and the topology optim izationmethod applied in optimizing the bandgap w idth of phoxonic dual bandgaps.The fiel of cavity optomechanics,as well as the quasistaticmethod and optomechanicalcoupling coe ffi cientmethod for evaluating the acousto-optical coupling strength are introduced.The acousto-optical coupling phenomena in various phoxonic crystal structures are summarized.Then this paper introduces the research works related to phoxonic crystalwaveguides and sensors.Finally,we outline the prospects of phoxonic crystalsbased on state of the art,including the enhancementsof acousto-optical interaction in phoxonic crystal cavities,the investigations of three-dimensional phoxonic crystals,the designsof di ff erentphoxonicmetamaterials,the phoxonic crystaldevice designsand related applications,and so on.
photonic crystal,phononic crystal,phoxonic crystal,phoxonic dual bandgaps,acousto-optical coupling,cavity optomechanics
O734
A
10.6052/0459-1879-17-130
2017-04-19收稿,2017-05-27錄用,2017-05-27網(wǎng)絡(luò)版發(fā)表.
1)國家自然科學(xué)基金資助項(xiàng)目(11372031,11532001).
2)汪越勝,教授,主要研究方向:波動(dòng)力學(xué).E-mail:yswang@bjtu.edu.cn
馬天雪,蘇曉星,董浩文,汪越勝,張傳增.聲光子晶體帶隙特性與聲光耦合作用研究綜述.力學(xué)學(xué)報(bào),2017,49(4):743-757
Ma Tianxue,Su Xiaoxing,Dong Haowen,Wang Yuesheng,Zhang Chuanzeng.Review of bandgap characteristicsand acousto-optical coupling in phoxonic crystals.Chinese JournalofTheoreticaland Applied Mechanics,2017,49(4):743-757