潘亞男 王婭靜 曹文超
摘 要:氧化亞氮(N2O)是第三大溫室氣體,也是21世紀(jì)內(nèi)平流層臭氧(O3)的首要分解者。在過去約150年間,大氣中N2O的濃度持續(xù)增加,其主要原因在于化肥和有機(jī)肥料刺激下土壤中N2O的大量排放。因此,理解土壤中N2O的排放機(jī)制與影響因素,已經(jīng)成為估算N2O排放清單和制定N2O減排政策的關(guān)鍵科學(xué)問題。土壤pH是影響N2O排放的重要環(huán)境因子之一,但目前對(duì)其相對(duì)重要性和影響機(jī)制尚不明確。該文基于已有文獻(xiàn)的梳理,總結(jié)了原位觀測和室內(nèi)培養(yǎng)研究中土壤pH與N2O排放之間的統(tǒng)計(jì)結(jié)果,發(fā)現(xiàn)多數(shù)研究中N2O排放與土壤pH呈顯著負(fù)相關(guān)關(guān)系;并且從生物硝化、生物反硝化和非生物過程3個(gè)方面探討了土壤pH影響N2O排放的微觀機(jī)制。在此基礎(chǔ)上,本文對(duì)今后的研究工作提出展望,以期為后續(xù)的研究提供參考和依據(jù)。
關(guān)鍵詞:氧化亞氮;土壤pH;反硝化;硝化;非生物轉(zhuǎn)化
中圖分類號(hào) S154.1 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 1007-7731(2017)15-0019-7
Abstract:Nitrous oxide(N2O)is the third most important anthropogenic greenhouse gas,with a global warming potential 298 times that of CO2 over a 100-y time period. It is also the largest anthropogenic contributor to stratospheric ozone decomposition for the remainder of this century. Redox processes involving nitrogen(N)in soils contribute more than half of the global anthropogenic N2O emission,primarily fueled by reactive N from synthetic fertilizers and animal manure,added to agricultural lands. Understanding on the mechanisms of soil N2O emission have,therefore,become an important perquisite to construct sound N2O emission inventory and to make scientific N2O mitigation policy. Though soil pH has been found as the important environmental factor influencing N2O emission,its relative importance and operation mechanisms are not understood well. Based on the analysis of previous literatures,this review summarized the statistic relationship between N2O emission and soil pH in field and laboratory researches. Most studies showed that N2O emissions were negatively correlated with soil pH. In addition,this review probed the influencing mechanisms of soil pH and N2O emission,involving biological nitrification,biological denitrification and abiotic mechanism. Some prospects were also proposed and highlighted for the future related works. In future studies,more attentions should be paid to the influencing mechanisms of soil pH on N2O emission,considering both magnitude and gas product stoichiometry.
Key words:Nitrous oxide;Soil pH;Denitrification;Nitrification;Abiotic transformation
氧化亞氮(N2O)是大氣中的痕量組分,其對(duì)地球環(huán)境具有重要的影響[1],是僅次于二氧化碳(CO2)和甲烷(CH4)的第三大溫室氣體,其增溫潛勢是CO2的298倍[2,3]。在氟里昂排放得到有效控制后,N2O已成為消耗平流層臭氧的最主要物質(zhì)[4-7]。大氣中N2O的來源包括自然源和人為源,其中自然源包括海洋、湖泊、草地、森林等,人為源包括農(nóng)田土壤、工業(yè)排放等[8]。工業(yè)革命以后,大氣中N2O的濃度已經(jīng)從0.27μL/L上升至0.319μL/L[5,10-11]。其中,化學(xué)氮肥和有機(jī)肥的施用是土壤N2O排放的主要原因[8-9,12-14]。因此,在深入理解排放機(jī)制的基礎(chǔ)上,實(shí)現(xiàn)土壤N2O科學(xué)減排,對(duì)緩解全球氣候變化具有重要的現(xiàn)實(shí)和科學(xué)意義。
影響土壤中N2O排放的因素眾多,概括起來可分為環(huán)境因子和人為因子2類,環(huán)境因子包括溫度、降水量等氣候條件和pH、有機(jī)質(zhì)含量、土壤含水量、質(zhì)地等土壤物理化學(xué)屬性[5,15-16,18];人為因子包括氮肥輸入量、氮肥類型、施肥方式、農(nóng)作物類型、土地耕作及灌溉方式等[5,19-24]。相對(duì)于人為因子,環(huán)境因子具有明顯的地帶性規(guī)律,控制著土壤N2O排放的區(qū)域性差異。作為重要的環(huán)境因子,土壤pH在區(qū)域尺度和實(shí)驗(yàn)室規(guī)模下均對(duì)N2O的排放具有顯著影響[25-28]。但目前相關(guān)研究較為零散,對(duì)土壤pH的影響機(jī)制和相對(duì)重要性尚缺乏系統(tǒng)性的認(rèn)識(shí)。為此,本文基于對(duì)已有研究結(jié)果的梳理與歸納,總結(jié)了原位觀測和室內(nèi)培養(yǎng)研究中土壤pH與N2O排放之間的表觀統(tǒng)計(jì)學(xué)關(guān)系,探討了土壤pH影響N2O排放的可能微觀機(jī)制,并提出對(duì)今后研究工作的展望。
1 土壤pH影響N2O排放的統(tǒng)計(jì)學(xué)分析
1.1 原位觀測研究 基于眾多的原位觀測結(jié)果,研究者可以從空間差異的角度分析各種因素對(duì)土壤N2O的影響。類似研究表明,土壤pH是影響N2O排放的最重要的因素之一,土壤N2O的排放量隨pH增加而顯著降低[21,25,29-32]。在流域尺度上,Weslien等[30]發(fā)現(xiàn)瑞典森林土壤中N2O排放通量與土壤pH之間的關(guān)系最為顯著。在德國南部的森林地區(qū),Borken和Brumme[29]發(fā)現(xiàn)長期施用石灰的土壤所排放的N2O比對(duì)照土壤低9%~62%。韓琳等[25]分析了全球38個(gè)森林野外原位觀測結(jié)果,發(fā)現(xiàn)土壤pH是影響土壤N2O排放的最主要因子,其重要性大于氮沉降強(qiáng)度和氣候因子。Bouwman等[31]整理分析了全球846個(gè)農(nóng)田土壤的N2O排放量數(shù)據(jù),結(jié)果表明土壤pH是顯著影響N2O排放的主要因素之一,但該研究未能比較各因素之間的相對(duì)重要性。類似,Stehfest等[21]整合了全球1215個(gè)農(nóng)田和自然土壤N2O排放數(shù)據(jù),也發(fā)現(xiàn)土壤中N2O排放量隨土壤pH顯著下降。
1.2 室內(nèi)培養(yǎng)研究 在實(shí)驗(yàn)室條件下,通過比較各處理間N2O排放的差異同樣可以發(fā)現(xiàn)土壤pH的顯著影響。多數(shù)研究結(jié)果表明,向酸性/酸化土壤中添加石灰、白云石或生物質(zhì)炭等物質(zhì)在提升pH的同時(shí)能夠顯著降低N2O排放[33-36]。Shaaban等[34]發(fā)現(xiàn),向酸性土壤中添加白云石可以顯著降低硝化過程中N2O的排放。Obia等[35]的研究發(fā)現(xiàn),向酸性土壤中添加生物質(zhì)炭可以有效抑制反硝化過程中N2O的凈產(chǎn)量,主要原因在于生物質(zhì)炭提高了土壤pH。Quin等[36]發(fā)現(xiàn)桉樹生物質(zhì)炭的添加可以增加土壤pH,進(jìn)而抑制了反硝化過程中N2O的產(chǎn)生。但另外一些研究發(fā)現(xiàn),土壤pH的增加也可能會(huì)促進(jìn)N2O的產(chǎn)生。Feng等[33]研究發(fā)現(xiàn),向酸性礦質(zhì)土壤中加入石灰后反硝化過程中的N2O排放量隨土壤pH升高而顯著增加。因此,土壤pH對(duì)N2O排放的影響可能因土壤屬性、培養(yǎng)條件等因素而有所不同。在實(shí)驗(yàn)室條件下還可以進(jìn)一步探究氣體產(chǎn)物比N2O/(N2O+N2)與土壤pH之間的關(guān)系,從而有助于理解土壤pH影響N2O的微觀機(jī)制。Raut等[37]發(fā)現(xiàn),集約化種植模式導(dǎo)致的土壤酸化增加了反硝化產(chǎn)物中N2O/(N2O+N2)比值。Sun等[38]研究結(jié)果表明,在中國東北部地區(qū)的草地和森林土壤中,土壤pH是影響反硝化速率和產(chǎn)物N2/N2O比值最主要的控制因素。Qu等[39]研究發(fā)現(xiàn),土壤酸化能夠提高反硝化的氣體產(chǎn)物比,從而促進(jìn)土壤N2O排放。
2 土壤中N2O產(chǎn)生的主要途徑
如圖1所示,土壤中N2O可以通過多種途徑產(chǎn)生。一般認(rèn)為,硝化反應(yīng)第一步中(表1,式1)好氧自養(yǎng)細(xì)菌利用銨(NH4+)作為電子供體、氧氣(O2)作為電子受體,產(chǎn)生的中間產(chǎn)物羥胺(NH2OH)通過自身分解或與亞硝酸鹽(NO2-)等其他化合物反應(yīng)生成N2O[40](式2~3);反應(yīng)第二步由一類特定的自養(yǎng)細(xì)菌將NO2-氧化成硝酸鹽(NO3-)(式4)。體系中的NO3-隨后通過異養(yǎng)細(xì)菌和真菌的反硝化作用,依次被還原為一氧化氮(NO)、N2O和氮?dú)猓∟2),該過程含氮化合物作為電子受體、有機(jī)碳作為電子供體,在氧氣含量很低或厭氧條件下進(jìn)行[41]。硝化反應(yīng)第一步中的氨氧化細(xì)菌可以把電子轉(zhuǎn)移給硝化作用或其它過程生成的NO2-,并生成N2O(式5),這一過程分別被稱為硝化細(xì)菌的反硝化作用(Nitrifier denitrificiation)[41]和厭氧氨氧化過程(Anammox)[42]。此外,土壤中鐵錳等金屬的離子和氧化物可以在氮素轉(zhuǎn)化過程中作為電子供體或受體,并產(chǎn)生N2O。在特定微生物的參與下,F(xiàn)e3+或氧化鐵在厭氧條件下可以將NH4+氧化成N2O和N2,該過程稱為FEAMMOX[43](式6~7)。某些微生物還可以通過催化Fe2+與NO3-/NO2-之間的電子轉(zhuǎn)移獲取能量,同時(shí)伴有NO、N2O、N2等氣體產(chǎn)生,這個(gè)過程通常被稱為硝酸鹽依賴型鐵氧化(NDFO)[44](式8~11)。
研究發(fā)現(xiàn),在沒有微生物參與的情況下N2O也可以通過一系列化學(xué)過程直接產(chǎn)生?;瘜W(xué)硝化是指土壤中的氨或銨被三價(jià)鐵等氧化生成高價(jià)氮的過程,其產(chǎn)物可以包括N2、N2O、NO和NO2[45-46](如,式6~7)?;瘜W(xué)反硝化是指NO3-或NO2-被低價(jià)態(tài)金屬離子(如,F(xiàn)e2+、Mn2+)還原的過程,其氣體產(chǎn)物中同樣包含N2O等多種氣體[45-46](式8~13)。作為土壤氮循環(huán)過程的活性中間產(chǎn)物,NH2OH和NO2?可以通過一系列化學(xué)過程向N2O轉(zhuǎn)化。例如,NH2OH可以通過快速化學(xué)分解生成N2O和N2[32],也可以被鐵(Fe)或錳(Mn)等金屬氧化產(chǎn)生N2O[48-49](式15~16)。在酸性環(huán)境中(pH<5.5),NO2?容易通過自分解過程產(chǎn)生NO、N2O和HONO等含氮?dú)怏w[40,47](式14)。此外,土壤中的腐植酸等有機(jī)物也可以通過化學(xué)過程將NO2-進(jìn)一步還原成NO、N2O等氣態(tài)化合物[40,47]。
3 土壤pH影響N2O排放的可能機(jī)制
由于N2O的產(chǎn)生途徑眾多,土壤pH的影響機(jī)制也十分復(fù)雜。目前,相關(guān)研究主要集中在生物反硝化、生物硝化和非生物過程3個(gè)方面。
3.1 反硝化作用 反硝化作用過程是土壤產(chǎn)生N2O的主要途徑之一,而pH是其主要影響因素之一。大多數(shù)反硝化微生物生長的最適pH范圍在6~8的中性環(huán)境中,在pH較低時(shí)(≤5)反硝化作用會(huì)進(jìn)行的較為緩慢[50]但N2O的排放增加。研究表明,土壤pH可以通過改變反硝化微生物的群落多樣性和豐度影響N2O產(chǎn)生量[50-54]。Fierer等[51]研究發(fā)現(xiàn),反硝化細(xì)菌在中性土壤中多樣性最高,酸性土壤中較低。Philippot等[52]發(fā)現(xiàn)土壤pH是影響反硝化細(xì)菌群落組成的重要因素。相比反硝化細(xì)菌群落本身的大小,總細(xì)菌群落內(nèi)反硝化細(xì)菌所占的比例對(duì)反硝化速率的影響更重要[53]。同時(shí),Chen等[55]研究發(fā)現(xiàn),酸性土壤中產(chǎn)N2O的真菌群落更豐富,也具有較大的產(chǎn)N2O潛力。
從整個(gè)反硝化作用過程產(chǎn)生的酶來看,其反應(yīng)需要硝酸鹽還原酶(Nar & Nap)、亞硝酸鹽還原酶(Nir)、一氧化氮還原酶(Nor)以及一氧化二氮還原酶(Nos)的催化,相應(yīng)編碼基因分別為narG和napA、nirK/S、norB以及nosZ[56]。多數(shù)研究認(rèn)為,土壤pH是通過影響反硝化酶活性,尤其是N2O還原酶的活性來調(diào)控N2O的排放[13,37,57-59]。?imek等[59]研究發(fā)現(xiàn),在等于或接近自然土壤的pH時(shí)反硝化酶活性最高,如果pH被人為改變,反硝化酶活性會(huì)下降。朱永官等[13]總結(jié)發(fā)現(xiàn),當(dāng)pH>7時(shí)N2O還原酶活性增強(qiáng),而在pH<7時(shí)其活性逐漸減小[57]。Shaaban等[58]研究發(fā)現(xiàn),通過添加白云石提高土壤pH后,可以增加土壤N2O還原酶的活性。從基因角度來說,相應(yīng)編碼基因的表達(dá)更易受到土壤pH的影響[60]。低pH會(huì)直接影響生物體產(chǎn)生功能性N2O還原酶的能力[39]。Liu等[60]研究表明,功能基因nirS、nirK和nosZ的豐度與pH呈顯著正相關(guān)關(guān)系,但nosZ基因及其轉(zhuǎn)錄本的相對(duì)數(shù)量并未受土壤pH的直接影響。Bergaust等[61]以脫氮副球菌(Paracoccus denitrificans)為研究對(duì)象,發(fā)現(xiàn)pH為6時(shí)對(duì)N2O還原速率有很大的影響,但通過定量基因轉(zhuǎn)錄產(chǎn)物并不能解釋這種現(xiàn)象。研究結(jié)果顯示,nosZ基因轉(zhuǎn)錄產(chǎn)物的相對(duì)數(shù)量未受到影響(nosZ/norB比值),在低pH下(對(duì)比pH為6和7)甚至有些增加。也有研究發(fā)現(xiàn),低pH對(duì)N2O還原酶的抑制作用是通過干擾蛋白質(zhì)的合成或裝配,進(jìn)而影響了酶的活性[60-61]。此外,低pH也會(huì)降低土壤礦質(zhì)氮和有機(jī)碳的可利用性[62]進(jìn)而影響反硝化作用過程的進(jìn)行。
3.2 硝化作用 氨氧化細(xì)菌(AOB)或氨氧化古菌(AOA)在氨單加氧酶和羥胺氧化還原酶的催化下將NH3氧化成NO2-,是硝化作用的關(guān)鍵步驟[63-64]。一般認(rèn)為,由于AOB和AOA在土壤環(huán)境中占據(jù)的生態(tài)位不同[65-68],其對(duì)不同土壤pH的響應(yīng)也不一致。如AOB在中性、堿性和高氮素投入的條件下是驅(qū)動(dòng)硝化過程進(jìn)行的主體,而AOA在酸性的自然生態(tài)系統(tǒng)中更能發(fā)揮作用[69]。即土壤pH會(huì)通過調(diào)控AOA和AOB的群落結(jié)構(gòu)進(jìn)而影響生物硝化作用中N2O產(chǎn)生量[63,72]。Yao等[72]研究發(fā)現(xiàn)強(qiáng)酸性土壤中AOA的豐度與潛在的硝化率直接相關(guān),AOA是酸性土壤主要氨氧化菌,而AOB在低pH環(huán)境無法進(jìn)行正常生長代謝。毛新偉等[63]研究發(fā)現(xiàn)微酸性土壤不利于AOA發(fā)揮作用,土壤pH下降至酸性時(shí)AOA的作用得到發(fā)揮。多數(shù)研究表明,土壤pH也會(huì)影響氨氧化菌基因和轉(zhuǎn)錄體的豐度從而影響硝化作用N2O的排放 [70-71]。Nicol等[70]研究發(fā)現(xiàn)古菌amoA基因和轉(zhuǎn)錄體的豐度隨土壤pH升高而下降,而細(xì)菌amoA基因的豐度普遍較低,轉(zhuǎn)錄體隨pH升高而增加。Gubry-Rangin等[71]研究發(fā)現(xiàn)古菌amoA基因的豐度和多樣性隨土壤pH升高而增加。此外,低pH條件不利于硝化作用底物NH3在土壤中的存留,因此土壤硝化潛勢與pH呈顯著正相關(guān)[70,73]。
3.3 非生物機(jī)制 土壤pH同樣是影響N2O非生物產(chǎn)生過程的重要因子。在化學(xué)反硝化中(如,式8-13)質(zhì)子(H+)是產(chǎn)物,因此高pH有利于化學(xué)反硝化過程的進(jìn)行[76]。Van Cleemput等[75]推斷,化學(xué)反硝化是堿性土壤(尤其是下層土壤)中N2O產(chǎn)生的重要途徑。劉晶[46]對(duì)北京東靈山土壤進(jìn)行滅菌后培養(yǎng)發(fā)現(xiàn),N2O產(chǎn)生量隨土壤pH升高而增加。然而基于熱力學(xué)計(jì)算,徐香云[76]發(fā)現(xiàn)化學(xué)反硝化過程的氣體產(chǎn)物比(如,NO/N2O、N2O/N2)隨體系pH升高而下降。盧晉晶[74]、劉晶[46]的實(shí)驗(yàn)發(fā)現(xiàn),不同土壤中,氮素化學(xué)轉(zhuǎn)化的氣體產(chǎn)物NO/N2O摩爾比值都隨體系pH升高而下降。已有實(shí)驗(yàn)研究表明,化學(xué)反硝化的氣體產(chǎn)物在酸性條件下以NO為主[40,77],中性條件下以N2O為主[78-79],堿性條件下則以N2或NH4+為主[80-81]。這意味著,盡管高pH有利于NO3-/NO2-的化學(xué)還原,但對(duì)N2O產(chǎn)生的貢獻(xiàn)還不確定。理論上,化學(xué)硝化作用同樣也可以產(chǎn)生N2O(如,式7、8),但目前對(duì)其研究很少。李良謨等[82]的實(shí)驗(yàn)發(fā)現(xiàn),化學(xué)硝化過程中的氣體產(chǎn)物可包括NO、N2O和N2等[45]。徐香云[76]通過熱力學(xué)計(jì)算提出,化學(xué)硝化中NH4+的氧化速率及N2O/N2摩爾比值可能隨環(huán)境pH的降低而增加。
作為氮素轉(zhuǎn)化的活性中間產(chǎn)物,NO2-和NH2OH向N2O的化學(xué)轉(zhuǎn)化同樣受到土壤pH的影響[39,48,83-86]。在酸性條件下(pH<5.5),NO2-不穩(wěn)定易發(fā)生自分解生成NO(式17),而后者可以通過化學(xué)過程被還原成N2O[40]。此外,NO2-還可以作為電子受體與土壤中還原性物質(zhì)發(fā)生化學(xué)反應(yīng)[47],土壤pH在其中的影響與前文中的化學(xué)反硝化類似。研究表明,硝化作用生成的NH2OH被高價(jià)態(tài)金屬或NO2-(式15、16、3)氧化分解生成N2O[48]。在這些反應(yīng)中H+作為產(chǎn)物,因此從熱力學(xué)意義上降低pH更有利于反應(yīng)發(fā)生。但是,Heil等[85]研究發(fā)現(xiàn)NH2OH非生物過程產(chǎn)生的N2O在pH較高時(shí)較多。類似地,馬蘭等[86]研究表明NH2OH非生物過程對(duì)N2O排放的貢獻(xiàn)與土壤pH呈正相關(guān)。究其原因,可能是低pH加速了NH2OH的質(zhì)子化從而減緩了氧化分解速率[48,83]。
4 研究展望
理解土壤N2O排放的驅(qū)動(dòng)機(jī)制與影響因子是編制N2O排放清單和制定N2O減排策略的科學(xué)基礎(chǔ)。土壤pH作為主要的環(huán)境因子之一,其對(duì)N2O排放的影響已經(jīng)引起廣泛的重視。由于土壤氮素轉(zhuǎn)化過程的復(fù)雜性,對(duì)其影響的機(jī)制和程度一直沒有系統(tǒng)的認(rèn)識(shí)。在今后的工作中,如下方面可能需要關(guān)注。
(1)土壤中生成N2O的過程眾多,而且不同條件下具有不同的相對(duì)重要性。目前的相關(guān)研究主要集中在生物學(xué)反硝化過程,對(duì)土壤pH在其他過程中的影響(如厭氧氨氧化、NDFO等)還知之甚少,需要在今后的研究中予以關(guān)注。此外,人們目前更多地關(guān)注N2O產(chǎn)生的生物學(xué)機(jī)制,對(duì)土壤pH在氮素非生物轉(zhuǎn)化過程中的影響尚有待澄清。
(2)作為氮素轉(zhuǎn)化過程的中間產(chǎn)物,N2O與其他氮素形態(tài)之間存在相互轉(zhuǎn)化的關(guān)系。目前的研究往往僅關(guān)注N2O一種氣體,忽略了不同pH下底物轉(zhuǎn)化和氣體產(chǎn)物間轉(zhuǎn)化的差異性。在今后的研究中,應(yīng)將N2O置于土壤氮素轉(zhuǎn)化的整體框架下,同時(shí)關(guān)注土壤pH對(duì)底物轉(zhuǎn)化速率和氣體產(chǎn)物比的影響。
(3)目前,我國的農(nóng)田、森林和草原土壤均出現(xiàn)區(qū)域性的酸化趨勢[89-91]。在理解影響機(jī)制的基礎(chǔ)上評(píng)價(jià)土壤酸化背景下N2O的排放規(guī)律對(duì)于建立科學(xué)的N2O排放清單、因地制宜制定N2O減排政策具有重要的科學(xué)與現(xiàn)實(shí)意義。
參考文獻(xiàn)
[1]Mcswiney C P,Robertson G P. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize(Zea mays L.)cropping system[J].Global Change Biology,2005,11(10):1712-1719.
[2]Solomon S,Qin D,Manning M,et al. Climate change 2007:the Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge[C].New York:Cambridge University Press,2007:18-19.
[3]Skiba U M,Rees R M. Nitrous oxide,Climate Change and Agriculture[J].CAB Reviews,2014,9(10):1-7.
[4]封克,王子波,王小治,等. 土壤pH對(duì)硝酸根還原過程中N2O產(chǎn)生的影響[J].土壤學(xué)報(bào),2004,41(1):81-86.
[5]蔡延江,丁維新,項(xiàng)劍. 農(nóng)田土壤N2O和NO排放的影響因素及其作用機(jī)制[J].土壤,2012,44(6):881-887.
[6]Ravishankara A R,Daniel J S,Portmann R W. Nitrous oxide(N2O):The dominant ozone-depleting substance emitted in the 21st century[J].Science,2009,326(5949):123-125.
[7]Davidson E A,Kanter D. Inventories and scenarios of nitrous oxide emissions[J].Environmental Research Letters,2014,9(10),doi:10.1088/1748-9326/9/10/105012.
[8]陳衛(wèi)洪,漆雁斌.農(nóng)業(yè)生產(chǎn)中氧化亞氮排放源的影響因素分析[J].四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,29(2):280-285.
[9]Liu X J,Zhang Y,Han W X,et al. Enhanced nitrogen deposition over China[J].Nature,2013,494(7438):459-462.
[10]Hartmann D L,Klein Tank A M G,Rusticucci M,et al. Observations:Atmosphere and Surface:Climate Change 2013:the Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[C].STOCKER T F,QIN D,PLATTNER G K. Cambridge,New York:Cambridge University Press,2013:159-254.
[11]Ciais P,Sabine C,Bala G,et al. Carbon and Other Biogeochemical Cycles:Climate Change 2013:The Physical Science Basis[C].STOCKER T,QIN D,PLATNER G K. New York:Cambridge University Press,2013:465-570.
[12]Park S,Croteau P,Boering K A,et al. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940[J].Nature Geoscience,2012,5(4):261-265.
[13]朱永官,王曉輝,楊小茹,等. 農(nóng)田土壤N2O產(chǎn)生的關(guān)鍵微生物過程及減排措施[J].環(huán)境科學(xué),2014,35(2):792-800.
[14]Berdanier A B,Conant R T. Regionally differentiated estimates of cropland N2O emissions reduce uncertainty in global calculations[J].Global Change Biology,2012,18(3):928-935.
[15]鄭循華,王明星,王躍思,等. 稻麥輪作生態(tài)系統(tǒng)中土壤濕度對(duì)N2O產(chǎn)生與排放的影響[J].應(yīng)用生態(tài)學(xué)報(bào),1996,7(3):273-279.
[16]蔡祖聰,Mosier A R.土壤水分狀況對(duì)CH4氧化,N2O和CO2排放的影響[J].土壤,1999(6):289-294.
[17]焦燕,黃耀. 影響農(nóng)田氧化亞氮排放過程的土壤因素[J].氣候與環(huán)境研究,2003,8(4):457-466.
[18]Rochette P,Angers D A,Chantigny M H,et al. N2O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures[J].Canadian Journal of Soil Science,2008,88(2):175-187.
[19]Cayuela M L,Aguilera E,Sanz-Cobena A,et al. Direct nitrous oxide emissions in Mediterranean climate cropping systems:Emission factors based on a meta-analysis of available measurement data[J].Agriculture,Ecosystems & Environment,2017,238:25-35.
[20]李鑫,巨曉棠,張麗娟,等. 不同施肥方式對(duì)土壤氨揮發(fā)和氧化亞氮排放的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2008,19(1):99-104.
[21]Stehfest E,Bouwman L. N2O and NO emission from agricultural fields and soils under natural vegetation:summarizing available measurement data and modeling of global annual emissions[J].Nutrient Cycling in Agroecosystems,2006,74(3):207-228.
[22]Bouwman A F,Boumans L,Batjes N H. Emissions of N2O and NO from fertilized fields:Summary of available measurement data[J].Global Biogeochemical Cycles,2002,16(4),doi:10.1029/2001GB001811.
[23]Chatskikh D,Olesen J E. Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley[J].Soil & Tillage Research,2007,97(1):5-18.
[24]Nath C P,Das T K,Rana K S,et al. Greenhouse gases emission,soil organic carbon and wheat yield as affected by tillage systems and nitrogen management practices[J].Archives of Agronomy and Soil Science,2017,doi:0.1080 / 03650340. 2017.
1300657.
[25]韓琳,王鴿,王偉,等. 全球森林土壤N2O排放通量的影響因子[J].生態(tài)學(xué)雜志,2012,31(2):446-452.
[26]Hofstra N,Bouwman A F. Denitrification in agricultural soils:Summarizing published data and estimating global annual rates[J].Nutrient Cycling in Agroecosystems,2005,72(3):267-278.
[27]?imek M,Cooper J E. The influence of soil pH on denitrification:progress towards the understanding of this interaction over the last 50 years[J].European Journal of Soil Science,2002,53(3):345-354.
[28]Han B,Ye X H,Li W,et al. The effects of different irrigation regimes on nitrous oxide emissions and influencing factors in greenhouse tomato fields[J].Journal of Soils and Sediments,2017,doi:10.1007/s11368-017-1700-x.
[29]Borken W,Brumme R. Liming practice in temperate forest ecosystems and the effects on CO2,N2O and CH4 fluxes[J].Soil Use and Management,1997,13(s4):251-257.
[30]Weslien P,Klemedtsson ? K,B?rjesson G,et al. Strong pH influence on N2O and CH4 fluxes from forested organic soils[J].European Journal of Soil Science,2009,60(3):311-320.
[31]Bouwman A F,Boumans L,Batjes N H. Modeling global annual N2O and NO emissions from fertilized fields[J].Global Biogeochemical Cycles,2002,16(4),doi:10.1029/2001GB001812.
[32]He Y H,Zhou X H,Jiang L L,et al. Effects of biochar application on soil greenhouse gas fluxes:a meta-analysis[J].Global Change Biology Bioenergy,2017,9(4):743-755.
[33]Feng K,Yan,Hütsch B W,et al. Nitrous oxide emission as affected by liming an acidic mineral soil used for arable agriculture[J].Nutrient Cycling in Agroecosystems,2003,67(3):283-292.
[34]Shaaban M,Peng Q A,Hu R G,et al. Dolomite application to acidic soils:a promising option for mitigating N2O emissions[J].Environmental Science and Pollution Research,2015,22(24):19961-19970.
[35]Obia A,Cornelissen G,Mulder J,et al. Effect of soil pH Increase by biochar on NO,N2O and N2 production during denitrification in acid soils[J].Plos One,2015,10(9),doi:10.1371/journal.pone.0138781.
[36]Quin P,Joseph S,Husson O,et al. Lowering N2O emissions from soils using eucalypt biochar:the importance of redox reactions[J].Scientific Reports,2015,5,doi:10.1038/srep16773.
[37]Raut N,D?rsch P,Sitaula B K,et al. Soil acidification by intensified crop production in South Asia results in higher N2O/(N2+N2O)product ratios of denitrification[J].Soil Biology and Biochemistry,2012,55(6):104-112.
[38]Sun P P,Zhuge Y P,Zhang J B,et al. Soil pH was the main controlling factor of the denitrification rates and N2/N2O emission ratios in forest and grassland soils along the Northeast China Transect(NECT)[J].Soil Science and Plant Nutrition,2012,58(4):517-525.
[39]Qu Z,Wang J G,Alm?y T,et al. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2)product ratio of denitrification,primarily due to acidification of the soils[J].Global Change Biology,2014,20(5):1685-1698.
[40]Heil J,Vereecken H,Brüggemann N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil[J].European Journal of Soil Science,2016,67(1):23-39.
[41]Venterea R T,Halvorson A D,Kitchen N,et al. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems[J].Frontiers in Ecology and the Environment,2012,10(10):562-570.
[42]賀紀(jì)正,張麗梅. 土壤氮素轉(zhuǎn)化的關(guān)鍵微生物過程及機(jī)制[J].微生物學(xué)通報(bào),2013,40(1):98-108.
[43]Ding L J,An X L,Li S,et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J].Environmental Science & Technology,2014,48(18):10641-10647.
[44]Carlson H K,Clark I C,Blazewicz S J,et al. Fe(II)oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions[J].Journal of Bacteriology,2013,195(14):3260-3268.
[45]王婭靜,劉晶,郭景恒. 鐵作用下土壤氮素化學(xué)轉(zhuǎn)化過程的研究進(jìn)展[J].中國農(nóng)業(yè)大學(xué)學(xué)報(bào). 2014,19(2):95-99.
[46]劉晶. 土壤pH值對(duì)氮素化學(xué)轉(zhuǎn)化過程的影響[D].北京:中國農(nóng)業(yè)大學(xué),2014.
[47]Wei J,Amelung W,Lehndorff E,et al. N2O and NOX emissions by reactions of nitrite with soil organic matter of a Norway spruce forest[J].Biogeochemistry,2017,132(3):325-342.
[48]Zhu-Barker X,Cavazos A R,Ostrom N E,et al. The importance of abiotic reactions for nitrous oxide production[J].Biogeochemistry,2015,126(3):251-267.
[49]Heil J,Wolf B,Brüggemann N,et al. Site-specific 15N isotopic signatures of abiotically produced N2O[J].Geochimica et Cosmochimica Acta,2014,139:72-82.
[50]Paul E A ,Clark F E. Reduction and transport of nitrate:Soil Microbiology and Biochemistry[M].New York:Academic Press,1989,9:81-85.
[51]Fierer N,Jackson R B. The diversity and biogeography of soil bacterial communities[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(3):626-631.
[52]Philippot L,Hallin S,Schloter M. Ecology of denitrifying prokaryotes in agricultural soil[M].USA:Elsevier Academic Press Inc,2007,96:249-305.
[53][C] uhel J,?imek M,Laughlin R J,et al. Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity[J].Applied and Environmental Microbiology,2010,76(6):1870-1878.
[54]Bollag J M,Orcutt M L,Bollag B. Denitrification by isolated soil bacteria under various environmental conditions[J].Soil Science Society of America Proceedings,1970,34(6):875-879.
[55]Chen H H,Mothapo N V,Shi W. Soil moisture and pH control relative contributions of fungi and bacteria to N2O production[J].Microbial Ecology,2015,69(1):180-191.
[56]Zumft W G. Cell biology and molecular basis of denitrification[J].Microbiology and Molecular Biology Rreviews,1997,61(4):533-616.
[57]Richardson D,F(xiàn)elgate H,Watmough N,et al. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle-could enzymic regulation hold the key?[J].Trends in Biotechnology,2009,27(7):388-397.
[58]Shaaban M,Peng Q,Lin S,et al. Nitrous oxide emission from two acidic soils as affected by dolomite application[J].Soil Research,2014,52(8):841-848.
[59]?imek M,Jí?ová L,Hopkins D W. What is the so-called optimum pH for denitrification in soil?[J].Soil Biology & Biochemistry,2002,34(9):1227-1234.
[60]Liu B B,M?rkved P T,F(xiàn)rosteg?rd ?,et al. Denitrification gene pools,transcription and kinetics of NO,N2O and N2 production as affected by soil pH[J].Fems Microbiology Ecology,2010,72(3):407-417.
[61]Bergaust L,Mao Y J,Bakken L R,et al. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in paracoccus denitrificans[J].Applied and Environmental Microbiology,2010,76(19):6387-6396.
[62]Baggs E M,Smales B C,Bateman E J. Changing pH shifts the microbial source as well as the magnitude of N2O emission from soil[J].Biology and Fertility of Soils,2010,46(7):793-809.
[63]毛新偉,程敏,徐秋芳,等. 硝化抑制劑對(duì)毛竹林土壤N2O排放和氨氧化微生物的影響[J].土壤學(xué)報(bào),2016,53(6):1528-1540.
[64]Frame C H,Casciotti K L. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium[J].Biogeosciences,2010,7(9):2695-2709.
[65]Shen J P,Zhang L M,Di H J,et al. A review of ammonia-oxidizing bacteria and archaea in Chinese soils[J].Frontiers in Microbiology,2012,3(August):Article 296.
[66]Prosser J I,Nicol G W. Archaeal and bacterial ammonia-oxidisers in soil:the quest for niche specialisation and differentiation[J]. Trends in Microbiology,2012, 20(11),523-531.
[67]Schleper C. Ammonia oxidation:different niches for bacteria and archaea?[J]. The ISME Journal,2010,4(9),1092-1094.
[68]Martens-Habbena W,Berube P M,Urakawa H,et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J].Nature,2009,461(7266),976-U234.
[69]王敬國. 生物地球化學(xué)——物質(zhì)循環(huán)與土壤過程[M].北京:中國農(nóng)業(yè)大學(xué)出版社,2017:136-140.
[70]Nicol G W,Leininger S,Schleper C,et al. The influence of soil pH on the diversity,abundance and transcriptional activity of ammonia oxidizing archaea and bacteria[J].Environmental Microbiology,2008,10(11):2966-2978.
[71]Gubry-Rangin C,Hai B,Quince C,et al. Niche specialization of terrestrial archaeal ammonia oxidizers[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(52):21206-21211.
[72]Yao H Y,Campbell C D,Chapman S J,et al. Multi-factorial drivers of ammonia oxidizer communities:evidence from a national soil survey[J].Environmental Microbiology,2013,15(9SI):2545-2556.
[73]張苗苗,王伯仁,李冬初,等. 長期施加氮肥及氧化鈣調(diào)節(jié)對(duì)酸性土壤硝化作用及氨氧化微生物的影響[J].生態(tài)學(xué)報(bào),2015,35(19):6362-6370.
[74]盧晉晶. 土壤pH對(duì)化學(xué)反硝化氣體產(chǎn)物及其組分比的影響[D].北京:中國農(nóng)業(yè)大學(xué),2012.
[75]Van Cleemput O. Subsoils:chemo- and biological denitrification,N2O and N2 emissions[J].Nutrient Cycling in Agroecosystems,1998,52(2-3):187-194.
[76]徐香云. 無機(jī)氮(NO3-、NH4+)非生物轉(zhuǎn)化過程的初步研究[D].北京:中國農(nóng)業(yè)大學(xué). 2011.
[77]Venterea R T,Rolston D E. Nitric and nitrous oxide emissions following fertilizer application to agricultural soil:Biotic and abiotic mechanisms and kinetics[J].Journal of Geophysical Research-Atmospheres,2000,105(D12):15117-15129.
[78]Kampschreur M J,Kleerebezem R,De Vet W W J M,et al. Reduced iron induced nitric oxide and nitrous oxide emission[J].Water Research,2011,45(18):5945-5952.
[79]Grabb K C,Buchwald C,Hansel C M,et al. A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II)and its production of nitrous oxide[J].Geochimica et Cosmochimica Acta,2017,196:388-402.
[80]Ottley C J,Davison W,Edmunds W M. Chemical catalysis of nitrate reduction by iron(II)[J].Geochimica et Cosmochimica Acta,1997,61(9):1819-1828.
[81]Hansen H C B,Koch C B,Nancke-Krogh H,et al. Abiotic nitrate reduction to ammonium:Key role of green rust[J].Environmental Science & Technology,1996,30(6):2053-2056.
[82]李良謨,潘映華,伍期途,等. 無定形氧化鐵作為嫌氣下NH4+氧化時(shí)電子受體的研究[J].土壤學(xué)報(bào),1988,25(2):184-190.
[83]Van Cleemput O,Baert L. Calculations of the nitrite decomposition reactions in soils:Environmental Biogeochemistry and Geomicrobiology[M].Germany:Wolfenbuettel,1978:591-600.
[84]Van Cleemput O,Samater A H. Nitrite in soils:Accumulation and role in the formation of gaseous N compounds[J].Fertilizer Research,1995,45(1):81-89.
[85]Heil J,Liu S R,Vereecken H,et al. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties[J].Soil Biology & Biochemistry,2015,84:107-115.
[86]馬蘭,李曉波,李博倫,等. 土壤中羥胺和亞硝態(tài)氮非生物過程對(duì)N2O排放的貢獻(xiàn)[J].土壤學(xué)報(bào),2016,53(5):1181-1190.
[87]Guo J H,Liu X J,Zhang Y,et al. Significant Acidification in Major Chinese Croplands[J].Science,2010,327(5968):1008-1010.
[88]Yang Y H,Ji C J,Ma W H,et al. Significant soil acidification across northern China's grasslands during 1980s-2000s[J].Global Change Biology,2012,18(7):2292-2300.
[89]Yang Y H,Li P,He H L,et al. Long-term changes in soil pH across major forest ecosystems in China[J].Geophysical Research Letters,2015,42(3):933-940.
[90]Huang J,Zhang W,Mo J M,et al. Urbanization in China drives soil acidification of Pinus massoniana forests[J].Scientific Reports,2015,5,doi:10.1038/srep13512.
[91]Lu X K,Mao Q G,Gilliam F S,et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems[J].Global Change Biology,2014,20(12):3790-3801.
(責(zé)編:張宏民)