杜婭丹,張 倩,崔冰晶,谷曉博,牛文全,3※(. 西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,楊凌 7200;2. 西北農(nóng)林科技大學(xué)中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院,楊凌 7200;3. 西北農(nóng)林科技大學(xué)水土保持研究所,楊凌 7200)
加氣灌溉水氮互作對(duì)溫室芹菜地N2O排放的影響
杜婭丹1,2,張 倩1,2,崔冰晶1,2,谷曉博1,牛文全1,2,3※
(1. 西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,楊凌 712100;2. 西北農(nóng)林科技大學(xué)中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院,楊凌 712100;3. 西北農(nóng)林科技大學(xué)水土保持研究所,楊凌 712100)
為揭示加氣條件下不同灌溉和施氮量對(duì)設(shè)施菜地N2O排放的影響,提出有效的N2O減排措施,該研究以溫室芹菜為例,設(shè)置充分灌溉(1.0 Ep,I1;Ep為2次灌水間隔內(nèi)Φ20 cm標(biāo)準(zhǔn)蒸發(fā)皿的累計(jì)蒸發(fā)量)和虧缺灌溉(0.75 Ep,I2)2個(gè)灌溉水平和0(N0)、150(N150)、200(N200)、250 kg/hm2(N250)4個(gè)施氮水平,采用靜態(tài)箱-氣相色譜法對(duì)各處理土壤N2O的排放進(jìn)行監(jiān)測(cè),并分析不同灌溉和氮肥水平下土壤溫度、濕度、礦質(zhì)氮(NH+4-N和NO-3-N)、硝化細(xì)菌和反硝化細(xì)菌的變化,以及對(duì)土壤N2O排放的影響。結(jié)果表明:充分灌水溫室芹菜地N2O排放顯著(P<0.05)高于虧缺灌溉;施氮顯著(P<0.05)增加了土壤N2O排放,N150、N200和N250處理的N2O累積排放量分別是N0處理的2.30、4.14和7.15倍。設(shè)施芹菜地N2O排放與土壤溫度、濕度和硝態(tài)氮含量呈指數(shù)相關(guān)關(guān)系(P<0.01),與硝化細(xì)菌和反硝化細(xì)菌數(shù)量呈線性相關(guān)關(guān)系(P<0.01),而與土壤銨態(tài)氮沒(méi)有顯著相關(guān)關(guān)系。灌水和施氮提高芹菜產(chǎn)量的同時(shí),顯著增強(qiáng)了土壤N2O排放。綜合考慮產(chǎn)量和溫室效應(yīng),施氮量150 kg/hm2、虧缺灌溉為較佳的管理模式。該研究為設(shè)施菜地N2O減排及確定合理的水氮投入量提供參考。
土壤;溫室氣體;排放控制;N2O排放;灌水;氮
全球變暖和臭氧層破壞是當(dāng)今兩大備受關(guān)注的環(huán)境問(wèn)題,氧化亞氮(N2O)是破壞臭氧層的最重要因子之一,N2O潛在增溫作用約是CO2的298倍[1]。據(jù)報(bào)道,大氣中的N2O濃度正以每年0.2%~0.3%的速度增加[2],農(nóng)田生態(tài)系統(tǒng)是全球N2O排放的一個(gè)重要來(lái)源[3],全球農(nóng)業(yè)每年N2O的排放量可達(dá)到3.8×106~6.8×106t,占全球N2O排放總量的25%~39%[4]。中國(guó)年化肥消耗量從1980年的9.34×106t增加到2009年的22.97×106t,超過(guò)了世界年化肥施用量的1/5。此外,中國(guó)的蔬菜種植面積從1995年的9.5×106hm2增加到2010年的18.4×106hm2,且蔬菜種植氮肥使用量約為628.05 kg/hm2,遠(yuǎn)高于糧食作物的氮肥使用量314.4 kg/hm2。菜地N2O排放是農(nóng)田生態(tài)系統(tǒng)的重要排放源,設(shè)施蔬菜約占中國(guó)總蔬菜面積的27%[5]。設(shè)施蔬菜一般施肥量大和灌溉頻繁,而灌溉和施肥是影響土壤N2O排放的重要因素[6],顯著影響土壤N2O的排放量[7],設(shè)施蔬菜施氮量和灌溉量分別是大田作物的4.5~10倍[8]和4~7倍[9],由此造成的設(shè)施蔬菜地N2O的排放量是大田作物的1.5~3.5倍[10]。因此,研究設(shè)施菜地N2O排放量的減控管理措施對(duì)全球溫室氣體減排具有重要意義。
研究表明,土壤N2O排放具有很大的變異性[11]。影響N2O排放的因素可分為兩組:環(huán)境因素(氣溫、降雨、光照和土壤固有屬性等)和人為因素(種植作物、農(nóng)藥、施肥、灌溉和耕作等)[12-13]。其中施肥和灌溉是影響土壤N2O排放最主要的調(diào)控因子,兩者通過(guò)對(duì)土壤濕度、溫度、土壤礦質(zhì)氮含量和微生物群落等的影響進(jìn)而改變土壤N2O排放。李銀坤等[14]和張婧等[15]研究發(fā)現(xiàn)施氮增加土壤硝態(tài)氮含量進(jìn)而促進(jìn)土壤N2O急劇增加,減少氮肥投入和添加硝化抑制劑是減少設(shè)施菜地N2O排放的有效措施。土壤水分狀況是影響植株對(duì)土壤中氮肥的吸收利用的重要因素之一,這就使得土壤中水分狀況和氮素轉(zhuǎn)化過(guò)程同時(shí)影響土壤中N2O的生成量。楊巖等[16]和王孟雪等[17]通過(guò)對(duì)不同灌水量和灌水方式的試驗(yàn)得出降低灌溉水量、采取控制灌溉和淺顯灌水方式可顯著降低土壤N2O排放量。土壤N2O排放主要是在硝化和反硝化作用下產(chǎn)生的,受土壤通氣性影響顯著[18]。加氣灌溉提高了土壤氧氣含量,勢(shì)必改變土壤N2O的產(chǎn)生和排放。目前相關(guān)研究多集中于加氣灌溉能提高作物產(chǎn)量、改善品質(zhì)與提高水分利用效率[19],但加氣灌溉條件下水氮互作對(duì)設(shè)施蔬菜溫室氣體排放的影響還未見報(bào)道,尤其土壤環(huán)境變化對(duì)N2O排放的影響缺乏系統(tǒng)的分析。
芹菜(Apium graveolens L.)為傘形科植物,含有豐富的營(yíng)養(yǎng)成分,是世界各地普遍種植的主要蔬菜之一[20]。本文以設(shè)施芹菜為對(duì)象,研究加氣灌溉水氮互作對(duì)土壤特性(溫度、濕度、硝態(tài)氮和銨態(tài)氮)和有關(guān)土壤氮轉(zhuǎn)換微生物(硝化細(xì)菌和反硝化細(xì)菌)的影響,并對(duì)土壤環(huán)境變化與N2O排放間的關(guān)系進(jìn)行分析,進(jìn)而為設(shè)施菜地N2O減排及合理的水氮投入提供理論依據(jù)。
1.1 試驗(yàn)地概況
試驗(yàn)于2016年10月1日至12月15日在陜西楊凌溫室大棚內(nèi)進(jìn)行,大棚長(zhǎng)108 m,寬8 m,東西走向。試驗(yàn)地點(diǎn)位于34°17′N,108°02′E,海拔高度521 m,年均日照時(shí)數(shù)2 163.8 h,無(wú)霜期210 d,屬半濕潤(rùn)易旱區(qū)。溫室大棚內(nèi)土壤為塿土,土壤容重1.35 g/cm3,田間持水率為28.17%(質(zhì)量含水率),pH值7.82,土壤孔隙度49.38%。土壤顆粒組成:砂礫(0.02~2 mm)質(zhì)量分?jǐn)?shù)25.4%,粉粒(0.002~0.02 mm)質(zhì)量分?jǐn)?shù)44.1%,黏粒(<0.002 mm)質(zhì)量分?jǐn)?shù)30.5%,基本養(yǎng)分狀況為:有機(jī)質(zhì)16.48 g/kg、全氮0.96 g/kg、全磷0.36 g/kg、全鉀10.4 g/kg,土壤肥力較均一。
溫室芹菜生育期內(nèi),日均太陽(yáng)輻射和光合有效輻射的變化趨勢(shì)基本相同,而日均氣溫和相對(duì)濕度的變化趨勢(shì)基本相反(圖1),且日均太陽(yáng)輻射、光合有效輻射、氣溫和相對(duì)濕度分別在0.6~143.5 W/m2、1.2~292.1 μE、8.5~24.9 °C和73.5%~100%之間波動(dòng)。
圖1 溫室芹菜生育期內(nèi)的日均太陽(yáng)輻射、光合有效輻射、氣溫和相對(duì)濕度Fig.1 Daily mean solar radiation (SR), photosynthetically active radiation (PAR), air temperature (T) and relative humidity (RH) during growing season of greenhouse celery
1.2 試驗(yàn)材料與設(shè)計(jì)
供試芹菜品種為“皇后”,采用穴盤育苗,當(dāng)幼苗高10 cm左右,有4~5片葉時(shí)進(jìn)行定植;供試氮、磷和鉀肥分別為尿素(N質(zhì)量分?jǐn)?shù)≥46%)、生物磷肥(P2O5質(zhì)量分?jǐn)?shù)≥16%)和農(nóng)業(yè)用硫酸鉀(K2O質(zhì)量分?jǐn)?shù)≥51%)。試驗(yàn)設(shè)灌水和施氮2個(gè)因素,灌水量以2次灌水間隔內(nèi)Φ20 cm標(biāo)準(zhǔn)蒸發(fā)皿的累計(jì)蒸發(fā)量Ep為基數(shù),設(shè)充分灌溉(1.0 Ep,I1)和虧缺灌溉(0.75 Ep,I2)2個(gè)灌溉水平;施氮量設(shè)0(N0)、150(N150)、200(N200)和250(N250)kg/hm24個(gè)水平,試驗(yàn)共8個(gè)處理,均進(jìn)行加氣灌溉,每個(gè)處理5個(gè)重復(fù)。
每個(gè)小區(qū)長(zhǎng)5.5 m,寬0.5 m,小區(qū)間隔0.5 m,芹菜于2016年10月1日以行距和株距均約10 cm進(jìn)行定植。定植前(9月30日)在各小區(qū)正中鋪設(shè)1條地下滴灌帶(直徑16 mm,滴頭間距30 cm),埋深10 cm,并基施40%的氮肥、150 kg/hm2的磷肥和200 kg/hm2的鉀肥,灌定植水30 mm,定植后覆上薄膜。將氣泵(上海寶歐機(jī)電有限公司/3.0 HP)與干管相連進(jìn)行加氣,在每條支管首端均安裝一個(gè)閥門,便于獨(dú)立控制各小區(qū)灌水量和加氣量。整個(gè)生育期每2 d加氣1次,每次各小區(qū)加氣量134.9 L,按氣泵技術(shù)參數(shù)換算為相應(yīng)的加氣時(shí)間,通過(guò)時(shí)間對(duì)每個(gè)小區(qū)加氣量進(jìn)行控制,氣泵壓力設(shè)定為0.7 MPa[21]。定植后,溫室芹菜生育期分別于10月10日、10月23日、11月3日、11月13日、11月26日和12月7日灌水6次,并于11月3日和11月26日的2次灌水過(guò)程中將剩余的氮肥平均施入各相應(yīng)施氮小區(qū),充分灌溉和虧缺灌溉處理的總灌水量分別為64.0和48.0 mm,溫室芹菜于12月15日全部收獲,生育期共75 d。
1.3 測(cè)定項(xiàng)目與方法
采用靜態(tài)箱原位采集氣樣,箱體用6 mm厚的聚氯乙烯制成,長(zhǎng)、寬和高分別為30、30和55 cm,箱體外表面用海綿與錫箔紙包裹,箱體頂部安裝有攪拌空氣的小風(fēng)扇。靜態(tài)箱底座在芹菜定植當(dāng)天埋設(shè)于小區(qū)中央,底座上端由大約3 cm深的凹槽構(gòu)成用以放置靜態(tài)箱箱體,取樣時(shí)注水密封。定植后每7 d左右采集一次,并于11月3日灌水追氮后連續(xù)監(jiān)測(cè)3 d。每次取樣分別在當(dāng)天的10∶00、10∶10、10∶20和10∶30利用帶有三通閥的50 mL注射器進(jìn)行4次氣體采集,每次取樣40 mL,并在當(dāng)天測(cè)定其濃度。去除奇異點(diǎn),使樣品濃度測(cè)量值隨時(shí)間的線性回歸系數(shù)R2≥0.85。
采氣的同時(shí),用安插在箱體頂部的水銀溫度計(jì)測(cè)量箱內(nèi)溫度;用曲管地溫計(jì)測(cè)定箱體周圍20 cm土層的溫度;打土鉆測(cè)定0~20 cm土層的質(zhì)量含水量,然后計(jì)算出土壤充水孔隙率(water filled pore space, WFPS)[22];取0~20 cm新鮮土樣,經(jīng)風(fēng)干后混勻過(guò)2 mm篩,稱取5 g風(fēng)干土樣,用50 mL的氯化鉀溶液(2 mol/L)浸提振蕩0.5 h 后過(guò)濾,用連續(xù)流動(dòng)分析儀(Auto Analyzer 3 AA3,Germany,0.001AUFS)直接測(cè)定土壤硝態(tài)氮和銨態(tài)氮含量[23];并于第1、3、5、9和11次采氣時(shí),用土鉆在箱體周圍均勻取樣3次,深度至20 cm,充分混勻后,用稀釋培養(yǎng)計(jì)數(shù)法測(cè)定0~20 cm土層土壤的硝化細(xì)菌和反硝化細(xì)菌數(shù)量[24]。參照周龍等[25]方法計(jì)算土壤N2O排放系數(shù)和單位產(chǎn)量N2O累積排放量。在芹菜全部收獲打捆后,用電子秤(精確到g)分別測(cè)定各小區(qū)芹菜的產(chǎn)量。
土壤硝態(tài)氮(銨態(tài)氮)質(zhì)量分?jǐn)?shù):
式中M為硝態(tài)氮(銨態(tài)氮)質(zhì)量分?jǐn)?shù)(mg/kg);C為樣品測(cè)定的硝態(tài)氮(銨態(tài)氮)值(mg/L);V為樣品提取液的體積(0.05 L);W為樣品質(zhì)量(5g)。
N2O排放通量[18]為:
式中F為N2O排放通量(μg/(m2·h));ρ為標(biāo)準(zhǔn)狀態(tài)下N2O氣體密度(kg/m3);h為箱體高度(m);dc/dt為氣體濃度變化率(μL/(L·h));T為箱內(nèi)溫度(K)。
土壤孔隙含水率(water-filled pore spaces, WFPS, %)
式中W1為土壤質(zhì)量含水率,%;r為土壤容重,g/cm3;2.65為土壤密度,g/cm3。
氮素以N2O排放量占施肥量的比例計(jì)為N2O排放系數(shù)。
式中f為N2O排放系數(shù);b為生育期施氮處理N2O累積排放量,kg/hm2;b0為不施氮處理生育期N2O累積排放量,kg/hm2;N為小區(qū)施肥量,kg/hm2。
單產(chǎn)N2O累積排放量(yield-scaled N2O intensity,Y-SN2O):
式中Y-SN2O為單產(chǎn)N2O累積排放量,g/kg,Y為作物產(chǎn)量,t/hm2。
氮肥利用效率(nitrogen use efficiency,NUE):
式中N為不同處理小區(qū)施氮量,kg/hm2。
1.4 數(shù)據(jù)處理與分析
使用Excel 2010軟件處理試驗(yàn)數(shù)據(jù);PASW Statistics 18.0軟件進(jìn)行方差分析和相關(guān)性分析,多重比較采用Duncan新復(fù)極差法,顯著性水平為α=0.05;OriginPro 8.5軟件作圖并求各處理N2O的累積排放量。
2.1 水氮互作對(duì)芹菜產(chǎn)量和N2O排放的影響
整個(gè)芹菜生長(zhǎng)季,加氣灌溉不同水氮處理下溫室芹菜地N2O排放通量呈波動(dòng)變化,除定植后34和57 d外,其他時(shí)期的N2O排放通量均維持在較低水平(圖2)。相同施氮水平下,充分灌溉處理(I1)下土壤N2O排放通量均高于虧缺灌溉處理(I2),I1處理土壤N2O排放通量的平均值比I2處理高33.7%。相同灌水水平下,高施氮量處理下土壤N2O排放通量均高于低施氮量處理,且在定植后34 d和57 d時(shí)差異性顯著(P<0.05),其他時(shí)期差異性不顯著(P>0.05)。N250處理土壤N2O排放通量的平均值分別是N200、N150和N0處理1.9、3.7和9.5倍。定植34 d和57 d灌水且施氮后,土壤N2O排放通量出現(xiàn)明顯峰值,統(tǒng)計(jì)分析表明,灌水與施氮耦合對(duì)土壤N2O排放通量的影響達(dá)顯著水平(P<0.05)。
圖2 加氣灌溉不同水氮水平對(duì)溫室芹菜地土壤N2O排放通量的影響Fig.2 N2O emissions flux of greenhouse celery from soil applied with different water and nitrogen levels under aerated irrigation
不同氮肥處理下土壤累積N2O排放量在0.88~6.56 kg/hm2之間(表1),隨著施氮量的增加,累積N2O排放量顯著增加(P<0.05),N150、N200和N250處理的累積排放量平均值分別是N0處理的2.30、4.14和7.15倍,施氮顯著增加了氮素以N2O形式損失的比例;其次,充分灌水累積N2O排放量平均值是虧缺灌水的1.27倍(P<0.01),表明較高的土壤含水量促進(jìn)了土壤N2O的排放。N150、N200和N250處理土壤N2O排放系數(shù)平均值分別為0.73%、1.36%和2.28%,充分灌水(I1)較虧缺灌水(I2)降低了N2O排放系數(shù)。同時(shí),隨施氮量的增加,芹菜產(chǎn)量呈現(xiàn)先上升后下降,N200處理產(chǎn)量平均值最大為205.65 t/hm2,且N200和N250處理間差異不顯著(P>0.05);充分灌水(I1)較虧缺灌溉(I2)產(chǎn)量平均值增加了10.29%。盡管施氮和灌水增加了芹菜產(chǎn)量,但單產(chǎn)N2O排放量也顯著增加,表明高水高氮水平下,生產(chǎn)1 kg芹菜將損失更多的氮素,所付出的環(huán)境代價(jià)更大。
氮肥利用效率隨施氮量的增加顯著下降,N150、N200和N250處理平均值分別為1.14、1.03和0.78;而充分灌溉和虧缺灌溉間氮肥利用效率差異不顯著(P>0.05)。灌水施氮提高芹菜產(chǎn)量的同時(shí)也導(dǎo)致N2O排放增加,當(dāng)芹菜產(chǎn)量達(dá)到最大時(shí),繼續(xù)施氮芹菜不再增產(chǎn),但其N2O排放量繼續(xù)增加;相同施氮量下,與虧缺灌水(I2)相比,充分灌水(I1)產(chǎn)量增加了10.29%,但其累積N2O排放量平均值和單產(chǎn)N2O累積排放量平均值也分別增加了27.87%和19.22%。因此獲得高產(chǎn)低排放不現(xiàn)實(shí),需要綜合考慮產(chǎn)量和N2O排放量。從表1可以看出,當(dāng)施氮量為150 kg/hm2,N150處理排放系數(shù)最接近1%(IPCC 報(bào)道農(nóng)田生態(tài)系統(tǒng)平均N2O排放系數(shù))[26],產(chǎn)量較最高產(chǎn)量下降了17.07%。當(dāng)施氮量為200 kg/hm2時(shí),產(chǎn)量達(dá)到最大,但排放系數(shù)達(dá)到1.36%(超過(guò)了1%)。因而,該試驗(yàn)地兼顧產(chǎn)量和累積N2O排放的基礎(chǔ)上,采用節(jié)水灌溉I2處理,環(huán)保施氮量可在150 kg/hm2的基礎(chǔ)上有所增加,但需低于200 kg/hm2。
表1 加氣灌溉下水氮互作芹菜土壤N2O排放及其相關(guān)影響因子Table 1 Effects of water and nitrogen coupling on soil N2O emission and other important factors under aerated irrigation
2.2 芹菜地N2O排放的影響因素
不同水分和施氮處理對(duì)溫室芹菜地土壤硝化細(xì)菌和反硝化細(xì)菌的數(shù)量有顯著影響。相同灌溉水平下,硝化細(xì)菌和反硝化細(xì)菌均隨氮肥水平的增加而上升。相同施氮量下,充分灌溉(I1)土壤硝化細(xì)菌和反硝化細(xì)菌的數(shù)量顯著(P<0.05)高于虧缺灌溉處理(I2)。
整個(gè)生長(zhǎng)季,土壤銨態(tài)氮質(zhì)量分?jǐn)?shù)均較低,在0.57~4.45 mg/kg范圍內(nèi)變化。除生育初期和灌水施肥后土壤銨態(tài)氮質(zhì)量分?jǐn)?shù)較高外,其他時(shí)期土壤銨態(tài)氮質(zhì)量分?jǐn)?shù)大部分都低于1mg/kg。整個(gè)生育期土壤無(wú)機(jī)氮中硝態(tài)氮占比較大,不同處理土壤硝態(tài)氮變化趨勢(shì)一致,明顯受施氮時(shí)間和作物氮肥吸收的影響,施肥后土壤硝態(tài)氮質(zhì)量分?jǐn)?shù)明顯上升,隨著生育期的推移逐漸降低。N0、N150、N200和N250處理土壤硝態(tài)氮質(zhì)量分?jǐn)?shù)平均為11.44、20.79、24.22和30.01 mg/kg,表明施氮量顯著增加了土壤硝態(tài)氮的含量。相同施氮量下,虧缺灌溉(I2)土壤硝態(tài)氮質(zhì)量分?jǐn)?shù)明顯(P<0.05)高于充分灌水(I1)處理。
2.3 溫室土壤N2O排放量與各影響因素間的關(guān)系
由圖4可知,土壤N2O排放量與土壤溫度、土壤水分含量和硝態(tài)氮質(zhì)量分?jǐn)?shù)均呈指數(shù)函數(shù)關(guān)系。說(shuō)明土壤溫度、水分含量和硝態(tài)氮質(zhì)量分?jǐn)?shù)較低時(shí),土壤N2O排放量緩慢增加,當(dāng)以上3個(gè)環(huán)境因子超過(guò)某一范圍時(shí),土壤N2O排放量急劇增加。相關(guān)分析發(fā)現(xiàn),土壤N2O排放量與土壤溫度、水分和硝態(tài)氮質(zhì)量分?jǐn)?shù)存在極顯著相關(guān)關(guān)系(P<0.01),決定系數(shù)分別達(dá)0.13、0.20和0.73,說(shuō)明土壤溫度和水分的變化分別解釋了N2O排放量變化的13%和20%,而土壤硝態(tài)氮質(zhì)量分?jǐn)?shù)的變化可以解釋N2O排放通量73%的變化。由此可見,土壤溫度、土壤水分含量和硝態(tài)氮質(zhì)量分?jǐn)?shù)是影響日光溫室土壤 N2O排放的重要環(huán)境因素。土壤N2O排放量與銨態(tài)氮質(zhì)量分?jǐn)?shù)不存在顯著相關(guān)關(guān)系。
硝化細(xì)菌和反硝化細(xì)菌是影響土壤N2O排放的兩種關(guān)鍵微生物。如圖4,土壤N2O排放量隨著土壤硝化細(xì)菌和反硝化細(xì)菌數(shù)量的增加而線性增加,相關(guān)分析發(fā)現(xiàn)土壤N2O排放量與兩者均呈極顯著正相關(guān)關(guān)系(P<0.01),且與反硝化細(xì)菌的相關(guān)性高于硝化細(xì)菌,決定系數(shù)分別為0.39和0.81,表明硝化細(xì)菌的變化解釋了土壤N2O排放通量39%的變化,而反硝化細(xì)菌解釋了N2O排放通量變化的81%。
圖3 不同水氮條件下芹菜土壤濕度、溫度、硝化細(xì)菌、反硝化細(xì)菌、硝態(tài)氮和銨態(tài)氮?jiǎng)討B(tài)變化(0 ~ 20cm)Fig.3 Dynamics of soil water filled pore spaces,temperature, nitrifier, denitrifier, nitrate and ammonium content during growing period of celery in 20 cm soil layer
圖4 水氮耦合下土壤N2O排放量與土壤溫度、濕度、-N、-N、硝化細(xì)菌和反硝化細(xì)菌的關(guān)系Fig.4 Relationship between soil N2O emission and soil temperature, soil water-filled pore space, nitrate, ammonium, nitrifier and denitrifier
本研究中,加氣滴灌土壤累積N2O排放量遠(yuǎn)高于常規(guī)灌水方式下土壤N2O排放量[16,25],表明加氣灌溉方式促進(jìn)了設(shè)施菜地溫室氣體排放。加氣灌溉是一種節(jié)水、節(jié)肥、高效的灌水方式,本研究為明確加氣滴灌條件下溫室氣體排放的分布特征,更精確的估算加氣滴灌條件下設(shè)施菜地的溫室氣體排放總量提供了理論依據(jù)。施肥和灌溉是影響土壤N2O排放的重要影響因子,也是最有效的調(diào)控措施[27]。本研究中,施肥灌溉顯著增加了芹菜地土壤N2O累積排放量(表1),可能是由于水肥兩因子的耦合作用對(duì)土壤氮肥轉(zhuǎn)換特性和微生物數(shù)量的影響造成的。相同施氮水平下,充分灌水(I1)土壤N2O排放高于虧缺灌水(I2),這與陳慧等[18]研究結(jié)果相似,表明較高的土壤濕度形成的厭氧環(huán)境促進(jìn)了土壤反硝化作用的進(jìn)行,增加了土壤N2O的排放;相同灌溉水平下,隨施氮量的增加土壤N2O排放顯著(P<0.05)增加,即N0處理N2O排放量最低,增加施氮量土壤N2O排放加倍增加(表1),說(shuō)明高施氮量是溫室芹菜地土壤N2O排放增加的重要原因[14,17,24,28]。Wang等[29]在對(duì)設(shè)施菜地研究中指出,氮肥的應(yīng)用解釋了N2O排放量52%的變化。Yan等[30]指出氮肥投入分別解釋了2011年和2012年蔬菜地土壤N2O排放量變化的78%和81%。本研究中施氮量解釋了土壤N2O排放量變化的79%。
溫室芹菜整個(gè)生育期內(nèi)土壤N2O平均排放通量和累積N2O排放量分別為6.8~114.8 μg/(m2·h)和0.42~7.06 kg/hm2,這些結(jié)果遠(yuǎn)高于大田試驗(yàn)土壤N2O平均排放量[31],可能是由于設(shè)施菜地比大田作物具備更好的水熱條件和更高的氮肥投入[15]導(dǎo)致了較高的N2O排放。此外,當(dāng)施氮量為200 kg/hm2時(shí)芹菜產(chǎn)量達(dá)到最大,施氮量為150 kg/hm2時(shí)芹菜產(chǎn)量雖然下降了17.07%,但N2O累積排放量下降了44.51%;與虧缺灌水(I2)相比,充分灌水(I1)產(chǎn)量增加了10.29%,但其累計(jì)N2O排放量和單產(chǎn)N2O累積排放量也增加了27.08%和15.44%。綜合考慮產(chǎn)量和N2O減排的基礎(chǔ)上,I2N150處理是溫室芹菜較優(yōu)的水氮供應(yīng)模式。
土壤N2O排放可分為直接和間接排放,直接排放主要產(chǎn)生于土壤硝化與反硝化過(guò)程,是復(fù)雜生化反應(yīng)的中間產(chǎn)物;而間接排放則主要是以NH3、NOx形態(tài)揮發(fā)后通過(guò)大氣沉降回到農(nóng)田再排放和通過(guò)淋失徑流再排放。全球約70%的N2O源自土壤硝化與反硝化過(guò)程。灌水和施肥能夠影響土壤的微環(huán)境和硝化-反硝化過(guò)程,進(jìn)而影響了土壤N2O排放。本文研究中,虧缺灌溉減少了土壤N2O排放(圖2),可能是由于增加了土壤孔隙度和O2的擴(kuò)散能力,不利于土壤反硝化作用的進(jìn)行,或者是較低的土壤濕度抑制了土壤潛在微生物的生長(zhǎng)[32-33]。生育前期較低的土壤溫度(15.09~17.36 ℃)沒(méi)有引起N2O的突增,與低溫限制了土壤微生物活性有關(guān),不利于土壤硝化和反硝化作用的進(jìn)行。土壤溫度增加促進(jìn)了土壤N2O排放,可能是由于增加了土壤呼吸,由此造成的厭氧環(huán)境促進(jìn)了土壤反硝化作用的進(jìn)行,或者是提高了土壤的礦化速率,基質(zhì)可利用性的提高增加了土壤N2O排放[32,34]。大量研究結(jié)果指出,土壤N2O排放與土壤溫度和孔隙含水率呈指數(shù)關(guān)系[18,35-36],這與本文研究結(jié)果一致。
土壤NO3--N質(zhì)量分?jǐn)?shù)隨著施氮量的增加而顯著提高(圖3),土壤N含量既能促進(jìn)土壤的反硝化速率,又可抑制N2O還原為N2,其與土壤N2O排放量呈極顯著(P<0.01)指數(shù)相關(guān)關(guān)系(圖4)。表明土壤N質(zhì)量分?jǐn)?shù)較低時(shí),土壤N2O排放增加緩慢,超過(guò)一定濃度時(shí),土壤N2O排放量將會(huì)急劇增加[37]。原因可能是由于過(guò)量施氮后,降低了作物對(duì)氮素的吸收利用效率,多余的氮素殘留在土壤當(dāng)中,增加了土壤硝化和反硝化作用底物[38-39]。此外,從圖2和圖3可以看出,芹菜生育前期各處理的土壤 NH4+-N含量均處于較高水平,但前期N2O排放量并不高,而此階段土壤-N含量處于較低水平。定植后34 d和57 d追肥后土壤-N含量出現(xiàn)峰值,此階段N2O排放也出現(xiàn)高峰,說(shuō)明土壤-N含量對(duì)土壤N2O排放有明顯的影響,這與已有研究相一致[15-16]。因此,可以通過(guò)降低土壤-N含量來(lái)減少土壤N2O排放。實(shí)際生產(chǎn)中,通過(guò)調(diào)整施氮次數(shù)和施氮時(shí)間來(lái)減少土壤N2O的排放。
土壤中硝化細(xì)菌和反硝化細(xì)菌的數(shù)量對(duì)土壤N2O的排放具有重要影響[40]。分析N2O排放的峰值發(fā)現(xiàn):灌水且施肥后土壤N2O排放顯著高于僅灌水土壤N2O排放量,可能是由于灌水且施肥后使得土壤水分和氮底物增加,土壤硝化細(xì)菌和反硝化細(xì)菌數(shù)量也出現(xiàn)明顯的上升趨勢(shì)(圖3),土壤發(fā)生了較強(qiáng)的硝化-反硝化作用,使得土壤N2O排放量較高。僅灌水土壤-N含量下降,由于氮源不足而限制了土壤的硝化-反硝化作用,表現(xiàn)為土壤硝化細(xì)菌和反硝化細(xì)菌數(shù)量降低(圖3),從而顯著降低了土壤N2O排放。當(dāng)施氮超過(guò)150 kg/hm2且進(jìn)行充分灌溉時(shí),土壤硝化細(xì)菌和反硝化細(xì)菌數(shù)量急劇增加,N2O排放通量也快速增加(圖2和圖3)。相關(guān)分析發(fā)現(xiàn),土壤N2O排放隨著化細(xì)菌和反硝化細(xì)菌數(shù)量增加而增加(P<0.01),因此提高灌水施氮水平促進(jìn)了土壤N2O排放。實(shí)際生產(chǎn)中,可以通過(guò)控制施氮和灌溉水平來(lái)減少溫室氣體的排放。
1)相同施氮量下,充分灌水溫室芹菜地土壤N2O排放量顯著(P<0.05)高于虧缺灌溉;相同灌溉水平下,增施氮肥土壤 N2O排放量顯著(P<0.05)增加,與不施氮相比,施氮量150 kg/hm2、200 kg/hm2和250 kg/hm2處理的N2O累積排放量分別增加了2.30、4.14和7.15倍。
2)該試驗(yàn)地施氮量不宜超過(guò)150 kg/hm2,宜選用虧缺灌溉,可兼顧試驗(yàn)區(qū)芹菜產(chǎn)量,同時(shí)有效降低土壤N2O排放。
3)土壤N2O排放與土壤溫度、濕度和硝態(tài)氮含量呈指數(shù)相關(guān)關(guān)系(P<0.01),與硝化細(xì)菌和反硝化細(xì)菌數(shù)量呈線性相關(guān)關(guān)系(P<0.01),而與土壤銨態(tài)氮沒(méi)有顯著相關(guān)關(guān)系,在研究溫室氣體減排時(shí)要考慮多種因素的綜合分析。
[1] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125.
[2] Ghosh S, Majumdar D, Jain M C. Methane and nitrous oxide emissions from irrigated rice of North India[J]. Chemosphere, 2003, 51(3): 181-195.
[3] Solomon S, Qin D, Manning M, et al. Climate change 2007: The physical science basis//Contribution of Working Group I Contribution to the Fourth Assessment Report of theIPCC[M]. Cambridge: Cambridge University Press, 2007.
[4] United Nations Environment Programme (UNEP). Drawing down N2O to protect climate and the ozone layer [R]. A UNEP synthesis report, United Nations Environment Programme (UNEP), 2013.
[5] 中華人民共和國(guó)統(tǒng)計(jì)局.中國(guó)統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2014.
[6] Laura S M, Ana M, Lourdes G T. Combination of drip irrigation and organic fertilizer for mitigating emissions of nitrogen oxides in semiarid climate[J]. Agriculture, Ecosystems & Environment, 2010, 137(1/2): 99-107.
[7] 張仲新,李玉娥,華珞,等. 不同施肥量對(duì)設(shè)施菜地N2O排放通量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(5):269-275. Zhang Zhongxin, Li Yue, Hua Luo, et al. Effects of different fertilizer levels on N2O flux from protected vegetable land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(5): 269-275. (in Chinese with English abstract)
[8] 杜連鳳,吳瓊,趙同科,等. 北京市郊典型農(nóng)田施肥研究與分析[J]. 中國(guó)土壤與肥料,2009 (3):75-78. Du Lianfeng, Wu Qiong, Zhao Tongke, et al. Investigation of fertilizer application in different farmlands in suburbs of Beijing[J]. Soil and Fertilizer Sciences in China, 2009 (3): 75-78. (in Chinese with English abstract)
[9] 張永麗,于振文. 灌水量對(duì)不同小麥品種籽粒品質(zhì)、產(chǎn)量及土壤硝態(tài)氮含量的影響[J]. 水土保持學(xué)報(bào),2007,21(5):155-158. Z
grhaainn
g
qYu
o
aln
igtyli
,,Y
yiuel
dZhaenndw
esno
.i lE
fNf
eOc
t3s-- No
f
icror
ingtae
tni
o
tn
i n
a md
o
ifu
fnetr eon
nt wheat varieties[J]. Journal of Soil and Water Conservation, 2007, 21(5): 155-158. (in Chinese with English abstract)
[10] 于亞軍,高美榮,朱波. 小麥-玉米輪作田與菜地N2O排放的對(duì)比研究[J]. 土壤學(xué)報(bào),2012,49(1):96-103. Yu Yajun, Gao Meirong, Zhu Bo. Comparison study on N2O emissions from field under wheat-maize rotation system and field under vegetable cultivation[J]. Acta Pedologica Sinica, 2012, 49(1): 96-103. (in Chinese with English abstract)
[11] Hendriks D M D, Van Huissteden J, Dolman A J. Multitechnique assessment of spatial and temporal variability of methane fluxes in a peat meadow[J]. Agricultural and Forest Meteorology, 2010, 150 (1): 757-774.
[12] Laville P, Lehuger S, Loubet B, et al. Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements[J]. Agricultural and Forest Meteorology, 2011, 151 (1): 228-240.
[13] Grant R F, Pattey E. Modeling variability in N2O emissions from fertilized agricultural fields[J]. Soil Biology and Biochemistry, 2003, 35 (1): 225-243.
[14] 李銀坤,武雪萍,郭文忠,等. 不同氮水平下黃瓜-番茄日光溫室栽培土壤N2O排放特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(23):260-267. Li Yinkun, Wu Xueping, Guo Wenzhong, et al. Characteristics of greenhouse soil N2O emissions in cucumber-tomato rotation system under different nitrogen conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(23): 260-267. (in Chinese with English abstract)
[15] 張婧,李虎,王立剛,等. 京郊典型設(shè)施蔬菜地土壤 N2O排放特征[J]. 生態(tài)學(xué)報(bào),2014,34(14):4090-4098. Zhang Jing, Li Hu, Wang Ligang, et al. Characteristics of nitrous oxide emissions from typical greenhouse vegetable fields in Beijing suburbs[J]. Acta Ecologica Sinica, 2014, 34(14): 4090-4098. (in Chinese with English abstract)
[16] 楊巖,孫欽平,鄒國(guó)元,等. 水肥減量對(duì)設(shè)施芹菜地N2O排放的影響[J]. 中國(guó)農(nóng)業(yè)氣象,2016,37(3):281-288. Yang Yan, Sun Qinping, Zou Guoyuan, et al. Effects of reducing irrigation and organic fertilization on N2O emissions from celery field in facilities[J]. Chinese Journal of Agrometeorology, 2016, 37(3): 281-288. (in Chinese with English abstract)
[17] 王孟雪,張忠學(xué). 適宜節(jié)水灌溉模式抑制寒地稻田N2O排放增加水稻產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(15):72-79. Wang Mengxue, Zhang Zhongxue. Optimal water-saving irrigation mode reducing N2O emission from rice paddy field in cold region and increasing rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 72-79. (in Chinese with English abstract)
[18] 陳慧,侯會(huì)靜,蔡煥杰,等. 加氣灌溉溫室番茄地土壤 N2O排放特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):111-117. Chen Hui, Hou Huijing, Cai Huanjie, et al. Soil N2O emission characteristics of greenhouse tomato fields under aerated irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 111-117. (in Chinese with English abstract)
[19] Niu W Q, Fan W T, Persaud N, et al. Effect of post-irrigation aeration on growth and quality of greenhouse cucumber[J]. Pedosphere, 2013, 23(6): 790-798.
[20] 朱軍偉,謝晶,章佳君,等. 薄膜包裝芹菜品質(zhì)分析及貨架壽命研究[J]. 食品科學(xué),2013,34(4):272-276. Zhu Junwei, Xie Jing, Zhang Jiajun, et al. Quality analysis and shelf life of film packaged celery[J]. Food Science, 2013, 34(4): 272-276.
[21] 李元,牛文全,呂望,等. 加氣灌溉改善大棚番茄光合特性及干物質(zhì)積累[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(18):125-132. Li Yuan, Niu Wenquan, Lü Wang, et al. Aerated irrigation improving photosynthesis characteristics and dry matter accumulation of greenhouse tomato[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 125-132. (in Chinese with English abstract)
[22] Franzluebbers A J. Microbial activity in response to waterfilled pore space of variably eroded southern Piedmont soils[J]. Applied Soil Ecology, 1999, 11(1): 91-101.
[23] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國(guó)農(nóng)業(yè)科技出版社,2000.
[24] 姚槐應(yīng),黃昌勇. 土壤微生物生態(tài)學(xué)及其實(shí)驗(yàn)技術(shù)[M]. 北京:科學(xué)出版社,2006,163-164.
[25] 周龍,龍光強(qiáng),湯利,等. 綜合產(chǎn)量和土壤N2O排放的馬鈴薯施氮量分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):155-161. Zhou Long, Long Guangqiang, Tang Li, et al. Analysis on N application rates considering yield and N2O emission in potato production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 155-161. (in Chinese with English abstract)
[26] IPCC. Climate change: The scientific Basis[R]. Cambridge, New York: Cambridge University Press, 2001.
[27] Laura S M, Ana M, Lourdes G T. Combination of drip irrigation and organic fertilizer for mitigating emissions of nitrogen oxides in semiarid climate[J]. Agriculture, Ecosystems & Environment, 2010, 137(1/2): 99-107.
[28] 武其甫,武雪萍,李銀坤,等. 保護(hù)地土壤N2O排放通量特征研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2011,17(4):942-948. Wu Qifu, Wu Xueping, Li Yinkun, et al. Studies on the fluxes of nitrous oxide from greenhouse vegetable soil[J]. Journal of Plant Nutrition and Fertilizer, 2011, 17(4): 942-948. (in Chinese with English abstract)
[29] Wang J Y, Xiong Z Q, Yan X Y. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China[J]. Atmospheric Environment, 2011, 45(1): 6923-6929.
[30] Yan H L, Xie L Y, Guo L P, et al. Characteristics of nitrous oxide emissions and the affecting factors from vegetable fields on the North China Plain[J]. Journal of Environmental Management, 2014, 144 (1): 316-321.
[31] 于亞軍,高美榮,朱波. 小麥-玉米輪作田與菜地N2O排放的對(duì)比研究[J]. 土壤學(xué)報(bào),2012,49(1):96-103. Yu Yajun, Gao Meirong, Zhu Bo. Comparison study on N2Oemissions from field under wheat-maize rotation system and field under vegetable cultivation[J]. Acta Pedologica Sinica, 2012, 49 (1): 96-103. (in Chinese with English abstract)
[32] Luo G J, Kiese R, Wolf B, et al. Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types[J]. Biogeosciences, 2013, 10 (5): 3205-3219.
[33] Di H J, Cameron K C, Podolyan A, et al. Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil[J]. Soil Biology Biochemistry, 2014, 73 (1): 59-68.
[34] Klein C A, Shepherd M A, van der Weerden T J. Nitrous oxide emissions from grazed grasslands: interactions between the N cycle and climate change—a New Zealand case study. Current Opinion in Environment Sustainability[J], 2014, 9 (1): 131-139.
[35] Liu C Y, Zheng X H, Zhou Z X, et al. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China[J]. Plant and Soil, 2010, 332 (1): 123-134. [36] Kallenbach C M, Rolston D E, Horwath W R. Cover cropping affects soil N2O and CO2emissions differently depending on type of irrigation[J]. Agriculture, Ecosystems and Environment, 2010, 137 (1): 251-260.
[37] Riya S, Min J, Zhou S, et al. Short-Term responses of nitrous oxide emissions and concentration profiles to fertilization and irrigation in greenhouse vegetable cultivation[J]. Pedosphere, 2012, 22(6): 764-775.
[38] He F F, Jiang R F, Chen Q, et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in northern China[J].Environmental Pollution, 2009, 157(5): 1666-1672.
[39] Mosier A, Kroeze C. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands[J]. Chemosphere-Global Change Science, 2000, 2(3): 465-473.
[40] 朱永官,王曉輝,楊小茹,等. 農(nóng)田土壤N2O產(chǎn)生的關(guān)鍵微生物過(guò)程及減排措施[J]. 環(huán)境科學(xué),2014,35(2):792-800. Zhu Yongguan, Wang Xiaohui, Yang Xiaoru, et al. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies[J]. Environmental Science, 2014, 35(2): 792-800. (in Chinese with English abstract)
Effects of water and nitrogen coupling on soil N2O emission characteristics of greenhouse celery field under aerated irrigation
Du Yadan1,2, Zhang Qian1,2, Cui Bingjing1,2, Gu Xiaobo1, Niu Wenquan1,2,3※
(1. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A&F University, Yangling 712100, China; 2. Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling 712100, China; 3. Institution of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China)
The global warming potential of nitrous oxide (N2O) is 298 times that of carbon dioxide (CO2), and N2O degrades stratospheric ozone. Agriculture N2O emission accounts for 59% of anthropogenic N2O emission. Microbial nitrification and denitrification are the major pathways of N2O production in soils. Synthetic fertilizers application in China is still the main way in agricultural production, so the increase of N2O emissions might be inevitable. The annual synthetic nitrogen (N) fertilizer consumption in China increased from 9.34×106t in 1980 to 22.97×106t in 2009, and it accounted for more than one fifth of the total world consumption in 2007. The harvest area of vegetable crops rose from 9.5×106hm2in 1995 to 18.4×106hm2in 2010 in China and is still increasing. The fertilization rate for vegetable crops in China was 628.05 kg/hm2, nearly 2 times that for cereal crops (314.4 kg/hm2) in 2006, of which N fertilizer occupied the largest share. The rough estimation showed that N2O emissions from vegetable fields accounted for 20% of the total direct N2O emission and N emission accounted for 17% of total N consumption nationally. Besides, agricultural practices such as irrigation and aeration potentially affect N2O emission from soils through influencing soil physical and chemical characteristics to constrain soil microbial processes. However, the microbial pathways of N2O production after N application and irrigation input in aerated condition are not well known. In order to reveal the effects of water and nitrogen coupling on soil N2O emission characteristics under aerated irrigation, and further put forward effective reduction measures, a field experiment with celery was conducted in greenhouse in Yangling District of Shaanxi Province. The experiment adopted 2 irrigation levels (I1: full irrigation, 1.0 Ep; I2: deficit irrigation, 0.75 Ep. Ep is the cumulative evaporation from a 20 cm diameter pan between 2 irrigations) and 4 N levels (N0: 0 kg/hm2; N150: 150 kg/hm2; N200: 200 kg/hm2; N250: 250 kg/hm2), and 8 treatments in total. In the present study, the effects of irrigation levels, nitrogen application amount, soil temperature and moisture, quantities of nitrifying bacteria and denitrifying bacteria on soil N2O emission were also analyzed. The results showed that the N2O emission from the full irrigation treatment was significantly higher than the deficit irrigation treatment. Nitrogen increased the cumulative N2O emission significantly under the same irrigation level. The cumulative N2O emissions of N150, N200 and N250 treatments were 2.30, 4.14 and 7.15 times that of N0 treatment in the whole growing season of celery, respectively. The correlation analysis showed that the significant exponential relationships existed between soil N2O emission and soil temperature, water filled pore space (WFPS%), and nitrate content. And the significant positive relationship was observed between soil N2O emission and nitrifier and denitrifier. There was no relationship between soil N2O emission and soil ammonium content. Irrigation and fertilization were contributed to the improvement of crop yield, but the soil N2O emission was also significantly increased. Therefore, the combination of N application amount of 150 kg/hm2and deficit irrigation was the best coupled mode of water and nitrogen to increase celery yield and reduce N2O emission among the 4 treatments. It should be heavily emphasized in future in the Northwest China. The results can provide valuable information for the selection of water-saving and nitrogen-saving method in Northwestern region.
soil; greenhouse gas; emission control; N2O emission; irrigation; nitrogen
10.11975/j.issn.1002-6819.2017.16.017
S275
A
1002-6819(2017)-16-0127-08
杜婭丹,張 倩,崔冰晶,谷曉博,牛文全. 加氣灌溉水氮互作對(duì)溫室芹菜地N2O排放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):127-134.
10.11975/j.issn.1002-6819.2017.16.017 http://www.tcsae.org
Du Yadan, Zhang Qian, Cui Bingjing, Gu Xiaobo, Niu Wenquan. Effects of water and nitrogen coupling on soil N2O emission characteristics of greenhouse celery field under aerated irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 127-134. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.16.017 http://www.tcsae.org
2017-05-13
2017-08-07
“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFC0400202);國(guó)家自然科學(xué)基金項(xiàng)目(51679205)
杜婭丹,女,博士生,主要從事節(jié)水灌溉理論與技術(shù)研究,
Email:dyd123027@163.com
※通信作者:牛文全,男,研究員,博士生導(dǎo)師,主要從事水土資源高效利用與節(jié)水灌溉技術(shù)研究,Email:nwq@nwafu.edu.cn