孟明輝,賀澤英,徐亞平,王璐,彭祎,劉瀟威
(農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測所,天津 300191)
QuEChERS方法結(jié)合高效液相色譜-串聯(lián)質(zhì)譜法同時(shí)測定土壤中20種抗生素
孟明輝,賀澤英,徐亞平,王璐,彭祎,劉瀟威*
(農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測所,天津 300191)
為建立一種基于QuEChERS(快速Q(mào)uick、簡單Easy、廉價(jià)Cheap、高效Effective、耐用Rugged、安全Safe)同時(shí)測定土壤中20種抗生素多殘留的分析方法,土樣經(jīng)提取液(EDTA,乙腈∶磷酸鹽)提取、分散固相萃取材料(PSA,C18)凈化后,采用液相色譜串聯(lián)質(zhì)譜(LC-MS/MS)進(jìn)行測定。通過試驗(yàn)優(yōu)化了不同提取方法、凈化吸附劑比。結(jié)果表明:該方法在7個(gè)添加水平(2.0、5.0、10.0、20.0、50.0、100.0、200.0 μg·kg-1)下具有良好的回收率,回收率范圍為61.4%~118.9%,相對(duì)標(biāo)準(zhǔn)偏差小于20%(n=5);絕大多數(shù)抗生素的方法定量限為2.0~5.0 μg·kg-1,R2大于0.990。該方法可應(yīng)用于農(nóng)業(yè)土壤樣品的檢測。
QuEChERS;抗生素;多殘留分析;土壤;液相色譜-串聯(lián)質(zhì)譜
抗生素被廣泛用于大批量養(yǎng)殖產(chǎn)業(yè),能保護(hù)動(dòng)物免受疾病[1,3],但它也可以通過動(dòng)物排泄以有機(jī)肥形式進(jìn)入到環(huán)境土壤和周圍的水體中[2]。在近四五十年中,這些藥物的使用量不斷增加,造成了重大的環(huán)境問題,因而備受關(guān)注。近年來,抗生素已經(jīng)被認(rèn)為是一種新型的潛在污染物[4-6]。
盡管在土壤環(huán)境基質(zhì)中已發(fā)現(xiàn)了多種抗生素藥物,但仍未有土壤中抗生素多殘留的標(biāo)準(zhǔn)分析方法。由于土壤基質(zhì)的復(fù)雜性,很難從土壤中提取抗生素[7]。為了評(píng)價(jià)抗生素的環(huán)境影響,需要建立一種可靠、準(zhǔn)確的檢測土壤環(huán)境中抗生素的方法。
傳統(tǒng)環(huán)境樣品中抗生素的提取方法是基于使用乙腈-磷酸鹽超聲提取,結(jié)合固相萃?。⊿PE)凈化。Blackwell等[8]利用超聲波輔助法提取,固相萃取凈化土壤和豬糞中的獸藥抗生素,馬麗麗等[9]建立超高效液相色譜/串聯(lián)質(zhì)譜法同時(shí)測定土壤中18種抗生素,這兩種方法具有良好的回收率、低的定量限,然而超聲波提取和多次重復(fù)提取比較耗時(shí)。
在已有的凈化方法中,固相萃取因其較好的凈化效果和較高的回收率被廣泛應(yīng)用于土壤、糞便、牛奶和動(dòng)物組織等基質(zhì)中[10-13]。雖然固相萃取具有很多優(yōu)點(diǎn),但是其步驟繁瑣、耗時(shí),并且材料昂貴。2003年Anastassiades等[14]建立了一種快速、簡單、廉價(jià)、高效、安全的方法,即QuEChERS方法,最初是用于蔬果類農(nóng)藥殘留的提取、凈化,近年來,它也被用于抗生素的多殘留分析中[15-17]。這種方法采用乙腈提取,經(jīng)分散固相萃取材料(d-SPE),如PSA(PrimarySecondaryAmine)、C18(Octadecylsilane)、GCB(Grafted Carbon Black)的凈化,然后上機(jī)。該方法的優(yōu)點(diǎn)是具有簡單的前處理步驟、高的回收率、準(zhǔn)確的測定結(jié)果,并且大幅降低了材料和試劑的成本以及實(shí)驗(yàn)人員接觸有害溶劑的可能性。Bourdat-Deschamps等[18]建立了環(huán)境水樣中抗生素的QuEChERS方法,回收率一般在75.0%以上。Dorival-García等[19]建立了QuEChERS方法用于檢測堆肥中17種抗生素,回收率范圍為95.3%~106.2%,相對(duì)標(biāo)準(zhǔn)偏差小于7.0%。但是,在土壤基質(zhì)中抗生素多殘留的QuEChERS分析方法尚未見報(bào)道。
本研究的目的是建立一種檢測土壤基質(zhì)中20種抗生素的QuEChERS方法。研究內(nèi)容包括:色譜條件、提取步驟、凈化步驟的優(yōu)化,并通過回收率、線性、定量限、基質(zhì)效應(yīng)、實(shí)際樣品的檢測驗(yàn)證所建立方法的可行性。
1.1 標(biāo)準(zhǔn)溶液的配制
標(biāo)準(zhǔn)品:磺胺醋酰(Sulfacetamide,SAA),磺胺二甲異嘧啶(Sulfisomidine,SIM),磺胺嘧啶(Sulfadiazine,SDZ),磺胺噻唑(Sulfathiazole,STZ),磺胺砒啶(Sulfapyridine,SPD),磺胺甲基嘧啶(Sulfamerazine, SMR),磺胺對(duì)甲氧嘧啶(Sulfameter,SME),磺胺二甲嘧啶(Sulfadimidine,SDD),磺胺甲噻二唑(Sulfamethizole,SMT),磺胺鄰二甲氧嘧啶(Sulfadoxin,SDX),磺胺甲噁唑(Sulfamethoxazole,SMZ),磺胺噁唑(Sulfamoxole,SMX),磺胺間甲氧嘧啶(Sulfamonomethoxine,SMM),磺胺二甲異噁唑(Sulfisoxazole,SIX),磺胺苯酰(Sulfabenzamide,SBA),磺胺喹惡啉(Sulfaquinoxaline,SQX),磺胺間二甲氧嘧啶(Sulfadimethoxine,SDM),紅霉素(Erythromycin,ERY),羅紅霉素(Roxithromycin,ROX),克拉霉素(Clarithromycin,CLR),標(biāo)準(zhǔn)品純度均大于98.0%,購于德國DrEhrenstorfer公司。上述標(biāo)準(zhǔn)品均使用甲醇配制成1000 mg·L-1標(biāo)準(zhǔn)儲(chǔ)備液,-20℃儲(chǔ)存。用甲醇配制上述20種抗生素的混合標(biāo)準(zhǔn)溶液,濃度為1 mg·kg-1,-20℃儲(chǔ)存。
1.2 材料與試劑
甲醇和乙腈(色譜純,F(xiàn)isher公司),甲酸(98.0%,Acros Organics公司),Na2EDTA·2H2O(分析純,國藥有限公司);磷酸,氯化鈉(天津化學(xué)試劑公司)。實(shí)驗(yàn)用水均經(jīng)Milli-Q凈水系統(tǒng)凈化。分散固相萃取材料(PSA、C18、GCB)購于Agilent公司,HLB固相萃取小柱(500 mg,6 mL)購于Waters公司。磷酸鹽緩沖液(27.2 g KH2PO4與1.3 mL H3PO4用超純水定容至1 L)。
1.3 儀器
渦旋振蕩器(美國Thermo公司);高速冷凍離心機(jī)(香港Heal Force公司);N-EVAP氮吹儀(美國Organomation公司);Acquity高效液相色譜儀,C18色譜柱(1.8 μm;2.1 mm×100 mm,美國Waters公司);Qtrap 4500三重四級(jí)桿質(zhì)譜儀(美國SCIEX公司)。
1.4 色譜條件
液相條件:柱溫40℃,流動(dòng)相為乙腈(A)、0.1%甲酸(B),流速0.3 mL·min-1;流動(dòng)相梯度為0~1.5 min 10%A,1.5~8 min 10%~70%A,8~8.1 min 70%~10%A,8.1~10 min 10%A。
質(zhì)譜條件:離子噴霧電壓4.5 kV;離子源溫度500℃;離子源氣體1(GS1)50 psi(1 psi=6.89 kPa);離子源氣體2(GS2)50 psi;采用正離子檢測模式。目標(biāo)抗生素的保留時(shí)間、離子對(duì)、去簇電壓、碰撞能等質(zhì)譜條件見表1。
1.5 土壤樣品的制備
土樣采自天津市西青區(qū)農(nóng)田0~20 cm的表層土壤(經(jīng)檢測未含目標(biāo)抗生素),在直徑2.0 m左右的范圍內(nèi)取樣約10.0 kg,自然風(fēng)干后過2.0 mm孔徑篩。土壤pH 7.2,有機(jī)質(zhì)含量1.5%。
1.6 提取和凈化步驟
QuEChERS方法步驟:稱取5.0 g土樣于50 mL離心管中,加入一定量標(biāo)準(zhǔn)物質(zhì),靜置一段時(shí)間,然后加入0.4 g Na2EDTA、10.0 mL緩沖液和10.0 mL乙腈,劇烈搖晃3 min,再加入2.0 g NaCl繼續(xù)手搖1 min,8000 r·min-1離心5 min;吸取2.0 mL上清液于5.0 mL含有分散固相萃取材料(25.0 mg PSA、10.0 mg C18、100.0 mg MgSO4)的離心管中,渦旋1 min,5000 r· min-1離心3 min,吸取1.0 mL上清液于玻璃離心管中,在35℃水浴中氮吹至近干,1.0 mL甲醇∶水(體積比1∶1)復(fù)溶,過0.22 μm纖維濾膜,LC-MS/MS上機(jī)。方法優(yōu)化時(shí),每組另加兩個(gè)全程序空白平行樣(上機(jī)之前加入一定量的標(biāo)準(zhǔn)物質(zhì)溶液),以校正各待測化合物在土壤基質(zhì)中存在的不可忽略的基質(zhì)效應(yīng)。
SPE方法步驟:稱取5.0 g土壤樣品于50 mL離心管中,加入0.4 g Na2EDTA、10.0 mL緩沖液和10.0 mL乙腈,手搖3 min,8000 r·min-1離心5 min,將上清液全部倒入球形瓶,然后旋蒸至10.0 mL以下,再用超純水稀釋至100 mL,用甲酸調(diào)節(jié)pH至2.5,開始過HLB小柱,過柱前,預(yù)先用6.0 mL甲醇、6.0 mL超純水活化SPE小柱。過柱后,用6.0 mL甲醇洗脫HLB柱,將洗脫液氮吹至近干,后同QuEChERS方法。
2.1 提取條件的優(yōu)化
采用超聲輔助提取可提高目標(biāo)物的回收率[2],本試驗(yàn)對(duì)該方法的效果進(jìn)行了驗(yàn)證。按文1.6中QuEChERS方法步驟進(jìn)行試驗(yàn),結(jié)果(圖1)表明超聲對(duì)目標(biāo)抗生素的提取幾乎沒有影響。因此,本試驗(yàn)不采用超聲輔助提取,進(jìn)而節(jié)約前處理時(shí)間。
2.2 凈化條件的優(yōu)化
提取完成后,為減少基質(zhì)效應(yīng),將含有目標(biāo)抗生素的有機(jī)相加入到d-SPE凈化材料(PSA、C18、GCB)中進(jìn)行下一步凈化。PSA作為弱陰離子交換劑,可以形成強(qiáng)相互作用的氫鍵,并去除脂肪酸和其他極性有機(jī)酸;非極性吸附劑C18反相吸附脂肪和一些礦物質(zhì);GCB保留平面物質(zhì),用于去除色素[19,22-23]。無水硫酸鎂作為傳統(tǒng)干燥劑用于去除有機(jī)溶劑殘留的水。如圖2所示,在添加濃度為100.0 μg·kg-1水平下,選用5.0 mg GCB、100.0 mg MgSO4作為凈化材料得到較低的回收率。其中,GCB對(duì)磺胺鄰二甲氧嘧啶、磺胺噁唑、磺胺二甲異噁唑、磺胺間二甲氧嘧啶有少量吸附,回收率約60.0%,特別是對(duì)紅霉素具有強(qiáng)烈的吸附作用,回收率為0.6%。因此,本試驗(yàn)沒有選擇GCB,而是選用PSA和C18作為凈化材料。本試驗(yàn)對(duì)這兩種凈化材料分別設(shè)計(jì)了3個(gè)水平:C18(10.0、25.0、50.0 mg),PSA(10.0、25.0、50.0 mg)。為優(yōu)化到其最佳配比,回收率和基質(zhì)效應(yīng)必須同時(shí)考慮?;|(zhì)效應(yīng)(Matrix Effects,ME)計(jì)算公式[24]如下:
表1 目標(biāo)抗生素的質(zhì)譜參數(shù)Table 1 Optimized chromatographic parameters for the selected antibiotics
式中:Sm和Ss分別表示基質(zhì)標(biāo)曲和溶劑標(biāo)曲的斜率。
當(dāng)ME為-20.0%~20.0%、-50.0%~-20.0%和20.0%~50.0%、<-50.0%和>50.0%時(shí),分別表示輕微、中等、較強(qiáng)的基質(zhì)效應(yīng)。
如圖3至圖6所示,當(dāng)選擇50.0 mg PSA作為凈化材料時(shí),磺胺醋酰、磺胺二甲異嘧啶、磺胺甲噻二唑、磺胺噁唑的回收率低于55.0%。對(duì)于C18,三組基質(zhì)效應(yīng)均低于60.0%,大多數(shù)低于40.0%,但使用10.0 mg C18時(shí)的回收率均大于65.0%。所以,本試驗(yàn)最終選擇25.0 mg PSA、10.0 mg C18作為凈化材料。圖7為最終優(yōu)化后的基質(zhì)效應(yīng)。
2.3 與SPE方法的比較
圖1 超聲和不超聲的回收率對(duì)比Figure 1 The comparison of recoveries with and without ultrasonic bath
本研究將QuEChERS方法和傳統(tǒng)SPE方法進(jìn)行了回收率對(duì)比,實(shí)驗(yàn)結(jié)果如圖8所示。對(duì)于絕大多數(shù)抗生素而言,QuEChERS方法的回收率大于SPE方法,尤其是磺胺二甲異惡唑和紅霉素。
實(shí)際試驗(yàn)過程對(duì)比表明,QuEChERS方法簡單的前處理步驟僅耗時(shí)1 h,較SPE方法5 h大為縮短;QuEChERS方法單個(gè)樣品比SPE方法節(jié)省約70元(主要節(jié)省了Waters Oasis HLB小柱);QuEChERS方法整個(gè)流程的試劑基本處于封閉狀態(tài),很大程度上降低了實(shí)驗(yàn)人員接觸有害溶劑的可能性。試驗(yàn)證明,對(duì)于本試驗(yàn)所選定的目標(biāo)抗生素,QuEChERS方法優(yōu)于SPE方法。
2.4 方法驗(yàn)證
本試驗(yàn)通過線性、回收率和定量限對(duì)QuEChERS方法進(jìn)行了驗(yàn)證。
由空白基質(zhì)配制的8個(gè)濃度水平(1.0、2.0、5.0、10.0、20.0、50.0、100.0、200.0 μg·kg-1)的標(biāo)準(zhǔn)工作曲線呈現(xiàn)良好的線性,R2在0.990~0.998之間(表2)。
在7個(gè)添加濃度水平(2.0、5.0、10.0、20.0、50.0、100.0、200.0μg·kg-1)下得到的回收率為61.4%~118.9%,相對(duì)標(biāo)準(zhǔn)偏差低于20.0%。
圖2 使用5.0 mg GCB作為d-SPE凈化材料時(shí)20種抗生素的回收率Figure 2 Recoveries of 20 antibiotics using 5.0 mg GCB as d-SPE sorbent
圖3 不同PSA加入量的基質(zhì)效應(yīng)Figure 3 ME of different masses of PSA as d-SPE sorbent
圖4 不同C18加入量的基質(zhì)效應(yīng)Figure 4 ME of different masses of C18as d-SPE sorbent
圖5 不同PSA加入量下20種抗生素的回收率Figure 5 The recoveries of 20 antibiotics using different masses of PSA as d-SPE sorbent
該方法的定量限取值為具有可接受的回收率(60.0%~120.0%)和相對(duì)標(biāo)準(zhǔn)偏差(小于20.0%)時(shí)的最低濃度。本試驗(yàn)所選取的目標(biāo)抗生素的定量限大部分都低于5.0 μg·kg-1,比Peysson等[25]所報(bào)道的值低。在10.0、50.0、200.0 μg·kg-1添加濃度下的回收率、相對(duì)標(biāo)準(zhǔn)偏差、定量限見表3。
2.5 實(shí)際樣品檢測
在天津市東麗區(qū)菜地共采集10個(gè)土樣:Q-1茄子地,Q-2甘藍(lán)地,Q-3菠菜地,Q-4紅薯地,Q-5花菜地,Q-6大白菜地,Q-7污灌區(qū),Z-1、C-1、F-1為玉米地。每個(gè)樣品約500 g,自然風(fēng)干后過2.0 mm孔徑篩,隨后用本研究建立的QuEChERS方法進(jìn)行檢測,其中8個(gè)土樣有檢出,大部分檢出抗生素低于定量限,Q-2中羅紅霉素濃度高于定量限,濃度為3.7 μg· kg-1,Q-1和Q-5中克拉霉素濃度高于定量限,濃度分別為2.9、2.4 μg·kg-1。羅紅霉素和克拉霉素這兩種大環(huán)內(nèi)酯類抗生素在土壤中降解較慢,吸附性較強(qiáng)[24],可較長時(shí)間穩(wěn)定地殘留在土壤基質(zhì)中。上述結(jié)果表明,本方法可應(yīng)用于土壤中抗生素含量的檢測。
圖6 不同C18加入量下20種抗生素的回收率Figure 6 The recoveries of 20 antibiotics using different masses of C18as d-SPE sorbent
圖7 使用優(yōu)化后的凈化材料得到的20種抗生素的基質(zhì)效應(yīng)Figure 7 The matrix effects of the optimized combination adsorbents for 20 analytes
圖8 QuEChERS方法與SPE方法的回收率對(duì)比Figure 8 The recoveries of 20 antibiotics using QuEChERS and SPE
(1)通過對(duì)提取方式、凈化材料用量及配比的優(yōu)化,并進(jìn)行方法的驗(yàn)證,建立了基于QuEChERS方法同時(shí)檢測土壤中20種抗生素多殘留的高效液相色譜-串聯(lián)質(zhì)譜法。
(2)對(duì)于所選定的目標(biāo)抗生素,QuEChERS方法優(yōu)于SPE方法,體現(xiàn)了快速、簡單、廉價(jià)等特點(diǎn)。
(3)QuEChERS方法現(xiàn)已成功應(yīng)用于土壤中多種抗生素含量的檢測,可為環(huán)境風(fēng)險(xiǎn)評(píng)估提供一定的數(shù)據(jù)支持。
表2 20種抗生素的線性方程、線性范圍和相關(guān)系數(shù)。Table 2 Linear equation,linear range and R2of 20 antibiotics
表3 20種抗生素在10.0、50.0、200.0 μg·kg-1添加濃度下的回收率、相對(duì)標(biāo)準(zhǔn)偏差(n=5)和定量限Table 3 LOQs,recoveries and RSDs(n=5)of 20 antibiotics for soil spiked at 10.0,50.0 and 200.0 μg·kg-1
[1]Freitas A,Barbosa J,Ramos F.Multidetection of antibiotics in liver tissue by ultra-high-pressure liquid-chromatography-tandem mass spectrometry[J].Journal of Chromatography B,Analytical Technologies in the Biomedical and Life Sciences,2015,976/977:49-54.
[2]Guo C N,Wang M R,Xiao,H,et al.Development of a modified QuECh-ERS method for the determination of veterinary antibiotics in swine manure by liquid chromatography tandem mass spectrometry[J].Journal of Chromatography B,Analytical Technologies in the Biomedical and Life Sciences,2016,1027:110-118.
[3]Dickson L C.Performance characterization of a quantitative liquid chromatography-tandem mass spectrometric method for 12 macrolide and lincosamide antibiotics in salmon,shrimp and tilapia[J].Journal of Chromatography B,Analytical Technologies in the Biomedical and Life Sciences,2014,967:203-210.
[4]Turiel E,Martín-Esteban A,Tadeo J L.Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV[J].Analytica Chimica Acta,2006, 562(1):30-35.
[5]Li H,Sun H W,Zhang J X,et al.Highly sensitive and simultaneous determination of sixteen sulphonamide antibiotics,four acetyled metabolites and trimethoprim in meat by rapid resolution liquid chromatography-tandem mass spectrometry[J].Food Control,2013,31(2):359-365.
[6]Balakrishnan V K,Exall K N,Toito J M.The development of a microwave-assisted extraction method for the determination of sulfonamide antibiotics in sediments and soils[J].Canadian Journal of Chemistry, 2014,92(5):369-377.
[7]Anthony J C,Gregory L B,Allison A M,et al.Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals:Influence of compound structure[J].Environmental Science Technology,2008,42 (20):7634-7642.
[8]Blackwell P A,HoltenLutzhoft H C,Ma H P,et al.Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC-UV and fluorescence detection[J].Talanta,2004,64(4):1058-1064.
[9]馬麗麗,郭昌盛,胡偉,等.固相萃取-高效液相色譜-串聯(lián)質(zhì)譜法同時(shí)測定土壤中氟喹諾酮、四環(huán)素和磺胺類抗生素[J].分析化學(xué), 2010,38(1):21-26.
MA Li-li,GUO Chang-sheng,HU Wei,et al.Simultaneous extraction and determination of fluoroquinolones,tetracyclines and sulfonamides antibiotics in soils using optimised solid phase extraction chromatography-tandem mass spectrometry[J].Chinese Journal of Analytical Chemistry,2010,38(1):21-26
[10]Hu W,Ma L L,Guo C S,et al.Simultaneous extraction and determination of fluoroquinolones,tetracyclines and sulfonamides antibiotics in soils using optimised solid phase extraction chromatography-tandem mass spectrometry[J].International Journal of Environmental Analytical Chemistry,2012,92(6):698-713.
[11]Ho Y B,Zakaria M P,Latif P A,et al.Degradation of veterinary antibiotics and hormone during broiler manure composting[J].Bioresource Technology,2013,131:476-484.
[12]Junza A,Dorival-Garcia N,Zafra-Gomez A,et al.Multiclass method for the determination of quinolones and beta-lactams,in raw cow milk using dispersive liquid-liquid microextraction and ultra high performanceliquidchromatography-tandemmassspectrometry[J]. Journal of Chromatography A,2014,1356:10-22.
[13]Zhang Z W,Li X W,Ding S Y,et al.Multiresidue analysis of sulfonamides,quinolones,and tetracyclines in animal tissues by ultrahigh performance liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2016,204:252-262.
[14]Anastassiades M,Lehotay S J,tajnbaher D,et al.Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction"for the determination of pesticide residues in produce[J].Journal of AOAC International,2003,86(2):412-431.
[15]Stubbings G,Bigwood T.The development and validation of a multiclass liquid chromatography tandem mass spectrometry(LC-MS/MS)procedure for the determination of veterinary drug residues in animal tissue using a QuEChERS(Quick,Easy,Cheap,Effective,Rugged and Safe)approach[J].AnalyticaChimicaActa,2009,637(1/2):68-78.
[16]Shendy A H,Al-Ghobashy M A,Gad Alla S A,et al.Development and validation of a modified QuEChERS protocol coupled to LC-MS/MS for simultaneous determination of multi-class antibiotic residues in honey [J].Food Chemistry,2016,190:982-989.
[17]Wang Y L,Liu Z M,Ren J,et al.Development of a method for the analysis of multiclass antibiotic residues in milk using QuEChERS and liquid chromatography-tandemmass spectrometry[J].Foodborne Pathogens and Disease,2015,12(8):693-703.
[18]Bourdat-Deschamps M,Leang S,Bernet N,et al.Multi-residue analysis of pharmaceuticals in aqueous environmental samples by online solid-phase extraction-ultra-high-performance liquid chromatography-tandem mass spectrometry:Optimisation and matrix effects reduction by quick,easy,cheap,effective,rugged and safe extraction[J].Journal of Chromatography A,2014,1349:11-23.
[19]Dorival-García N,Labajo-Recio C,Zafra-Gomez A,et al.Improved sample treatment for the determination of 17 strong sorbed quinolone antibiotics from compost by ultra high performance liquid chromatography tandem mass spectrometry[J].Talanta,2015,138:247-257.
[20]Salvia M V,Cren-Olive C,Vulliet E.Statistical evaluation of the influence of soil properties on recoveries and matrix effects during the analysis of pharmaceutical compounds and steroids by quick,easy,cheap, effective,rugged and safe extraction followed by liquid chromatography-tandem mass spectrometry[J].Journal of Chromatography A,2013, 1315:53-60.
[21]Usui K,Hayashizaki Y,Minagawa T,et al.Rapid determination of disulfoton and its oxidative metabolites in human whole blood and urine using QuEChERS extraction and liquid chromatography-tandem mass spectrometry[J].Legal Medicine,2012,14(6):309-316.
[22]He Z Y,Wang L,Peng Y,et al.Determination of selected polychlorinated biphenyls in soil and earthworm(Eiseniafetida)using a QuECh-ERS-based method and gas chromatography with tandem MS[J].Journal of Separation Science,2015,38(21):3766-3773.
[23]Feng X,He Z Y,Wang L,et al.Multiresidue analysis of 36 pesticides in soil using a modified quick,easy,cheap,effective,rugged,and safe method by liquid chromatography with tandem quadruple linear ion trap mass spectrometry[J].Journal of Separation Science,2015,38(17):3047-3054.
[24]郭欣妍,王娜,郝利君,等.超高效液相色譜/串聯(lián)質(zhì)譜法同時(shí)測定水、土壤及糞便中25種抗生素[J].分析化學(xué),2015,43(1):13-20.
GUO Xin-yan,WANG Na,HAO Li-jun,et al.Simultaneous extraction and determination of 25 antibiotics in water,soils and manure using chromatography-tandem mass spectrometry[J].Chinese Journal of Analytical Chemistry,2015,43(1):13-20.
[25]Peysson W,Vulliet E.Determination of 136 pharmaceuticals and hormones in sewage sludge using quick,easy,cheap,effective,rugged and safe extraction followed by analysis with liquid chromatography-timeof-flight-mass spectrometry[J].Journal of Chromatography A,2013, 1290:46-61.
Simultaneous extraction and determination of antibiotics in soils using a QuEChERS-based method and liquid chromatography-tandem mass spectrometry
MENG Ming-hui,HE Ze-ying,XU Ya-ping,WANG Lu,PENG Yi,LIU Xiao-wei*
(Agro-Environmental Protection Institute,Ministry of Agriculture,Tianjin 300191,China)
The aim of this work was to develop a method,based on QuEChERS(quick,easy,cheap,effective,rugged,and safe),to extract and analyze residues of 20 antibiotics in soil.The developed method included extraction with an ACN∶EDTA∶McIlvaine buffer,clean-up with a dispersive solid phase extraction(d-SPE)adsorbent using primary secondary amine(PSA)and octadecylsilane(C18),and finally analyte determination using liquid chromatography-tandem mass spectrometry(LC-MS/MS).This work optimized different extraction methods and ratios of clean-up adsorbents to perform at seven spiking levels(2.0,5.0,10.0,20.0,50.0,100.0,and 200.0 μg·kg-1)with recoveries ranging from 61.4%to 118.9%with relative standard deviations below 20%(n=5).The limits of quantification(LOQ)of the methods were in the range of 2.0~5.0 μg·kg-1for most analytes.Linear regression coefficients of greater than 0.990 were obtained.This method was applied to the analysis of real agricultural soil samples,confirming the feasibility of the method.
QuEChERS;antibiotics;multi-residue analysis;soil;LC-MS/MS
X833
A
1672-2043(2017)08-1672-08
10.11654/jaes.2017-0249
2017-03-01
孟明輝(1991—),男,山東菏澤人,碩士研究生,從事農(nóng)業(yè)環(huán)境監(jiān)測與評(píng)價(jià)研究。E-mail:313133898@qq.com
*通信作者:劉瀟威E-mail:xwliu2006@163.com
中國農(nóng)業(yè)科學(xué)院創(chuàng)新工程項(xiàng)目
Project supported:The Innovation Project of Chinese Academy of Agricultural Sciences
孟明輝,賀澤英,徐亞平,等.QuEChERS方法結(jié)合高效液相色譜-串聯(lián)質(zhì)譜法同時(shí)測定土壤中20種抗生素[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(8):1672-1679.
MENG Ming-hui,HE Ze-ying,XU Ya-ping,et al.Simultaneous extraction and determination of antibiotics in soils using a QuEChERS-based method and liquid chromatography-tandem mass spectrometry[J].Journal of Agro-Environment Science,2017,36(8):1672-1679.