張敏,朱明,,李文宗,馬潔,劉悅萍,江海洋,王磊,徐妙云
?
Ath-miR169d介導(dǎo)的擬南芥葉片發(fā)育的分子調(diào)控機制
張敏1,朱明1,2,李文宗1,馬潔3,劉悅萍3,江海洋2,王磊1,徐妙云1
(1中國農(nóng)業(yè)科學(xué)院生物技術(shù)研究所,北京100081;2安徽農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,合肥230036;3北京農(nóng)學(xué)院生物科學(xué)與工程學(xué)院,北京102206)
【目的】探究ath-miR169d在擬南芥葉片發(fā)育過程中的作用,明確其調(diào)控的分子機制,為增強葉菜類植物的光合效率以及增加生物量和提高作物產(chǎn)量提供理論依據(jù)?!痉椒ā窟x取ath-miR169d過表達和降低表達的擬南芥轉(zhuǎn)基因株系以及野生型擬南芥,在22℃、相對濕度60%、16 h/8 h光周期條件下培養(yǎng),觀察不同生長階段葉片發(fā)育表型的差異;同時構(gòu)建pmiR169d::GUS表達載體,轉(zhuǎn)化農(nóng)桿菌EHA105,并利用蘸花法轉(zhuǎn)化野生型擬南芥(Columbia,Col-0),獲得轉(zhuǎn)基因擬南芥,利用GUS染色對ath-miR169d在擬南芥不同組織器官中的表達模式進行研究;選取8周齡的過表達材料和野生型對照株系,對其葉片表皮細胞形態(tài)進行掃描電鏡分析;對4周齡過表達材料和野生型對照株系的幼苗頂端分生組織和葉片中總IAA進行定量分析,并進行基因芯片表達譜分析,篩選差異表達基因;通過實時熒光定量PCR對生長素信號途徑部分差異表達關(guān)鍵基因的表達情況進行分析?!窘Y(jié)果】Ath-miR169d過表達擬南芥株系蓮座葉數(shù)目較野生型少,葉片小,而ath-miR169d降低表達的擬南芥株系的蓮座葉較野生型多,葉片大,且在抽薹和種子成熟之后還持續(xù)長出新葉,而野生型蓮座葉則在種子成熟之后逐漸衰老干枯;掃描電鏡觀察到ath-miR169d過表達擬南芥株系葉片中表皮細胞小于野生型;表達模式分析表明,ath-miR169d主要在頂端分生組織(shoot apical meristem,SAM)和葉片維管系統(tǒng)中表達,且新葉中表達強。SAM是產(chǎn)生生長素的部位,IAA測定結(jié)果表明ath-miR169d過表達擬南芥株系中IAA含量顯著降低,為野生型植株的38.6%,同時基因芯片表達譜分析也驗證了ath-miR169d參與調(diào)控植物體內(nèi)激素信號轉(zhuǎn)導(dǎo)途徑。進一步研究發(fā)現(xiàn),ath-miR169d過表達株系中生長素合成關(guān)鍵基因和轉(zhuǎn)運體蛋白基因均顯著下調(diào)表達,而具有轉(zhuǎn)錄抑制功能的生長素響應(yīng)因子1和2基因(和)表達上調(diào);STTM miR169d低表達株系中這4個基因的表達則為相反趨勢,該結(jié)果與觀察到的表型相一致。【結(jié)論】Ath-miR169d通過介導(dǎo)生長素信號途徑參與了擬南芥葉片發(fā)育的調(diào)控,ath-miR169d表達量發(fā)生變化會影響葉片的數(shù)量和大小,最終影響整個植株的生物量。
擬南芥;miR169;葉片;發(fā)育;生長素信號途徑
【研究意義】在農(nóng)業(yè)生產(chǎn)中,尤其對于食葉類蔬菜等,提高植物生物量,可以提高生產(chǎn)效率,降低成本,具有重要意義。葉片作為光合作用的器官,對于植物的發(fā)育和生物量的積累至關(guān)重要。葉片的發(fā)育包括葉原基的起始、極性的建立和葉片的擴展。葉片的發(fā)育受小RNA、轉(zhuǎn)錄因子和激素的協(xié)調(diào)調(diào)控[1]。越來越多的研究表明,miRNA作為一個關(guān)鍵調(diào)控因子啟動和參與植物體內(nèi)多條發(fā)育途徑。植物中最大的miR169家族基因,參與植物的逆境響應(yīng)和生長發(fā)育調(diào)控。利用已有的過表達和低表達的轉(zhuǎn)基因擬南芥材料,解析其介導(dǎo)葉片發(fā)育調(diào)控的分子機制,可為調(diào)節(jié)植物營養(yǎng)生長,增加總生物量提供理論依據(jù)?!厩叭搜芯窟M展】MiR156/SPL調(diào)控模塊與TCP4互作形成的復(fù)合體參與擬南芥的葉片發(fā)育[2]。miR160通過靶向調(diào)節(jié)3個ARF同源基因、和參與調(diào)控葉原基的形成和蓮座葉正確葉序的建立[3-5]。MiR164通過對(CUP-SHAPED COTYLEDON1)和的調(diào)控介導(dǎo)器官邊界的形成[5-7]。miR319通過對的靶向調(diào)節(jié)參與葉片發(fā)育過程中的細胞分裂和生長[8-9]。生長素產(chǎn)生于頂端分生組織(shoot apical meristem,SAM),參與調(diào)節(jié)植物發(fā)育的多個過程,包括根和葉片形態(tài)建成、器官形成和維管組織的發(fā)育等[10]。生長素的合成涉及多條發(fā)育進程[11],其中主要的天然生長素形式,吲哚乙酸IAA的合成主要經(jīng)過兩步化學(xué)反應(yīng),首先色氨酸(Trp)通過轉(zhuǎn)氨作用形成吲哚丙酮酸(IPA),然后IPA再被YUCCA(YUC)家族基因編碼的含黃素單加氧酶催化形成IAA[12]。目前研究發(fā)現(xiàn),PIN蛋白家族是主要的介導(dǎo)生長素由胞內(nèi)向胞外、以及細胞之間定向移動的轉(zhuǎn)運體[13]。擬南芥miR169家族包括14個基因,最終產(chǎn)生4個成熟的miRNA異構(gòu)體(a、b/c、d/e/f/g和h/i/j/k/l/m/n)。不同的miR169異構(gòu)體在植物發(fā)育過程中表達模式不同[14],其靶基因是轉(zhuǎn)錄因子NF-Y的A亞基[15]。NF-YA與NF-YB、NF-YC形成三聚體,發(fā)揮調(diào)控功能。研究表明,NF-Y轉(zhuǎn)錄因子參與植物發(fā)育、信號轉(zhuǎn)導(dǎo)和逆境響應(yīng)[16-22]。并且擬南芥miR169d/NF-YA2調(diào)控模塊介導(dǎo)逆境誘導(dǎo)的早花[23]和根形態(tài)建成[24]。【本研究切入點】在前期研究中,發(fā)現(xiàn)過表達轉(zhuǎn)基因植株蓮座葉的生長受到影響,但其是否參與葉片發(fā)育的調(diào)控及其分子機制還未見報道?!緮M解決的關(guān)鍵問題】通過對不同轉(zhuǎn)基因材料的蓮座葉表型、葉片表皮細胞的形態(tài)等指標的觀察,結(jié)合表達模式的分析,以及內(nèi)源生長素的定量檢測和基因表達情況檢測等研究,明確對葉片發(fā)育的影響,進而解析其分子調(diào)控機制。
試驗于2015—2016年在中國農(nóng)業(yè)科學(xué)院生物技術(shù)研究所完成。
1.1 植物材料
擬南芥哥倫比亞生態(tài)型(Col)。植物生長條件為22℃,相對濕度60%,光周期16 h/8 h。株系為作物基因組與遺傳改良實驗室保存[23]。
1.2 pmiR169d::GUS載體的構(gòu)建和轉(zhuǎn)基因株系的獲得
通過PCR方法從基因組DNA中擴增ath-miR169d前體序列上游2 kb片段(引物序列分別為pmiR169d- FW:5′-ACCCTAACTCATGATGAAGG-3′和pmiR169d- RV:5′-CACCTGTCGACGTACTAGATC T-3′)。與pEASY-T1載體連接,轉(zhuǎn)化,經(jīng)測序驗證后重組至植物雙元載體pCAMBIA1303。并經(jīng)蘸花法轉(zhuǎn)化擬南芥Col野生型,篩選獲得至少10個獨立轉(zhuǎn)化事件的轉(zhuǎn)基因陽性材料。
1.3 STTM載體構(gòu)建和轉(zhuǎn)基因株系的獲得
STTM是一類短的(~100 nt)人工合成非編碼RNA,參照文獻[25]模擬miR169d的前體序列,設(shè)計STTM序列(5′-caagtcatcTACcttg gctcaGTTGTTGTTGTTATGGTCTAATTTAAATA-3′,5′-TGGTCTAAAGAAGAAGAATcaagtcatcTACcttggctca-3′),斜體部分分別為HⅠ和Ⅰ酶切位點,中間48 nt為linker序列,可以形成一個弱的頸環(huán)結(jié)構(gòu),小寫字體為能夠與互補配對的序列,其中10—12 nt設(shè)計為3個不配對堿基突出部分,從而可以與結(jié)合并不被其降解,導(dǎo)致沉默。經(jīng)測序驗證正確后酶切連接至植物雙元載體載體pPZP212上。該載體經(jīng)蘸花法轉(zhuǎn)化擬南芥Col野生型,并篩選獲得至少10個獨立轉(zhuǎn)化事件的轉(zhuǎn)基因陽性材料。
1.4 GUS染色
為了全面分析在擬南芥中的表達情況,將不同齡期的幼苗整株進行染色。具體步驟參考文獻[26]方法。
1.5 總RNA、miRNA提取和實時熒光定量PCR
利用Trizol(ambion)提取擬南芥總RNA,然后將總RNA反轉(zhuǎn)錄成cDNA(5×All-In-One RT MasterMix,abm,加拿大)。使用SYBR Premix Ex TaqTM(CodeQPK-201,TOYOBO)試劑進行實時熒光定量PCR分析,擬南芥作為內(nèi)參。利用miRcute miRNA提取分離試劑盒(DP501,TIANGEN,北京)提取擬南芥的miRNA,然后反轉(zhuǎn)錄為cDNA(TIANGEN miRcute miRNA cDNA第一鏈合成試劑盒,KR201),再用TIANGEN miRcute miRNA熒光定量檢測試劑盒(FP401),進行熒光定量PCR。擬南芥作為內(nèi)參。每個基因型均做3個獨立生物學(xué)重復(fù),包含至少3個以上單株樣品。所用儀器為ABI7500,利用2–ΔΔCT方法分析試驗結(jié)果[27],所用引物序列見表1,miRNA熒光定量的反向引物為試劑盒自帶通用引物。
表1 實時熒光定量PCR引物
1.6 IAA的定量分析
16 h/8 h光周期條件下培養(yǎng)4周的擬南芥幼苗地上部分全部收獲,轉(zhuǎn)基因材料和野生型分別隨機選5株混樣(200 mg),委托中國科學(xué)院遺傳發(fā)育研究所利用氣相色譜-質(zhì)譜聯(lián)用進行IAA定量分析。
1.7 基因芯片分析
分別提取轉(zhuǎn)基因株系和野生型的總RNA,利用Agilent 2100分析儀器檢測總RNA的質(zhì)量和數(shù)量,并通過變性瓊脂糖凝膠檢測RNA的完整度,對質(zhì)檢合格的RNA樣品委托上海歐易公司進行基因芯片分析,所用芯片為擬南芥Agilent V4.0。
2.1影響擬南芥蓮座葉生長
前期研究發(fā)現(xiàn)ath-不僅參與調(diào)控擬南芥的開花時間[23],同時也影響葉片的發(fā)育,過表達擬南芥的蓮座葉與野生型相比少且小。為探究其對葉片發(fā)育的調(diào)控功能,通過構(gòu)建并獲得STTM[25]的轉(zhuǎn)基因擬南芥株系,抑制了內(nèi)源的表達。如圖1-a為STTM的轉(zhuǎn)基因擬南芥株系中的的相對表達量。與野生型相比,STTM株系蓮座葉多且大(圖1-b、1-c)。過表達株系的蓮座葉直徑是4.29 cm,短于野生型(5.03 cm),STTM株系是6.5 cm,大于野生型(圖1-d)。而且,STTM株系會不斷生長新葉,一直持續(xù)到抽薹結(jié)實后仍有新葉的發(fā)生及生長,但野生型在抽薹結(jié)實之后就不再長新葉(圖1-c)。40 d苗齡的過表達株系蓮座葉數(shù)為13.8,野生型和STTM分別為16.6和20.4(圖1-d)。
表皮細胞的數(shù)目和大小決定了葉片的大小,為探究過表達株系葉片變小的原因,利用掃描電鏡觀察了各個擬南芥株系的表皮細胞形態(tài)。過表達株系葉片表皮細胞(圖2-a)小于野生型株系的表皮細胞(圖2-b),說明通過介導(dǎo)葉片表皮細胞的大小進而影響了葉片的大小。
2.3主要在擬南芥頂端分生組織和葉片維管系統(tǒng)中表達
為解析在擬南芥葉片發(fā)生和葉片發(fā)育中的功能,克隆的2 kb啟動子片段,構(gòu)建pmiR169d::GUS表達載體并獲得了其轉(zhuǎn)基因擬南芥株系。對pmiR169d::GUS轉(zhuǎn)基因擬南芥株系染色分析結(jié)果表明,主要在頂端分生組織和葉維管系統(tǒng)中表達。隨著pmiR169d::GUS幼苗的生長,報告基因的表達逐漸增強,且在新生葉片中的表達高于老葉片(圖3)。頂端分生組織是葉原基形成的部位,維管系統(tǒng)則負責(zé)水分、礦質(zhì)元素和營養(yǎng)物質(zhì)的運輸,因而在該部位的表達可能與葉片發(fā)育相關(guān)。
2.4過表達降低了轉(zhuǎn)基因株系中內(nèi)源IAA的含量
植物體內(nèi)生長素主要產(chǎn)生于SAM,是植物器官發(fā)生的主要調(diào)節(jié)因子??紤]到在SAM中大量表達,為分析其是否影響擬南芥生長素的代謝,檢測了4周齡地上部幼苗中內(nèi)源生長素的含量,發(fā)現(xiàn)在過表達株系中,內(nèi)源IAA含量與WT相比降低了38.6%(圖4-a),說明參與了IAA代謝途徑的調(diào)控。為進一步探究參與調(diào)控葉片起始和發(fā)育的分子機制,對4周齡過表達株系幼苗進行基因芯片表達譜分析。與野生型相比,分別有2 268和2 562個基因顯著下調(diào)和上調(diào)表達(log2FC>1 or<-1 with-value of 0.05)。對表達發(fā)生顯著變化的基因進行Kyoto Encyclopedia of Genes and Genomes(KEGG)分析,結(jié)果表明,在富集比例前10的代謝路徑中,富集基因數(shù)量最多的是“次級代謝產(chǎn)物合成途徑”和“植物激素信號轉(zhuǎn)導(dǎo)途徑”(圖4-b),其中,有多個生長素信號途徑基因表達發(fā)生了變化。
2.5過表達株系和STTM低表達株系中生長素信號途徑基因表達發(fā)生變化
鑒于過表達擬南芥株系中IAA含量明顯下降,推測IAA合成途徑中的基因可能受到影響,通過對基因芯片表達譜分析發(fā)生IAA合成途徑關(guān)鍵基因、外運載體蛋白基因的表達明顯降低,采用qPCR的方法對這些基因在過表達株系和STTM低表達株系中的表達量進行檢測。結(jié)果表明,與野生型相比,過表達株系中和表達顯著下調(diào),而STTM株系中這兩個基因都顯著上調(diào)表達(圖5)。過表達株系中表達下調(diào)與IAA含量降低結(jié)果吻合,IAA的減少也導(dǎo)致IAA轉(zhuǎn)運體的下調(diào)表達。Ellis等[28]報道IAA應(yīng)答因子和的過表達促進葉片衰老,為了進一步分析和在過表達植株和低表達株系中的作用,對其表達進行了分析,結(jié)果表明,在過表達植株中和的表達明顯上升,在低表達株系中則顯著下調(diào)表達,因是轉(zhuǎn)錄抑制因子,推測其上調(diào)表達阻礙了葉片的發(fā)育,并促進植株衰老。
對于無數(shù)據(jù)區(qū)域,須將 NoData轉(zhuǎn)為數(shù)值0,否則獲得的陰影數(shù)據(jù)不完整,選擇 [Spatial Analyst 工具][分類][重分類]工具完成,如圖4。
miR169家族是植物中最大且進化保守的一個miRNA家族,其家族成員在調(diào)節(jié)脅迫應(yīng)答和生長發(fā)育過程中發(fā)揮著重要的作用,的靶基因主要是NF-YA轉(zhuǎn)錄因子,miR169/NF-YA這個調(diào)控模塊可以感受內(nèi)源信號或外部環(huán)境的激活,使植物表現(xiàn)出增強適應(yīng)內(nèi)外環(huán)境變化的特性。對蒺藜狀苜蓿的研究發(fā)現(xiàn),在的5′端有一個內(nèi)含子可以進行選擇性剪切,在這個區(qū)域中有一個ORF可以編碼一個蛋白(uORF1p),這個蛋白的表達可以下調(diào),其與呈現(xiàn)出功能上的互補,在根瘤發(fā)育的早期階段調(diào)控占主導(dǎo)地位,而在后期時uORF1p發(fā)揮顯著功能[29]。LI等[21]研究表明miR169/NF-YA5調(diào)控模塊可以響應(yīng)干旱并提高擬南芥的抗旱性,擬南芥在缺水環(huán)境中表達受到抑制,也就脫離了的控制而上調(diào)表達,進而使植物抗旱性增強,經(jīng)過進一步研究發(fā)現(xiàn)這條通路是ABA介導(dǎo)的。這些研究使得NF-YA的上游調(diào)控機制變得更加清晰,也為植物環(huán)境脅迫下的分子應(yīng)答機制研究提供了理論支撐。作物基因組與遺傳改良研究室王磊課題組前期在擬南芥中發(fā)現(xiàn)了受逆境脅迫誘導(dǎo)的另一個模塊miR169/NFYA2,它可以通過響應(yīng)逆境使植物提前開花,并且miR169/NF-YA2調(diào)控模塊所引起的早花現(xiàn)象獨立于其他開花調(diào)控途徑[23]。而且異構(gòu)體及其靶基因參與調(diào)控了擬南芥根的形態(tài)建成[24]。根中轉(zhuǎn)錄因子和會響應(yīng)磷饑餓而顯著上調(diào)表達[30]。這些研究結(jié)果表明,及其靶基因家族成員,可以直接或間接地作為發(fā)育與響應(yīng)非生物逆境之間的一個感應(yīng)子或者連接體,發(fā)揮重要的功能。
生長素是植物體內(nèi)重要的生長發(fā)育調(diào)控因子,各種來自外界的逆境均可以影響其在植物體內(nèi)的穩(wěn)態(tài)和轉(zhuǎn)運,從而影響植物的生長發(fā)育[31]。本研究發(fā)現(xiàn)擬南芥的表達發(fā)生變化會影響蓮座葉的生長,并且這種作用是通過生長素信號途徑介導(dǎo)的,從而發(fā)現(xiàn)了一個新的調(diào)控功能。這種調(diào)控功能在蔬菜類作物中展現(xiàn)了應(yīng)用前景。但是,miRNA都是通過對靶基因的調(diào)控實現(xiàn)其功能,本研究中如何通過其靶基因NF-YA家族調(diào)控了生長素途徑還需要進一步研究分析。另外,在前期研究中發(fā)現(xiàn)也參與擬南芥開花時間的調(diào)控,那么生長素是否也介導(dǎo)了這一生物學(xué)過程?是如何協(xié)調(diào)介導(dǎo)葉片發(fā)育和開花時間的調(diào)控等問題,都值得進一步探討。
通過介導(dǎo)生長素信號途徑參與了擬南芥葉片發(fā)育的調(diào)控,表達量發(fā)生變化會影響葉片的數(shù)量和大小,最終影響整個植株的生物量。
[1] MOON J, HAKE S. How a leaf gets its shape., 2011, 14(1): 24-30.
[2] RUBIO-SOMOZA I, ZHOU C M, CONFRARIA A, MARTINHO C, VON BORN P, BAENA-Gonzalez E, Wang J W, Weigel D. Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes., 2014, 24(22): 2714-2719.
[3] Mallory A C, Bartel D P, Bartel B. MicroRNA-directed regulation ofAUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes., 2005, 17(5): 1360-1375.
[4] Wang J W,Wang L J, Mao Y B, Cai W J, Xue H W, Chen X Y. Control of root cap formation by MicroRNA-targeted auxin response factors in., 2005, 17(8): 2204-2216.
[5] Liu P P,Montgomery T A, Fahlgren N, Kasschau K D, Nonogaki H, Carrington J C. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages., 2007, 52(1): 133-146.
[6] Mallory A C, Dugas D V, Bartel D P, Bartel B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs.,2004, 14(2):1035-1046.
[7] Sieber P, Wellmer F, Gheyselinck J, Riechmann J L, Meyerowitz E M. Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness.,2007, 134(6): 1051-1060.
[8] Palatnik J F,Allen E Wu X, Schommer C, Schwab R, Carrington J C, Weigel D.Control of leaf morphogenesis by microRNAs., 2003, 425(6955): 257-263.
[9] Ori N,Cohen A R, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez J P, Blum E, Zamir D, Eshed Y. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato., 2007, 39(6): 787-791.
[10] Millner P A,Cohen A R, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez J P, Blum E, Zamir D, Eshed Y. The auxin signal., 1995, 39(6): 224-231.
[11] Chandler J W. Local auxin production: a small contribution to a big field., 2009, 31(1): 60-70.
[12] Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in., 2011, 108(45): 18518-18523.
[13] Friml J, Benkova E, Mayer U, Palme K, Muster G. Automated whole mount localisation techniques for plant seedlings., 2003, 34(1): 115-124.
[14] Gonzalez-Ibeas D, Blanca J, Donaire L, Saladié M, Mascarell Creus A, Cano Delgado A, Garcia Mas J, Llave C, Aranda M A. Analysis of the melon () small RNAome by high-throughput pyrosequencing., 2011, 12: 393.
[15] Rhoades M W, Reinhart B J, Lim LP, Burge C B, Bartel B, Bartel D P. Prediction of plant microRNA targets., 2002, 110(4): 513-520.
[16] Lotan T, Ohto M, Yee K M, West M A, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J.LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells., 1998, 93(7): 1195-1205.
[17] Combier J P, Frugier F d e, Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in., 2006, 20(22): 3084-3088.
[18] Wenkel S,Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of., 2006, 18(11): 2971-2984.
[19] Warpeha K M, Upadhyay S, Yeh J, Adamiak J, Hawkins S I, Lapik Y R, Anderson M B, Kaufman L S. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in., 2007, 143(4): 1590-1600.
[20] Nelson D E,Repetti P P, Adams T R, Creelman R A, Wu J, Warner D C, Anstrom D C, Bensen R J, Castiglioni P P, Donnarummo M G, Hinchey B S, Kumimoto R W, Maszle D R, Canales R D, Krolikowski K A, Dotson S B, Gutterson N, Ratcliffe O J, Heard J E. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres., 2007, 104(42): 16450-16455.
[21] Li W X, Oono Y, Zhu J, He X J, Wu J M, Iida K, Lu X Y, Cui X, Jin H, Zhu J K. TheNFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance., 2008, 20: 2238-2251.
[22] Liu J X, Howell S H. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in., 2010, 22: 782-796.
[23] Xu M Y, Zhang L, Li W W, Hu X L, Wang M B, Fan Y L, Zhang C Y, Wang L. Stress-induced early flowering is mediated by miR169 in., 2014, 65: 89-101.
[24] Sorin C, Declerck M, Christ A, Blein T, Ma L, Lelandais-Brière C, Njo M F, Beeckman T, Crespi M, Hartmann C. A miR169 isoform regulates specific NF-YA targets and root architecture in., 2014, 202: 1197-1211.
[25] Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G. Effective small RNA destruction by the expression of a short tandem target mimic in., 2012, 24(2): 415-427.
[26] Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants., 1987, 6(13): 3901-3907.
[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method., 2001, 25(4): 402-408.
[28] Ellis C M, Nagpal P, Young J C, Hagen G, Guilfoyle T J, Reed J W. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in., 2005, 132(20): 4563-4574.
[29] Combier J P, de Billy F, Gamas P, Niebel A Rivas S. Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development., 2008, 22: 1549-1559.
[30] Woo J, MacPherson C R, Liu J, Wang H, Kiba T, Hannah M A, Wang X J, Bajic V B, Chua N H. The response and recovery of thetranscriptome to phosphate starvation., 2012, 12: 62.
[31] Lavy M, Estelle M. Mechanisms of auxin signaling., 2016, 143(18): 3226-3229.
(責(zé)任編輯 李莉,岳梅)
Molecular regulation mechanism of leaf development mediated by ath-miR169d in
ZHANG Min1, ZHU Ming1,2, LI WenZong1, MA Jie3, LIU YuePing3, JIANG HaiYang2, WANG Lei1, XU MiaoYun1
(1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081;2School of Life Sciences, Anhui Agricultural University, Hefei 230036;3Colloge of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206)
【Objective】The aims of this study are 1) to analyze the role of ath-miR169d in the progress of leaf development in, 2) to illuminate the mechanisms of molecular regulation mediated by ath-miR169d, and 3) to provide a new insight into improving the photosynthetic performance and the genetic engineering of vegetables biomass and crop productivity.【Method】Ath-miR169d over-expression transgenic plants, STTM ath-miR169d knockdown transgenic plants, and WT plants were grown in a controlled culture room at 22℃ with a relative humidity of 60% and 16 h/8 h photoperiod. Number and size of rosette leaf were measured; pmiR169d::GUS vector were constructed and transformed intoEHA105, and then infected the buds of wildtype(Columbia, Col-0), the pmiR169d::GUS transgenicplants were used to observe the expression profile ofin different organs and tissues by GUS staining method. Using 8-week-old seedlings ofover-expressing transgenicand wild type plants as materials, morphology of leaf epidemic cells were observed by scanning electron microscope (SEM). Whole shoots were harvested from 4-week-old seedlings ofover-expressing transgenicand wild type plants, subsequently the total endogenous IAA were detected and quantified as methyl esters by gas chromatography-mass spectroscopy (GC-MS). The mRNA expression profiles were detected by microarray analysis to screen differentially expressed genes. The expression of key genes in plant auxin signal pathway were verified by real-time fluorescent quantitative PCR (RT-qPCR). 【Result】In contrast to WT, ath-miR169d overexpression plants exhibited fewer and smaller rosettes, STTM ath-miR169d knockdown plants showed more and larger rosettes. Moreover, STTM ath-miR169d plants could generate new rosette leaves incessantly even after bolting and seeds harvest, whereas the leaves of ath-miR169d overexpression and WT plants generally decayed after harvest. The epidermal cells in the leaves ofath-miR169d over-expression plants were smaller than that in the WT leaves by SEM detection. Ath-miR169d was highly expressed in SAM and leaf vasculature, and expression profile was stronger in new leaves than in old ones. Endogenous IAA content reduced by 38.6% in ath-miR169d over-expressing plants compared to wild-type plants, showingwas potentially involved in auxin signal pathway by microarray analysis. The auxin biosynthesis geneand transporter genewere downregulated inover-expressing plants whereas, auxin response factors 1 and 2 (and) genes were upregulated. Expression profile of,,andSTTMplantswere opposite to over-expressing plants. 【Conclusion】Results of the experiment showed that the leaf development was regulated by ath-miR169d through the auxin-signaling pathway. Number and size of rosette could be alerted by ath-miR169d expression level, and further affected biomass of the whole plant.
; miR169; leaf; development; auxin signaling pathway
2017-02-13;接受日期:2017-04-05
國家自然科學(xué)基金(31270318)、國家“973”計劃(2014CB138205)
張敏,Tel:13126532159;E-mail:13126532159@163.com。通信作者徐妙云,E-mail:xumiaoyun@caas.cn