趙海萍,陳 旺,李清雪,孫玉壯
(1.河北工程大學(xué)能源與環(huán)境工程學(xué)院,河北 邯鄲 056038;2.河北工程大學(xué)河北省資源勘測研究重點(diǎn)實(shí)驗(yàn)室,河北 邯鄲 056038)
漳河上游水質(zhì)時空分異特征及污染源識別
趙海萍1,陳 旺1,李清雪1,孫玉壯2
(1.河北工程大學(xué)能源與環(huán)境工程學(xué)院,河北 邯鄲 056038;2.河北工程大學(xué)河北省資源勘測研究重點(diǎn)實(shí)驗(yàn)室,河北 邯鄲 056038)
為研究漳河上游水質(zhì)的時空分異特征及潛在污染源,利用多元統(tǒng)計(jì)方法對2013年漳河上游20個斷面25個水質(zhì)指標(biāo)的實(shí)測數(shù)據(jù)進(jìn)行了分析研究。結(jié)果表明:漳河上游水質(zhì)在空間尺度上分為2組,A組靠近源頭、水量充足的河段及水庫調(diào)節(jié)區(qū),水質(zhì)較好;B組多在濁漳南源中下游及濁漳干流,工業(yè)排污量大,水質(zhì)污染較嚴(yán)重;B組的主要污染因子為重金屬、營養(yǎng)鹽等,顯示出B組斷面受工業(yè)污染的影響比較大。漳河上游水質(zhì)年內(nèi)變化分為2個時段,1—3月水質(zhì)惡劣,4—12月水質(zhì)較好;1—3月的主要污染因子為有機(jī)污染,并識別出6個主要污染源。
水質(zhì);多元統(tǒng)計(jì);時空分布;污染源識別;等標(biāo)污染負(fù)荷法;漳河上游
漳河是海河流域南系的重要河流,分清漳河、濁漳河兩支。清漳河又分為清漳東源和清漳西源,河長146 km;濁漳河分為濁漳南源、濁漳北源、濁漳西源,三源匯合后為濁漳河;清漳河和濁漳河2大支流在河北合漳村匯合后被稱為漳河。漳河上游段是指邯鄲岳城水庫壩址以上的漳河流域段,流域面積18 284 km2。漳河上游段是晉、冀、豫3省重要的飲用水源和工農(nóng)業(yè)生產(chǎn)用水水源,也是我國受人類活動干擾最強(qiáng)烈的區(qū)域之一。漳河上游接納沿岸城鎮(zhèn)生活污水、企業(yè)(煤化工、焦化廠、化肥廠等)廢水的常年排放,造成河流水質(zhì)惡化,水生態(tài)系統(tǒng)退化,嚴(yán)重制約著流域經(jīng)濟(jì)發(fā)展。因此,了解漳河流域水質(zhì)時空分異特征,識別污染源有助于了解區(qū)域水環(huán)境污染的主要原因,從而制定出更好的水生態(tài)環(huán)境管理措施[1]。
多元統(tǒng)計(jì)方法能在保留最多信息的前提下降低數(shù)據(jù)維數(shù)、挖掘數(shù)據(jù)間潛在的交互作用、并提取最有價值的信息,可用于解決龐大而復(fù)雜的水質(zhì)監(jiān)測結(jié)果所造成的水質(zhì)分析和評價困難[2]。目前,多元統(tǒng)計(jì)方法常被用于飲用水[3-4]、河流[5-9]、廢水[10]、近海海域[11-14]、湖泊水庫[15]、地表水[16-19]和地下水[20-23]的水環(huán)境研究中。本文依據(jù)2013年漳河上游水質(zhì)調(diào)查結(jié)果,利用多元統(tǒng)計(jì)方法研究漳河上游水污染空間的分異特征,篩選水體特征污染因子,通過等標(biāo)污染負(fù)荷法識別污染因子的主要來源,對造成漳河上游污染的主要原因進(jìn)行探討。
漳河上游是指觀臺水文站以上地區(qū),位于北緯36°04′~37°33′,東經(jīng)112°37′~114°08′。研究區(qū)域內(nèi)共設(shè)20個監(jiān)測斷面(圖1),編號1~20,分別為關(guān)河水庫、司徒橋、段柳、后灣水庫、襄垣、黃碾、巒嶺灣、暴河頭、紫坊、店上、高村、北張店、漳澤水庫、實(shí)會、辛安泉、石梁、麻田、三省橋、交漳、觀臺,位置見圖1,其中,17個斷面(1~16和18斷面)位于濁漳河上,1個斷面(17斷面)位于淸漳河上,2個斷面(19、20斷面)位于漳河干流。
圖1 研究區(qū)域監(jiān)測斷面分布
2.1 數(shù)據(jù)來源
2.2 數(shù)據(jù)預(yù)處理
為探討漳河上游水質(zhì)污染的時空分布特征,在進(jìn)行聚類分析、判別分析、主成分分析和因子分析之前,對原始數(shù)據(jù)進(jìn)行K-S非參數(shù)檢驗(yàn),判斷監(jiān)測數(shù)據(jù)是否服從正態(tài)分布[24]。對不符合正態(tài)分布的變量進(jìn)行對數(shù)轉(zhuǎn)換處理使其滿足正態(tài)分布。為了消除變量單位量綱的影響,對轉(zhuǎn)換后的數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理(均值為0,標(biāo)準(zhǔn)差為1)。本文多元統(tǒng)計(jì)分析采用SPSS 19.0軟件完成。
2.3 研究方法
判別分析(discriminant analysis, DA)是在分類確定的條件下,按照一定的判別準(zhǔn)則,建立合適的判別函數(shù),用大量原始數(shù)據(jù)資料確定判別函數(shù)中的待定系數(shù),從而對研究對象進(jìn)行分類的一種多變量統(tǒng)計(jì)分析方法。為了驗(yàn)證聚類分析的結(jié)果,本文采用逐步判別法建立判別函數(shù)分別對聚類結(jié)果進(jìn)行驗(yàn)證,并采用交互驗(yàn)證法驗(yàn)證判別函數(shù)的效果,避免強(qiáng)影響點(diǎn)的干擾[3-4,25]。
主成分分析(principal component analysis, PCA)是把相互影響干擾的原始變量按照一定的線性組合,構(gòu)造成一系列新的、互不相關(guān)的新變量,從而選取少數(shù)幾個主成分代替原始變量分析問題和解決問題[10,26]。
因子分析(factor analysis, FA)是主成分分析的進(jìn)一步發(fā)展和推廣,能把海量的多維數(shù)據(jù)進(jìn)行最大化降低維數(shù),并確定保留幾乎所有原始信息的少數(shù)幾個方差因子,同時包含著不可觀測的、假設(shè)的、潛在的和互不相關(guān)的信息[10,26-27]。本文根據(jù)主成分的特征值大于1來確定因子分析的因子個數(shù),找出漳河上游水質(zhì)的主要影響因子[8,10]。
最后利用等標(biāo)污染負(fù)荷法[28]確定研究區(qū)域內(nèi)的主要污染物、主要污染行業(yè)等。污染源的等標(biāo)污染負(fù)荷為
(1)
其中,
式中:Pn為某污染源的等標(biāo)污染負(fù)荷;n為污染物的種類;Pi為第i種污染物的等標(biāo)污染負(fù)荷;Qi為第i種污染物的排放量;Coi為第i種污染物的排放標(biāo)準(zhǔn)。
污染源的等標(biāo)負(fù)荷比為
(2)
式中:Kn為某污染源的等標(biāo)負(fù)荷比;m為污染源種類。
流域內(nèi)污染源的累積等標(biāo)污染負(fù)荷比為
(3)
式中,K為污染源的累積等標(biāo)污染負(fù)荷比。
根據(jù)污染源的Kn值大小進(jìn)行排序,依次累加計(jì)算累積百分比。將累積百分比大于65%,且污染源占流域內(nèi)所有污染源數(shù)量的百分比大于2%作為流域內(nèi)主要污染源的篩選原則。這樣篩選出來的污染源涵蓋了研究區(qū)的主要支柱行業(yè)及較大型企業(yè),比較具有代表性。
3.1 水質(zhì)的空間分異特征
圖2 漳河上游水質(zhì)空間聚類結(jié)果
A組的14個斷面為1-關(guān)河水庫、2-司徒橋、3-段柳、4-后灣水庫、10-店上、11-高村、12-北張店、13-漳澤水庫、14-實(shí)會、15-辛安泉、17-麻田、18-三省橋、19-交漳、20-觀臺,多處于各支流的源頭、水庫區(qū)域、泉水出漏區(qū)以及跨省匯合斷面,經(jīng)過水庫的調(diào)節(jié)、泉域流量的補(bǔ)給,工農(nóng)業(yè)污染較少,水體基本無污染或輕度污染。B組的6個斷面為5-襄垣、6-黃碾、7-巒嶺灣、8-暴河頭、9-紫坊、16-石梁,多處于濁漳南源中下游及三源匯合后的濁漳干流,該區(qū)域位于長治市郊區(qū)、潞城市及襄垣縣,工業(yè)園區(qū)分布密集,人口相對集中,水資源開發(fā)和利用強(qiáng)度大,長期受各類工業(yè)和大量生活污水排放的雙重影響,水體污染嚴(yán)重,水質(zhì)較差[29]。
表1 漳河上游水質(zhì)時空尺度分組的判別分析
圖3 漳河上游污染物空間差異性
3.2 水質(zhì)的時間分異特征
圖4 漳河上游水質(zhì)時間聚類結(jié)果
圖5 漳河上游污染物時間差異性
3.3 水污染因子分析
對空間尺度的A組和B組斷面進(jìn)行主因子分析。根據(jù)特征值大于1的評判原則對A組、B組分別提取了6個和4個主成分,累計(jì)解釋方差分別為92.18%和96.82%[30-31]。表2描述了空間尺度主因子分析的載荷、特征值和方差。
表2 空間尺度旋轉(zhuǎn)因子載荷矩陣
綜合分析,B組所屬河段是濁漳南源中下游段,由于長期接納沿河煤化工企業(yè)的排污以及多條常年受納生活排污的支流匯入,受工業(yè)和大量生活污水排放的雙重影響,水體污染嚴(yán)重,水質(zhì)較差。濁漳南源的支流石子河、陶清河、絳河的污染來源于生活面源、煤礦開采和周邊縣城污水廠的排水,常年處于斷流狀態(tài),水質(zhì)惡化嚴(yán)重。另外,石梁斷面處于山西黎城下游,上游來水量嚴(yán)重減少加之生活排污量大造成水質(zhì)惡劣。漳河流域的其余斷面均屬于A組,雖然常年受農(nóng)業(yè)、生活以及企業(yè)的排污,但由于斷面處在各支流的源頭區(qū)、水庫出口、地下水豐沛處、山谷之中,經(jīng)過來水稀釋、水源的注入以及河道沿程的沉降,水質(zhì)較B組好。
對時間尺度的時段Ⅰ和時段Ⅱ進(jìn)行主因子分析,分別提取2個和5個主因子,累計(jì)解釋方差分別為100%和86.99%。表3描述了時間尺度主因子分析的載荷、特征值和方差。
表3 時間尺度旋轉(zhuǎn)因子載荷矩陣
3.4 污染源識別
根據(jù)2013年對漳河上游污染源的調(diào)查顯示,入河排污口共計(jì)66個,分布在21條干(支)流或河段上,遍及2市15個縣(市),根據(jù)GB/T 4754—2002《國民經(jīng)濟(jì)行業(yè)分類》中的行業(yè)類型進(jìn)行企業(yè)數(shù)量統(tǒng)計(jì)顯示:煤炭開采洗選、煤礦采選業(yè)、煉焦、鋼鐵等行業(yè)是漳河流域高污染風(fēng)險行業(yè)。
表4 流域分區(qū)等標(biāo)污染負(fù)荷評價結(jié)果
表5 漳河上游主要風(fēng)險源識別結(jié)果
a. 漳河上游水污染具有時空分異特征??臻g上,A組斷面處于各支流的源頭、水庫區(qū)域、泉水出漏區(qū)以及跨省匯合斷面,水體輕度污染;B組斷面處于濁漳南源中下游及三源匯合后的濁漳干流,水質(zhì)惡劣。時間上,時段Ⅰ為1—3月,處于枯水期,水體污染嚴(yán)重;時段Ⅱ?yàn)?—12月,水量較充沛,水質(zhì)優(yōu)于時段Ⅰ。
b. 因子分析結(jié)果表明,空間上,A組的主要污染因子為營養(yǎng)鹽、耗氧有機(jī)物、物化因子以及自然污染等;B組主要污染因子為人類活動污染因子、重金屬和營養(yǎng)鹽。年內(nèi)變化,時段Ⅰ(1—3月)篩選出有機(jī)污染因子和綜合污染因子;時段Ⅱ(4—12月)篩選出有機(jī)污染因子,物化因子,Pb污染、T-CN-污染等。
[1] 王勇,趙瑞霞,吳勇進(jìn). 漳河上游水資源管理與水能開發(fā)關(guān)系研究[J].海河水利,2013(6):7-9. (WANG Yong, ZHAO Ruixia, WU Yongjin. Research on the relationship between water resources management and hydropower development in the upper reaches of Zhanghe River[J]. Haihe Water Resources, 2013(6):7-9. (in Chinese))
[2] SIMEONOV V, STRATIS J A, SAMARA C, et al. Assessment of the surface water quality in Northern Greece [J]. Water Research, 2003, 37(17):4119-4124.
[3] SCHEILI A, RODRIGUEZ M J, SADIQ R. Seasonal and spatial variations of source and drinking water quality in small municipal systems of two Canadian regions[J]. Science of the Total Environment, 2015, 508: 514-524.
[4] BODIRSKY M, DALMAU V. Chemometrics in monitoring spatial and temporal variations in drinking water quality[J]. Water Research, 2006, 40(8):1706-1716.
[5] ROBSON B J, DOURDET V. Prediction of sediment, particulate nutrient and dissolved nutrient concentrations in a dry tropical river to provide input to a mechanistic coastal water quality model[J]. Environmental Modelling & Software, 2015, 63(63):97-108.
[7] ZHAI Xiaoyan, XIA Jun, ZHANG Yongyong. Water quality variation in the highly disturbed Huai River Basin, China from 1994 to 2005 by multi-statistical analyses[J]. Science of the Total Environment, 2014, 496:594-606.
[8] GAMBLE A, BABBAR-SEBENS M. On the use of multivariate statistical methods for combining in-stream monitoring data and spatial analysis to characterize water quality conditions in the White River basin, Indiana, USA [J]. Environmental Monitoring & Assessment, 2012, 184(2):845-875.
[9] LOUKAS A. Surface water quantity and quality assessment in Pinios River, Thessaly, Greece [J]. Desalination, 2010, 250(1):266-273.
[10] SHRESTHA S, KAZAMA F. Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan [J]. Environmental Modelling & Software, 2007, 22(4):464-475.
[11] PATI S, DASH M K, MUKHERJEE C K, et al. Assessment of water quality using multivariate statistical techniques in the coastal region of Visakhapatnam, India [J]. Environmental Monitoring & Assessment, 2014, 186(10):6385-6402.
[12] KUMAR J D, VINITHKUMAR N V, KUMAR S B, et al. Multivariate statistical approach to identify significant sources influencing the physico-chemical variables in Aerial Bay, North Andaman, India [J]. Marine Pollution Bulletin, 2014, 85 (1): 261-267.
[13] AL-MUTAIRI N, ABAHUSSAIN A, EL-BATTAY A. Spatial and temporal characterizations of water quality in Kuwait Bay[J]. Marine Pollution Bulletin, 2014, 83(1):127-131.
[14] ZHOU F, HUANG G H, GUO H, et al. Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong [J]. Water Research, 2007, 41(15):3429-3439.
[15] ASTEL A, BIZIUK M, PRZYJAZNY A, et al. Chemometrics in monitoring spatial and temporal variations in drinking water quality[J]. Water Research, 2006, 40(8):1706-1716.
[16] MEI Kun, LIAO Lingling, ZHU Yuanli, et al. Evaluation of spatial-temporal variations and trends in surface water quality across a rural-suburban-urban interface [J]. Environmental Science & Pollution Research, 2014, 21(13):8036-8051.
[17] PALMA, LEDO L, SOARES S, et al. Spatial and temporal variability of the water and sediments quality in the Alqueva reservoir (Guadiana Basin; southern Portugal)[J]. Science of the Total Environment, 2014, s470-471(5): 780-790.
[18] ZHAO Y, XIA X H, YANG Z F, et al. Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques[J]. Procedia Environmental Sciences, 2012, 13(3):1213-1226.
[19] GARIZI A Z, SHEEIKH V, SADODDIN A. Assessment of seasonal variations of chemical characteristics in surface water using multivariate statistical methods [J]. International Journal of Environmental Science & Technology, 2011, 8(3):581-592.
[20] MARTINEZ J L, RAIBER M, COX M E. Assessment of groundwater-surface water interaction using long-term hydrochemical data and isotope hydrology: headwaters of the Condamine River, Southeast Queensland, Australia [J]. Science of the Total Environment, 2015, 536:499-516.
[21] MATIATOS I, ALEXOPOULOS A, GODELITSAS A. Multivariate statistical analysis of the hydro-geochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece) [J]. Science of the Total Environment, 2014,476(12): 577-590.
[22] SEMAR A, SAIBI H, MEDJERAB A. Contribution of multivariate statistical techniques in the hydrochemical evaluation of groundwater from the Ouargla phreatic aquifer in Algeria[J]. Arabian Journal of Geosciences, 2013, 6(9):3427-3436.
[23] SINGH K P, MALIK A, SINGH V K, et al. Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India[J]. Analytica Chimica Acta, 2005, 550(1):82-91.
[24] ZHANG Yuan, GUO Fen, MENG Wei, et al. Water quality assessment and source identification of Daliao river basin using multivariate statistical methods[J].Environmental Monitoring and Assessment, 2009, 152(1/2/3/4):105-121.
[25] MAGYAR N, HATVANI I G, SZKELY I K, et al. Application of multivariate statistical methods in determining spatial changes in water quality in the Austrian part of Neusiedler See[J]. Ecological Engineering, 2013, 55(3):82-92.
[26] JOLLIFFE I T. Principal Component Analysis (2nd Ed.) [M]. New York: Springer-Verlag Press, 2002:10-27.
[27] HELENA B, PARDO R, VEGA M, et al. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis[J]. Water Research, 2000, 34(3):807-816.
[28] 鐘定勝, 張宏偉. 等標(biāo)污染負(fù)荷法評價污染源對水環(huán)境的影響[J]. 中國給水排水, 2005, 21(5):101-103. (ZHONG Dingsheng, ZHANG Hongwei. Equal standard pollution load method for evaluating the effect of pollution source on aquatic environment [J]. China Water & Wastewater, 2005, 21(5):101-103. (in Chinese))
[29] ?;蓰?來晉斌,岳秀萍,等.濁漳河流域水質(zhì)時空變化特征[J].太原理工大學(xué)學(xué)報, 2014, 45(2):265-269. (CHANG Huili, LAI Jinbin, YUE Xiuping, et al. Spatial and temporal variation of water quality in Zhuozhang River Basin [J]. Journal of Taiyuan University of Technology, 2014, 45(2):265-269.(in Chinese))
[30] BU Hongmei, TAN Xiang, LI Siyue, et al. Temporal and spatial variations of water quality in the Jinshui River of the South Qinling Mts.,China[J]. Ecotoxicology and Environmental Safety, 2010, 73: 907-913.
[31] 王翠榆,楊永輝,周豐,等.沁河流域水體污染物時空分異特征及潛在污染源識別[J].環(huán)境科學(xué)學(xué)報, 2012, 32(9):2267-2278.( WANG Cuiyu, YANG Yonghui, ZHOU Feng, et al. Spatio-temporal characteristics and source identification of water pollutants in river Qinhe Basin [J]. Acta Scientiae Circumstantiae, 2012, 32(9): 2267-2278. (in Chinese))
Spatio-temporal variation of water quality and pollutant source identification in upper reaches of Zhanghe River
ZHAO Haiping1, CHEN Wang1, LI Qingxue1, SUN Yuzhuang2
(1.CollegeofEnergyandEnvironmentalEngineering,HebeiUniversityofEngineering,Handan056038,China; 2.TheResourcesSurveyingandResearchingLaboratoryofHebeiProvince,HebeiUniversityofEngineering,Handan056038,China)
In order to study the spatio-temporal variations and potential pollutant sources of the water quality of the upper reaches of the Zhanghe River, the multivariate statistical approach was used to analyze the measured data of 25 water quality parameters at 20 different cross-sections of the upper reaches in 2013. The results demonstrated that the water quality of the upper reaches of the Zhanghe River was classified into two distinct clusters: cluster A, which has good water quality and is close to water source and river sections with adequate water, and reservoirs; and cluster B, which has heavily polluted water and covers the middle and lower reaches of the south source and mainstream of the Zhuozhang River. The main pollutants of cluster B were heavy metals and nutrients, indicating that cluster B was influenced by heavy industrial pollution. The inner-annual variation of water quality had two periods: period I (from January to March) with worse water quality, and period II (from April to December) with better water quality. The organic pollution mainly occurred in period I, and six main pollutant sources were identified.
water quality; multivariate statistics; temporal and spatial distribution; pollutant source identification; equal standard pollution loading method; upper reaches of Zhanghe River
10.3880/j.issn.1004-6933.2017.04.008
水利部公益項(xiàng)目(201401030);河北省重點(diǎn)基礎(chǔ)研究項(xiàng)目(14964206D-8)
趙海萍(1979—),女,博士,主要從事水環(huán)境研究。E-mail:zhaohaiping609@163.com
李清雪,教授,博士。 E-mail:liqingxue_610@126.com
TV92
A
1004-6933(2017)04-0047-08
2016-09-20 編輯:王 芳)