王 燕,劉建新,李 淼
(1.西南交通大學(xué) 機(jī)械工程學(xué)院,成都 610031;2.西南交通大學(xué) 牽引動(dòng)力國家重點(diǎn)實(shí)驗(yàn)室,成都 610031;3.中車株洲電力機(jī)車研究所有限公司,湖南 株洲 412001)
計(jì)及齒輪時(shí)變嚙合剛度的機(jī)車驅(qū)動(dòng)系統(tǒng)振動(dòng)穩(wěn)定性
王 燕1,劉建新2,李 淼3
(1.西南交通大學(xué) 機(jī)械工程學(xué)院,成都 610031;2.西南交通大學(xué) 牽引動(dòng)力國家重點(diǎn)實(shí)驗(yàn)室,成都 610031;3.中車株洲電力機(jī)車研究所有限公司,湖南 株洲 412001)
針對齒輪時(shí)變嚙合剛度激勵(lì)的機(jī)車驅(qū)動(dòng)系統(tǒng)振動(dòng)問題,基于勢能原理獲得了齒輪時(shí)變嚙合剛度,并用傅里葉級數(shù)展開,采用“黏著系數(shù)-蠕滑速度”經(jīng)驗(yàn)公式描述具有負(fù)斜率特性的輪軌黏著力,建立了驅(qū)動(dòng)系統(tǒng)扭轉(zhuǎn)振動(dòng)和輪對縱向振動(dòng)的耦合模型。在系統(tǒng)振動(dòng)微分方程的平衡位置處對其進(jìn)行線性化處理,進(jìn)而利用多尺度法獲得了系統(tǒng)振動(dòng)穩(wěn)定的邊界條件,并進(jìn)行了數(shù)值仿真驗(yàn)證和參數(shù)影響分析。分析結(jié)果表明:增大被動(dòng)齒輪與主動(dòng)齒輪的等效慣量比、輪對與構(gòu)架的質(zhì)量比有助于增強(qiáng)機(jī)車驅(qū)動(dòng)系統(tǒng)的穩(wěn)定性;當(dāng)機(jī)車速度接近119/j(km·h-1)(j=1,2,3,…) 時(shí),由于齒輪時(shí)變嚙合剛度的作用,驅(qū)動(dòng)系統(tǒng)會(huì)產(chǎn)生參數(shù)共振;且當(dāng)速度接近119 km·h-1時(shí),系統(tǒng)產(chǎn)生參數(shù)共振的區(qū)域較廣,且嚙合阻尼在[0,1×104]N·s·m-1范圍內(nèi)變化時(shí),對系統(tǒng)參數(shù)共振區(qū)域的范圍影響很小,機(jī)車應(yīng)盡量避免以該速度行駛。
機(jī)車;驅(qū)動(dòng)系統(tǒng);時(shí)變嚙合剛度;多尺度法;穩(wěn)定性
機(jī)車驅(qū)動(dòng)系統(tǒng)主要由牽引電機(jī)、傳動(dòng)裝置和輪對構(gòu)成。傳動(dòng)裝置一般為齒輪傳動(dòng),其主要功能是將牽引電機(jī)的驅(qū)動(dòng)力有效地傳遞至輪對,進(jìn)而通過輪軌接觸界面的黏著形成牽引力以實(shí)現(xiàn)機(jī)車的縱向運(yùn)動(dòng)。齒輪嚙合時(shí),由于同時(shí)參與嚙合的輪齒數(shù)和嚙合位置的變化,導(dǎo)致齒輪嚙合剛度具有周期時(shí)變特性,該特性已得到Wan等[1-4]的高度關(guān)注。在齒輪時(shí)變嚙合剛度激勵(lì)下,機(jī)車驅(qū)動(dòng)系統(tǒng)的振動(dòng)響應(yīng)有時(shí)可能較弱,但在一定條件下也可能出現(xiàn)劇烈的共振現(xiàn)象。系統(tǒng)是否發(fā)生共振現(xiàn)象,取決于系統(tǒng)在對應(yīng)條件下的穩(wěn)定性。王建軍等[5-6]針對考慮時(shí)變嚙合剛度的齒輪系統(tǒng)的穩(wěn)定性進(jìn)行了大量的研究。然而,考慮機(jī)車齒輪時(shí)變嚙合剛度激勵(lì)的影響,針對機(jī)車驅(qū)動(dòng)系統(tǒng)振動(dòng)穩(wěn)定性的研究工作仍較為少見。同時(shí),運(yùn)用中發(fā)現(xiàn),機(jī)車在運(yùn)行中驅(qū)動(dòng)系統(tǒng)存在異常振動(dòng)。因此,開展齒輪時(shí)變嚙合剛度激勵(lì)下機(jī)車驅(qū)動(dòng)系統(tǒng)的振動(dòng)研究,明確系統(tǒng)振動(dòng)穩(wěn)定產(chǎn)生的條件,對機(jī)車的安全運(yùn)行具有重要的意義。
基于此,本文基于勢能原理獲得了齒輪時(shí)變嚙合剛度,并用傅里葉級數(shù)展開,采用“黏著系數(shù)-蠕滑速度”經(jīng)驗(yàn)公式描述具有負(fù)斜率特性的輪軌黏著力,建立了驅(qū)動(dòng)系統(tǒng)扭轉(zhuǎn)振動(dòng)和輪對縱向振動(dòng)的耦合模型。利用多尺度法推導(dǎo)了系統(tǒng)振動(dòng)穩(wěn)定產(chǎn)生的條件,數(shù)值模擬了系統(tǒng)的振動(dòng)響應(yīng),并獲得了系統(tǒng)參數(shù)對振動(dòng)穩(wěn)定性的影響規(guī)律。
圖1(a)和圖1(b)分別為軸懸式機(jī)車驅(qū)動(dòng)系統(tǒng)和架懸式機(jī)車驅(qū)動(dòng)系統(tǒng)模型[7],考慮主動(dòng)、被動(dòng)齒輪嚙合時(shí)的時(shí)變剛度,建立如圖2所示的機(jī)車驅(qū)動(dòng)系統(tǒng)的動(dòng)力學(xué)分析模型。符號Ii、Ri、θi、Ti分別為主動(dòng)(i=1)、被動(dòng)(i=2)齒輪上的等效轉(zhuǎn)動(dòng)慣量、基圓半徑、轉(zhuǎn)動(dòng)角位移和施加的轉(zhuǎn)矩;km(t)、cm分別為齒輪嚙合剛度與阻尼;mi、xi、Fi分別為輪對(i=1)、構(gòu)架(i=2)上的等效質(zhì)量、縱向位移和所施加的力;kx、cx分別為縱向剛度與阻尼;r為車輪半徑。牽引電機(jī)的驅(qū)動(dòng)力矩T1施加在主動(dòng)齒輪上驅(qū)動(dòng)其轉(zhuǎn)動(dòng),被動(dòng)齒輪則固接在輪軸上并在輪齒嚙合力的作用下轉(zhuǎn)動(dòng),輪對的轉(zhuǎn)動(dòng)使輪軌接觸界面產(chǎn)生黏著力F1,進(jìn)而實(shí)現(xiàn)輪對的縱向運(yùn)動(dòng)。
(a) 軸懸式驅(qū)動(dòng)系統(tǒng)
(b) 架懸式驅(qū)動(dòng)系統(tǒng)圖1 機(jī)車驅(qū)動(dòng)系統(tǒng)模型Fig.1 Locomotive driving system model
(a) 驅(qū)動(dòng)系統(tǒng)扭轉(zhuǎn)振動(dòng)
(b) 輪對縱向振動(dòng)圖2 機(jī)車驅(qū)動(dòng)系統(tǒng)的動(dòng)力學(xué)分析模型Fig.2 Dynamic analysis model of locomotive driving system
1.1 動(dòng)力學(xué)方程
根據(jù)圖2所示的動(dòng)力學(xué)分析模型,建立相應(yīng)的動(dòng)力學(xué)方程
(1)
式中,T2=rF1。令Δx=R1θ1-R2θ2,Δy=x1-x2,且令去除系統(tǒng)平衡位置后對應(yīng)的值分別為x、y,則式(1)經(jīng)過變換后可得
(2)
1.2 齒輪時(shí)變嚙合剛度
齒輪嚙合時(shí)參與嚙合的輪齒對數(shù)隨時(shí)間呈現(xiàn)周期性往復(fù)交替變化,導(dǎo)致齒輪嚙合剛度亦呈現(xiàn)時(shí)變周期性。將齒輪時(shí)變嚙合剛度表示為關(guān)于主動(dòng)齒輪轉(zhuǎn)動(dòng)角位移θ1(單位°)的傅里葉級數(shù)的形式
(3)
式中:k0為嚙合剛度的平均值;kj為Fourier級數(shù)的系數(shù);φj為相位角;wn=2π/T,T=360/Z1,Z1為主動(dòng)齒輪齒數(shù)。
進(jìn)而通過變換得到齒輪時(shí)變嚙合剛度關(guān)于時(shí)間的傅里葉級數(shù)形式為
(4)
式中,we=2πZ1n1/60, n1為主動(dòng)齒輪轉(zhuǎn)數(shù),r·min-1。
1.3 輪軌黏著力
輪軌黏著系數(shù)的大小與輪軌蠕滑率或蠕滑速度緊密相關(guān)。本文采用日本新干線的“黏著系數(shù)-蠕滑速度”經(jīng)驗(yàn)公式[8]
u(vs)=a·exp(-3.6bvs)-c·exp(-3.6dvs)
(5)
式中:u(vs)為輪軌黏著系數(shù);vs為輪軌蠕滑速度,m·s-1;a、b、c、d為反映輪軌接觸狀態(tài)的參數(shù)。
當(dāng)a=0.53、b=0.12、c=0.53、d=2.40[9]時(shí),得到黏著系數(shù)及其關(guān)系曲線斜率ku關(guān)于蠕滑速度的變化曲線如圖3所示。
圖3 黏著系數(shù)及其斜率關(guān)于蠕滑速度的關(guān)系曲線Fig.3 Relation curve of adhesion coefficient and its slope on creep speed
輪軌黏著力F1=u(vs)Q。其中Q為機(jī)車軸重,N。
1.4 方程的無量綱化
輪軌蠕滑速度vs用圖2中的符號表示為
(6)
令平衡位置處的蠕滑速度為vs0,可得
(7)
令x=bxe,y=bye,(b為特征尺寸),整理式(2)可得
(8)
為給出驅(qū)動(dòng)系統(tǒng)振動(dòng)穩(wěn)定性的條件,將式(8)中的fr在vs0附近進(jìn)行線性化處理,表示為
(9)
將式(9)代入式(8),整理可得
(10)
引入小參數(shù)ε(0<ε<1), 令ai=εμi, (i=1,2,3,4),Kj=εkej,整理式(10)可得
(11)
利用多尺度法[10-11]進(jìn)行計(jì)算,設(shè)式(11)的近似解為
(12)
式中:T0=τ;T1=ετ。
將式(12)代入式(11),展開后令ε的同次冪的系數(shù)為0,得到零次和一次近似方程分別為
(13a)
(13b)
將式(13a)的解寫為
(14)
將式(14)代入式(13b),整理可得
(15)
式中,cc為前面各項(xiàng)的共軛復(fù)數(shù)。
不考慮n趨近于1時(shí)的情況,對以下兩種情況進(jìn)行分析
(16)
令A(yù)=A1(T1)+iA2(T1),B=B1(T1)+iB2(T1),分離實(shí)部與虛部后得到對應(yīng)的特征方程為
16n2(λ+μ1)(λ+μ3)=0
(17)
所以,此時(shí)系統(tǒng)振動(dòng)穩(wěn)定的條件為:a1>0且a3>0。
(18)
設(shè)A=[A1(T1)+iA2(T1)]e(ijσT1+iφj)/2,B=B1(T1)+iB2(T1)。分離實(shí)部與虛部后得到對應(yīng)的特征多項(xiàng)式為
(19)
以某型機(jī)車為實(shí)例,其齒輪副的主要參數(shù)為:主動(dòng)齒輪齒數(shù)Z1=32,被動(dòng)齒輪齒數(shù)Z2=75,模數(shù)m=12,壓力角a=22.5°?;趧菽茉韀12-13],綜合考慮輪齒彎曲變形、剪切變形、軸向壓縮變形、赫茲接觸變形、以及輪體變形對應(yīng)的嚙合線上的等效剛度。其中,前4種變形對應(yīng)的等效剛度的計(jì)算參見文獻(xiàn)[14],輪體變形對應(yīng)的等效剛度的計(jì)算參見文獻(xiàn)[15-16]。進(jìn)而獲得齒輪綜合時(shí)變嚙合剛度,并將其展開為傅里葉級數(shù)形式,結(jié)果如圖4所示。其中kj(j=0,1,…,8)的值見表1所示。
表1 嚙合剛度各階諧波幅值
圖4 齒輪嚙合時(shí)變剛度Fig.4 Time-varying mesh stiffness of gears
圖5 a1=0、a3=0時(shí)的臨界穩(wěn)定曲線Fig.5 Critical stability curve when a1=0、a3=0
3.1 驅(qū)動(dòng)系統(tǒng)振動(dòng)穩(wěn)定性的數(shù)值仿真驗(yàn)證
(a) j=1~4
(b) j=5~8圖6 參數(shù)共振時(shí)的臨界穩(wěn)定曲線Fig.6 Critical stability curve when parametric resonance occurs
圖7 不同下系統(tǒng)振動(dòng)位移的最大值與最小值Fig.7 Maximum and minimum values of vibration displacement under different
圖8 vs0=0.3 m·s-1,=1.55Fig.8 Vibration response when vs0=0.3 m·s-1,=1.55
圖9 vs0=0.5 m·s-1,=1.55Fig.9 Vibration response when vs0=0.5 m·s-1,=1.55
3.2 驅(qū)動(dòng)系統(tǒng)振動(dòng)穩(wěn)定性的參數(shù)影響分析
令等效慣量比N1=I2/I1、等效質(zhì)量比N2=m1/m2,利用推導(dǎo)出的穩(wěn)定條件式,仿真得到不同參數(shù)下機(jī)車驅(qū)動(dòng)振動(dòng)的臨界穩(wěn)定曲線如圖10~圖12所示。
圖10 a1=0時(shí)的臨界穩(wěn)定曲線Fig.10 Critical stability curve when a1=0
圖11 a3=0時(shí)的臨界穩(wěn)定曲線Fig.11 Critical stability curve when a3=0
圖12 參數(shù)共振(j=1)時(shí)的臨界穩(wěn)定曲線Fig.12 Critical stability curve when parametric resonance occurs (j=1)
當(dāng)阻尼cx=100 N·s·m-1時(shí),得到a1=0時(shí)ku-cm平面上的臨界穩(wěn)定曲線如圖10所示。由圖10可知,等效慣量比N1越大,系統(tǒng)穩(wěn)定區(qū)域越廣。當(dāng)阻尼cm=100 N·s·m-1時(shí),得到a3=0時(shí)ku-cx平面上的臨界穩(wěn)定曲線如圖11所示。由圖11可知,等效質(zhì)量比N2越大,系統(tǒng)穩(wěn)定區(qū)域越廣。所以,增大等效慣量比N1、質(zhì)量比N2有利于增強(qiáng)系統(tǒng)的穩(wěn)定性。
本文考慮了齒輪嚙合剛度的時(shí)變特性,建立了機(jī)車驅(qū)動(dòng)系統(tǒng)扭轉(zhuǎn)振動(dòng)和輪對縱向振動(dòng)的耦合模型,利用多尺度法推導(dǎo)了系統(tǒng)振動(dòng)穩(wěn)定的條件,并進(jìn)行了數(shù)值仿真驗(yàn)證和參數(shù)影響分析。結(jié)果表明多尺度法推導(dǎo)出的系統(tǒng)振動(dòng)穩(wěn)定的條件與數(shù)值仿真模擬系統(tǒng)的振動(dòng)響應(yīng)具有良好的一致性。通過分析獲得結(jié)論如下:
(1) 增大被動(dòng)齒輪與主動(dòng)齒輪的等效慣量比、輪對與構(gòu)架的質(zhì)量比有利于增強(qiáng)機(jī)車驅(qū)動(dòng)系統(tǒng)的穩(wěn)定性。
(2) 由于齒輪時(shí)變嚙合剛度的作用,當(dāng)機(jī)車速度約119/j(km·h-1)(j=1,2,3,…) 時(shí),機(jī)車驅(qū)動(dòng)系統(tǒng)會(huì)產(chǎn)生參數(shù)共振。
(3) 當(dāng)速度約119 km·h-1時(shí),嚙合阻尼在[0,1×104]N·s·m-1范圍內(nèi)變化時(shí),對系統(tǒng)參數(shù)共振區(qū)域的范圍影響很小,且此時(shí)黏著系數(shù)曲線斜率在[-0.35,0.35]范圍內(nèi)變化時(shí),系統(tǒng)均會(huì)產(chǎn)生參數(shù)共振,機(jī)車運(yùn)營中應(yīng)給予避免。
[ 1 ] WAN Zhiguo, CAO Hongrui, ZI Yanyang,et al.An improved time-varying mesh stiffness algorithm and dynamic modeling of gear-rotor system with tooth root crack[J].Engineering Failure Analysis,2014,42(5):157-177.
[ 2 ] CHEN Zaigang , SHAO Yimin. Mesh stiffness calculation of a spur gear pair with tooth profile modification and tooth root crack[J]. Mechanism and Machine Theory, 2013,62(4):63-74.
[ 3 ] PANDYA Y, PAREY A.Simulation of crack propagation in spur gear tooth for different gear parameter and its influence on mesh stiffness[J].Engineering Failure Analysis,2013,30:124-137.
[ 4 ] DEL RINCON A F, VIADERO F, IGLESIAS M,et al.A model for the study of meshing stiffness in spur gear transmissions[J]. Mechanism and Machine Theory,2013,61:30-58.
[ 5 ] 王建軍,李其漢,李潤方.齒輪系統(tǒng)非線性振動(dòng)研究進(jìn)展[J].力學(xué)進(jìn)展, 2005,35(1): 37-51. WANG Jianjun, LI Qihan, LI Runfang.Research advances for nonlinear vibration of gear transmission systems[J]. Advance in Mechnics, 2005, 35(1): 37-51.
[ 6 ] 張微,丁千.直齒圓柱齒輪嚙合耦合振動(dòng)系統(tǒng)參數(shù)振動(dòng)研究[J].工程力學(xué),2015,32(5): 213-220. ZHANG Wei,DING Qian.Research on properties for parametric vibration of a spur gear meshing and coupling system[J]. Engineering Mechanics, 2015,32(5):213-220.
[ 7 ] YAO Yuan, ZHAO Shiyin, XIAO Feixiong,et al.The effects of wheelset driving system suspension parameters on the re-adhesion performance of locomotives[J].Vehicle System Dynamics,2015,53(12):1935-1951.
[ 8 ] TAKAOKA Y, KAWAMURA A. Disturbance observer based adhesion control for shinkansen[C]//IEEE 6th International Workshop on Advanced Motion Control. New York:IEEE,2000:169-174.
[ 9 ] LIU Jianxin, ZHAO Huaiyun, ZHAI Wanming.Mechanism of self-excited torsional vibration of locomotive driving system[J]. Frontiers of Mechanical Engineering in China,2010,5(4):465-469.
[10] THEODOSSIADES S, NATSIAVAS S. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash[J]. Journal of Sound and Vibration,2000,229(2):287-310.
[11] 劉延柱,陳立群.非線性振動(dòng)[M].北京:高等教育出版社,2001.
[12] LIANG Xihui, ZUO M J, PANDEY M.Analytically evaluating the influence of crack on the mesh stiffness of a planetary gear set[J].Mechanism and Machine Theory,2014,76(6): 20-38.
[13] MA Hui, SONG Rongze, PANG Xu, et al. Time-varying mesh stiffness calculation of cracked spur gears[J].Engineering Failure Analysis,2014,44(5):179-194.
[14] TIAN Xinhao, ZUO M J, FYFE K R. Analysis of the vibration response of a gearbox with gear tooth faults[C]//ASME 2004 International Mechanical Engineering Congress and Exposition.Anaheim:American Society of Mechanical Engineers,2004:785-793.
[15] SAINSOT P, VELEX P, DUVERGER O.Contribution of gear body to tooth deflections—a new bidimensional analytical formula[J]. Journal of Mechanical Design,2004,126(4):748-752.
[16] CHEN Zaigang, SHAO Yimin. Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth[J]. Engineering Failure Analysis,2011,18(8):2149-2164.
Vibration stability for a locomotive driving system with time-varying mesh stiffness of gears
WANG Yan1,LIU Jianxin2, LI Miao3
(1. Faculty of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031,China;2. State Key Laboratory of Traction Power ,Southwest Jiaotong University, Chengdu 610031, China;3. CRRC Zhuzhou Institute Co., Ltd., Zhuzhou 412001, China)
Aiming at the vibration problem of a locomotive driving system with time-varying mesh stiffness of gears, torsional vibration of the driving system and longitudinal vibration of wheelsets were established. In the model, mesh stiffness was obtained based on the potential energy principle and expressed using the technique of Fourier series. Wheel/rail adhesion force with the characteristic of negative slope was described by a formula of adhesion coefficient and creep speed. Based on this model, the vibration differential equation was linearized at the balance point. The boundary condition of the stable system was gained by using the method of multiple scales. In order to verify the calculated result, the numerical simulation was carried out. At the same time, the influence of parameters on the stability of the driving system was analyzed. The results reveal that increasing the equivalent inertia ratio of driving gear and driven gear, mass ratio of wheelsets and frame is helpful to enhance the stability of the driving system. Parametric resonance occurs as locomotive speed is close to 119/j(km·h-1)(j=1,2,3,…) because of the time-varying mesh stiffness. When speed approaching 119 km·h-1, the parametric resonant region is wide. At this speed, mesh damping changes within [0,1×104]N·s·m-1is little helpful to the change the resonant region of the system. The locomotive should try to avoid traveling at this speed.
locomotive; driving system; time-varying mesh stiffness; method of multiple scales; stability
國家自然科學(xué)基金(51375403);中央高?;究蒲袠I(yè)務(wù)專項(xiàng)科技創(chuàng)新(2682015ZD12)
2016-05-03 修改稿收到日期: 2016-06-16
王燕 女,博士生,1989年出生
劉建新 男,博士,教授,博士生導(dǎo)師,1965年出生
U260
A
10.13465/j.cnki.jvs.2017.16.016