国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

滴灌夏玉米土壤水分與蒸散量SIMDualKc模型估算

2017-09-15 07:51:48閆世程張富倉(cāng)強(qiáng)生才鄒海洋向友珍范軍亮田建柯西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室西北農(nóng)林科技大學(xué)中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院楊凌712100
關(guān)鍵詞:夏玉米土壤水分灌水

閆世程,張富倉(cāng),吳 悠,強(qiáng)生才,鄒海洋,向友珍,范軍亮,田建柯(西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,西北農(nóng)林科技大學(xué)中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院,楊凌 712100)

滴灌夏玉米土壤水分與蒸散量SIMDualKc模型估算

閆世程,張富倉(cāng)※,吳 悠,強(qiáng)生才,鄒海洋,向友珍,范軍亮,田建柯
(西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,西北農(nóng)林科技大學(xué)中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院,楊凌 712100)

為研究西北半干旱地區(qū)作物蒸騰和土壤蒸發(fā)規(guī)律,以及土壤蒸發(fā)量占蒸散量的比例(簡(jiǎn)稱蒸發(fā)占比),開展2 a夏玉米滴灌控水試驗(yàn),設(shè)置正常灌水(W1)、適度水分虧缺(W2)和中度水分虧缺(W3)3個(gè)灌水水平。采用W2實(shí)測(cè)土壤水分?jǐn)?shù)據(jù)對(duì)SIMDualKc模型進(jìn)行參數(shù)率定,并采用W1和W3實(shí)測(cè)土壤水分?jǐn)?shù)據(jù)對(duì)模型進(jìn)行驗(yàn)證;進(jìn)一步基于SIMDualKc模型對(duì)不同水分供應(yīng)的土壤水分脅迫系數(shù)、土壤蒸發(fā)量、植株蒸騰和蒸散量進(jìn)行定量模擬分析。結(jié)果表明,SIMDualKc模型可以較好地模擬西北半干旱區(qū)滴灌夏玉米不同水分供應(yīng)條件下的土壤水分動(dòng)態(tài)變化過程,實(shí)測(cè)值與模型預(yù)測(cè)值有較好的一致性(R2>0.88,RMSE<5%);夏玉米生長(zhǎng)期,模型能較好地估算不同水分供應(yīng)的土壤水分脅迫系數(shù)、土壤蒸發(fā)量和植株蒸騰。土壤蒸發(fā)主要集中在生育前期,而生育中期較低,后期略微升高。植物蒸騰主要集中在快速生長(zhǎng)期和生長(zhǎng)中期,整個(gè)生育期呈先增大后減小的趨勢(shì)。蒸散量隨著土壤蒸發(fā)和植物蒸騰的變化而變化,前期主要受土壤蒸發(fā)的影響,快速生長(zhǎng)期、生長(zhǎng)中期和后期主要受植物蒸騰的影響。W1~W3處理土壤蒸發(fā)量為78.1~100.2 mm,植株蒸騰為221.8~293.3 mm,蒸散量為299.3~383.0 mm,蒸發(fā)占比為24.1%~28.7%。研究可為西北半干旱地區(qū)制定合理的夏玉米滴灌制度和灌溉決策提供理論依據(jù)。

蒸散;土壤水分;脅迫;滴灌;SIMDualKc模型;夏玉米

0 引 言

關(guān)中地區(qū)是中國(guó)夏玉米的主要產(chǎn)區(qū)之一,該地區(qū)水資源短缺,降雨分布不均容易出現(xiàn)伏旱進(jìn)而影響高產(chǎn)和穩(wěn)產(chǎn)。當(dāng)?shù)剞r(nóng)民主要采用地面灌水方式進(jìn)行灌溉,其灌溉水利用效率較低。隨著農(nóng)業(yè)節(jié)水新技術(shù)的出現(xiàn),滴灌技術(shù)已經(jīng)在中國(guó)廣泛應(yīng)用。量化夏玉米在新型的節(jié)水技術(shù)下的精確用水對(duì)于農(nóng)業(yè)的可持續(xù)發(fā)展至關(guān)重要,而確定蒸散量是制定合理灌溉制度的有效依據(jù)。

蒸散量(evapotranspiration,ET)包括植株蒸騰(transpiration,T)和土壤蒸發(fā)(evaporation,E),減少田間的無效土壤蒸發(fā),是農(nóng)田節(jié)水至關(guān)重要的一部分,故量化植株蒸騰和土壤蒸發(fā)的分配過程是研究的主要內(nèi)容[1-2]。ENWATBAL[3]、雙源蒸散發(fā)模型包括分層模型(Shuttleworth-Wallace模型[4])、分塊模型和混合模型[5]、 HYDRUS-1D[6]和雙作物系數(shù)模型[7](dual crop coefficient model,SIMDualKc)都是研究作物蒸騰和土壤蒸發(fā)的重要方法。ENWATBAL、Shuttleworth-Wallace模型和HYDRUS-1D模型等參數(shù)較多求解復(fù)雜。雙作物系數(shù)法參數(shù)少、應(yīng)用方便,是目前估算和區(qū)分農(nóng)田蒸散量最常用的方法[8-10]。

SIMDualKc模型是Rosa等[11-13]基于FAO56雙作物系數(shù)法開發(fā)的量化植株蒸騰和土壤蒸發(fā)的模型。該模型依據(jù)水量平衡原理計(jì)算作物每天耗水量,且利用雙作物系數(shù)法將植株蒸騰和土壤蒸發(fā)有效分開。Gao等[14-16]驗(yàn)證了SIMDualKc模型在冬小麥的適用性,利用模型將土壤蒸發(fā)和植株蒸騰分開。Martins等[17-18]驗(yàn)證了SIMDualKc模型在巴西南部地區(qū)玉米的適用性;Zhao等[19-21]采用SIMDualKc模型模擬了玉米的蒸散量。目前較多研究集中在常規(guī)地面灌溉(溝灌、畦灌等)條件下SIMDualKc模型適用性,然而滴灌區(qū)別于常規(guī)地面灌溉,屬于局部灌溉,蒸散在空間上變異劇烈,夏玉米種植稀疏,降雨存在截留和再分布問題,進(jìn)一步加劇了問題的復(fù)雜性,僅依靠作物系數(shù)和參考作物蒸散量能否精確呈現(xiàn)玉米實(shí)際水分消耗的規(guī)律,尚不夠明確。

為此,本研究進(jìn)行2 a夏玉米滴灌不同水分條件下的小區(qū)控水試驗(yàn),采用實(shí)測(cè)的土壤水分?jǐn)?shù)據(jù)對(duì)SIMDualKc模型進(jìn)行參數(shù)校核與驗(yàn)證,估算不同水分條件下土壤蒸發(fā),農(nóng)田蒸散量以及土壤水分脅迫系數(shù),為西北半干旱區(qū)滴灌夏玉米實(shí)施精確的灌溉管理提供理論依據(jù)。

1 材料與方法

1.1 試驗(yàn)區(qū)概況

試驗(yàn)在暖濕帶季風(fēng)半濕潤(rùn)氣候區(qū)西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室節(jié)水灌溉試驗(yàn)站(34°20′ N,108°24′ E,海拔521 m)進(jìn)行。年平均溫度為12.9 ℃,多年平均降水量550~600 mm(主要集中在8—10月),年均蒸發(fā)量1 500 mm。試驗(yàn)地土壤為重壤土。0~100 cm土層的田間持水量(θFC)0.268 cm3/cm3,凋萎系數(shù)(θWP)0.138 cm3/cm3,土壤干容重1.35 g/cm3。0~20 cm土層pH值為8.14,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)為12.02 g/kg,全氮質(zhì)量分?jǐn)?shù)為0.89 g/kg,速效磷質(zhì)量分?jǐn)?shù)為8.18 mg/kg,堿解氮質(zhì)量分?jǐn)?shù)為55.3 mg/kg,速效鉀質(zhì)量分?jǐn)?shù)為102.3 mg/kg。

1.2 試驗(yàn)設(shè)計(jì)

試驗(yàn)在遮雨棚下進(jìn)行,將灌水量設(shè)置3個(gè)水平,分別為正常灌水(W1)、適度水分虧缺(W2)和中度水分虧缺(W3),細(xì)節(jié)描述見表1。采用隨機(jī)區(qū)組試驗(yàn)設(shè)計(jì),共3個(gè)處理,各處理3次重復(fù),共計(jì)9個(gè)試驗(yàn)小區(qū),在相鄰試驗(yàn)小區(qū)之間鋪設(shè)塑料膜以防止小區(qū)間相互滲漏,具體試驗(yàn)方案列于表1。夏玉米滴灌試驗(yàn)采用“1管2行”種植方式,行距配置為50 cm + 40 cm(圖1),株距33 cm,種植密度為6.45萬(wàn)株/hm2;滴頭間距33 cm,工作壓力0.1 MPa,滴頭流量2 L/h。試驗(yàn)采用當(dāng)?shù)刂髟韵挠衩灼贩N為“鄭單958”,2015年6月11日播種,10月3日收獲,全生育期115 d;2016年6月8日播種,9月28日收獲,全生育期113 d。2015年和2016年生育期降雨量分別為279.9和286.3 mm,降雨次數(shù)分別為19和16次,其中有效降雨(日降雨量>5mm)為246.9和258.4 mm;2015年降雨主要集中在8月上旬和9月下旬,2016年降雨主要集中在7月中旬,而9月19日出現(xiàn)暴雨(64.4 mm),此時(shí)玉米處于灌漿后期基本對(duì)于玉米生長(zhǎng)發(fā)育影響不大??傮w而言,2016年較2015年夏玉米季干旱少雨。試驗(yàn)期間降雨時(shí),用遮雨棚遮擋,故研究不受降雨影響。

1.3 灌水管理

夏玉米滴灌控水試驗(yàn)灌溉制度如表2所示。2015和 2016年W1、W2和W3分別灌水12、10、7次和12、9、7次。2015年W1、W2和W3的灌水量分別為338.4、300.2和271.5 mm,其中W1和 W2最高灌水定額為46.8 mm,播種后統(tǒng)一灌水保證出苗整齊;W3最高灌水定額為53.4 mm。2016年W1、W2和W3的灌水量分別為330.5、307.6和267.8 mm,其中W1、W2和W3最高灌水定額分別為46.6、45.8和51.2 mm。

表1 夏玉米不同生育期灌水水平設(shè)置Table 1 Summer maize irrigation levels design during different growing stages

圖1 夏玉米滴灌試驗(yàn)布置及其Trime管布置示意圖Fig.1 Sketch of drip irrigation experimental system and Trime layout

表2 2015和2016年滴灌夏玉米不同處理灌水日期和灌水量Table 2 Drip irrigation date and amount for different treatments of summer maize in 2015 and 2016

1.4 觀測(cè)指標(biāo)及方法

1)氣象數(shù)據(jù):采用距離試驗(yàn)地50 m處的楊凌國(guó)家氣象觀測(cè)站的連續(xù)監(jiān)測(cè)數(shù)據(jù)。主要包括逐日最高氣溫、最低氣溫、相對(duì)濕度、風(fēng)速、日照時(shí)數(shù)等。

2)參考作物蒸散量(ET0):采用FAO-56 Penman-Monteith公式[1]計(jì)算

式中ET0為參考作物蒸散量(mm/d);Rn和G分別為地表凈輻射和土壤熱通量(MJ/(m2·d));ea和ed分別為飽和水汽壓和實(shí)際水汽壓(kPa);Dk為飽和水汽壓曲線斜率(kPa/℃);γ為干濕表常數(shù)(kPa/℃);T為2 m高度處平均氣溫(℃);U為2 m高度處風(fēng)速(m/s)。

3)土壤含水率(θ):將Trime土壤水分測(cè)定儀(IMKO Corp., Germany)埋設(shè)在距離滴灌帶水平位置0、20 cm(兩株之間)和40 cm(圖1)。測(cè)定深度0~100 cm,表層測(cè)量深度為20 cm,20 cm以下每隔10 cm設(shè)置1個(gè)采樣點(diǎn),每隔5~10 d測(cè)定1次,灌水前后加測(cè),試驗(yàn)過程中用烘干法分層進(jìn)行水分校核,計(jì)算時(shí)取其平均值。灌水量計(jì)算如下:

式中I為灌水量(mm);H為計(jì)劃濕潤(rùn)層厚度(cm);Pb為濕潤(rùn)比,取80%;η為田間持水率上限的百分比;θi為Trime水分測(cè)量?jī)x測(cè)定的平均土壤含水率。

4)株高(h)和葉面積指數(shù)(leaf area index,LAI):每隔7 d選取有代表性植株5株,用卷尺量取株高、所有葉片長(zhǎng)度和最大寬度,單株葉面積為所有葉片葉長(zhǎng)×葉寬×系數(shù)(展開葉為0.75,未展開葉0.5)之和,LAI=單株葉面積/單株所占地面積[22-23]。

5)地面覆蓋度(fC) :由葉面積指數(shù)和株高計(jì)算得到[24]。

式中Dr,i為第i天末時(shí)根區(qū)田間持水量與實(shí)際儲(chǔ)水量的差值(mm),Dr,i-1為第i-1天末根區(qū)田間持水量與實(shí)際儲(chǔ)水量的差值(mm),ETc,i為第i天內(nèi)夏玉米平均蒸散量(mm),Pi為第i天的降雨量(mm),ROi為第i天的徑流量(mm),CRi為第i天的地下水補(bǔ)給量(mm),Ii為第i天的累計(jì)灌水量(mm),DPi為第i天的深層滲漏量(mm)。由于試驗(yàn)區(qū)地下水埋深50 m;降雨時(shí)用遮雨棚擋??;試驗(yàn)地勢(shì)平坦且實(shí)測(cè)觀察灌溉過程中沒有形成地表徑流;滴灌計(jì)劃濕潤(rùn)層厚度較淺;故CRi=0;Pi=0;ROi=0和DPi=0。其中根系的生長(zhǎng)參照J(rèn)ones等[25]給定的根系生長(zhǎng)模型。上式簡(jiǎn)化為:

7)土壤水分脅迫系數(shù)(soil water stress coefficient, KS):當(dāng)根區(qū)田間持水量與實(shí)際儲(chǔ)水量的差值大于作物快速利用的水量則產(chǎn)生土壤水分脅迫;反之,則無土壤水分脅迫。KS越小則脅迫越大。

式中TAW為根區(qū)總有效水量(mm),RAW為作物根區(qū)可以快速利用的水量(mm),ρ為初始土壤水分消耗比例[1]。

8)夏玉米生育期劃分:參照Doorenbos等[26-27]將玉米全生育期劃分為生長(zhǎng)初期(播種至fC=10%)、快速生長(zhǎng)期(fC=10%至LAI=3.0)、生長(zhǎng)中期(LAI=3.0至作物開始成熟)和生長(zhǎng)后期(作物開始成熟至收獲),上述4個(gè)生育期分別對(duì)應(yīng)夏玉米的播種—苗期、苗期—大喇叭口期、大喇叭口期—灌漿期和灌漿期—成熟期。具體生育期劃分如表3所示。

表3 各處理夏玉米生育期Table 3 Summer maize growth stages for different treatments

1.5 SIMDualKc模型參數(shù)輸入與校驗(yàn)

SIMDualKc模型輸入的基本參數(shù)包括:氣象、土壤、作物及灌溉數(shù)據(jù)。參照FAO56給定初始參數(shù)[1]包括:基礎(chǔ)作物系數(shù)(basal crop coefficient,Kcb(初期、中期、后期))、土壤水分消耗比率p(初期、中期、后期)、蒸發(fā)層深度Ze、總蒸發(fā)水量(total evaporable water,TEW)和易蒸發(fā)水量(readily evaporable water,REW)等參數(shù)。

本文采用2 a適度水分虧缺W2的實(shí)測(cè)0~100 cm土層平均含水率與模型預(yù)測(cè)的土壤含水率對(duì)模型進(jìn)行率定。模型參數(shù)率定步驟:采用試錯(cuò)法先保持Ze、TEW和REW不變,調(diào)整Kcb和p,直到實(shí)測(cè)值與預(yù)測(cè)值相對(duì)誤差小于10%;然后保持修正后的作物參數(shù)不變,調(diào)整土壤參數(shù)Ze、TEW和REW,直至誤差最小并趨于穩(wěn)定,則終止校核[15]。用2 a正常灌水W1和中度水分虧缺W3對(duì)模型進(jìn)行驗(yàn)證。

1.6 模型評(píng)價(jià)

模型評(píng)價(jià)選取:回歸系數(shù)(regression coefficient,b)、決定系數(shù)[28](determination coefficient,R2)、均方根誤差[29-30](root mean square error,RMSE)、歸一化均方根誤差[31](normalized RMSE,nRMSE)、均方根誤差與觀測(cè)值標(biāo)準(zhǔn)差比率(RMSE-observations standard deviation ratio,RSR)、一致性指數(shù)[32](index of agreement,dIA)和模型模擬效率[33](efficiency of simulation,EF)評(píng)價(jià)模型的模擬效果。前人研究[28-33]RMSE和dIA用來確定模型預(yù)測(cè)能力,RMSE越接近0,dIA越接近于1表明預(yù)測(cè)值與實(shí)測(cè)值一致性越高;nRMSE(%)用來表示預(yù)測(cè)值與實(shí)測(cè)值的相對(duì)差異,nRMSE <10%、10%~20%、>20%~30%和>30%、RSR≤0.5、0.5~0.6、>0.6~0.7和>0.7分別表示模擬效果優(yōu)秀、良好、合理和較差;EF取值范圍介于-∞~1,負(fù)值表明觀測(cè)值的平均值高于預(yù)測(cè)的平均值,正值越接近1表明模型預(yù)測(cè)效率越高。

2 結(jié)果與分析

2.1 夏玉米生育期氣溫、濕度、風(fēng)速及參考作物蒸發(fā)蒸騰量逐日變化

2015—2016年夏玉米生育期最高氣溫(Tmax)、最低氣溫(Tmin)、最小相對(duì)濕度(RHmin)、ET0、U變化如圖2所示。

圖2 2015—2016年夏玉米生育期氣象因子及其參考作物蒸散量ET0逐日變化Fig.2 Daily variation of climate factors and reference evapotranspiration ET0during growth stage of summer maize in 2015-2016

圖2 表明,2015年播種到快速生長(zhǎng)開始的Tmax、Tmin和RHmin較2016年波動(dòng)幅度較大,主要是因?yàn)?015年播種后降雨次數(shù)較2016年多。2016年Tmax≥30℃的天數(shù)較2015年多22 d。2 a ET0的變化范圍分別為1.3~6.3和1.5~7.4 mm/d,ET0的平均值分別3.86和4.36 mm/d。2 a U變化范圍分別為0.3~2.46 m/s和0.45~4.1 m/s,平均風(fēng)速為1.13和1.29 m/s。

2.2 SIMDualKc模型參數(shù)率定與驗(yàn)證

采用2015—2016年夏玉米滴灌試驗(yàn)土壤水分?jǐn)?shù)據(jù)對(duì)SIMDualKc模型進(jìn)行適用性分析。利用實(shí)測(cè)0~100 cm土層平均含水率數(shù)據(jù)率定和驗(yàn)證模型參數(shù)。土壤參數(shù)Ze、TEW、REW和作物參數(shù)Kcb、p的初始值采用FAO56推薦值。根據(jù)當(dāng)?shù)貙?shí)際氣象條件及夏玉米生長(zhǎng)特性等因素對(duì)模型參數(shù)進(jìn)行修正后,最終率定初期、中期和后期基礎(chǔ)作物系數(shù)分別為0.15、1.13、0.2(表4)。

表4 SIMDualKc模型主要參數(shù)的初始值和率定值Table 4 Initial and calibrated values of main parameters of SIMDualKc model

SIMDualKc模擬的含水率與實(shí)測(cè)土壤含水率對(duì)比如圖3所示。2 a W1土壤體積含水率為0.171~0.259 m3/m3,其波動(dòng)較W2(0.161~0.250 m3/m3)和W3(0.156~0.248 m3/m3)小。且2 a 的W3收獲時(shí)的土壤含水率較低,接近凋萎系數(shù)。SIMDualKc模型預(yù)測(cè)土壤含水率變化趨勢(shì)與實(shí)測(cè)的土壤水分變化趨勢(shì)基本一致,尤其是2 a 的W1和W2處理,整個(gè)生育期土壤水分的變化趨勢(shì)基本吻合;W3處理生育期初期吻合度偏差較大,模型預(yù)測(cè)值略高于實(shí)測(cè)值。

進(jìn)一步地,對(duì)含水率實(shí)測(cè)與模擬值進(jìn)行定量分析(表5),表明2 a實(shí)測(cè)值與預(yù)測(cè)值之間的回歸系數(shù)b為0.995~1.025, R2為0.884~0.979,說明實(shí)測(cè)值與預(yù)測(cè)值的吻合度高。RSME為0.004~0.08 cm3/cm3, nRSME為2.17%~4.22%,RSR<0.5(0.213~0.429),表明模型模擬土壤水分效果達(dá)到極好水平。模型EF大于0.816,dIA大于0.95,說明模型模擬效率高且一致性好。2 a回歸系數(shù)b和R2的平均值分別為1.014、1.008和0.964、0.938(P<0.01)。2 a RSME、nRSME和RSR分別為0.006、0.005 cm3/cm3,2.43%、2.86%和0.239、0. 281。綜上,SIMDualKc模型不僅可以預(yù)測(cè)滴灌條件下正常灌溉時(shí)土壤含水率的變化,還可以預(yù)測(cè)有水分脅迫條件下的土壤含水率變化,且預(yù)測(cè)精度相對(duì)較高。故可用于夏玉米滴灌條件下日土壤水分變化研究。

圖3 模型模擬的土壤含水率與實(shí)測(cè)土壤含水率對(duì)比Fig.3 Comparison between predicted and observed soil water content

表5 夏玉米滴灌實(shí)測(cè)土壤含水率與預(yù)測(cè)值誤差統(tǒng)計(jì)量Table 5 Error statistics between observed and predicted soil water content of summer maize on drip irrigation

2.3 夏玉米滴灌條件下土壤水分脅迫系數(shù)

利用SIMDualKc模型計(jì)算出2 a不同灌水水平下W1、W2和W3的土壤水分脅迫系數(shù)(圖4)。2 a不同灌水水平KS的總體變化趨勢(shì)略有不同,2015年生育初期和快速生長(zhǎng)前期基本沒有受到長(zhǎng)時(shí)間的水分脅迫,而2016年整個(gè)生育期都受到一定程度的水分脅迫,且受到的水分脅迫次數(shù)較2015年多。主要的原因是2016年播種以后一直持續(xù)高溫(圖2),土壤蒸發(fā)和植物蒸騰較大。W3生育后期2 a都沒有灌水,則生育后期一直受到水分脅迫,2015年水分脅迫時(shí)間較2016年更長(zhǎng)且水分脅迫程度略高。出苗之前,W1、W2和W3的水分脅迫較大,此時(shí)段表層土壤水分較低,水分脅迫過大不利于出苗。出苗后,W1的最大水分脅迫大致出現(xiàn)在8月下旬(2015,KSmax=0.479;2016,KSmax=0.536);2015年W2最大水分脅迫出現(xiàn)在8月上旬為(KSmax=0.377),W3出現(xiàn)在收獲期為(KSmax=0.287);2016年W2和W3的最大水分脅迫出現(xiàn)在8月上旬分別為(KSmax=0.337)和(KSmax=0.323),其中W3收獲期水分脅迫也較大為KS=0.379。

圖4 滴灌條件下不同處理土壤水分脅迫系數(shù)變化Fig.4 Change in soil water stress coefficient under drip irrigation conditions for different treatments

2.4 夏玉米滴灌條件下土壤蒸發(fā)量、植株蒸騰量和蒸散量

采用SIMDualKc 模型模擬滴灌條件下不同水分脅迫夏玉米的蒸散量、土壤蒸發(fā)量和作物蒸騰量(圖5),結(jié)果表明土壤蒸發(fā)主要集中在夏玉米生育前期,而生育中期較低,后期略微升高主要原因是隨著植株的快速生長(zhǎng)、葉片擴(kuò)展以及后期葉片衰老影響地面覆蓋度進(jìn)而影響土壤蒸發(fā),灌溉是影響土壤蒸發(fā)的主要因素,隨著灌水的變化而呈現(xiàn)波峰、波谷的變化趨勢(shì)。植物蒸騰主要集中在快速生長(zhǎng)期和生長(zhǎng)中期,整個(gè)生育呈先增大后減小開口向下的拋物線趨勢(shì)。夏玉米實(shí)際蒸散量隨著土壤蒸發(fā)和植物蒸騰的變化而變化,前期主要受土壤蒸發(fā)的影響,快速生長(zhǎng)期、生長(zhǎng)中期和后期主要受植物蒸騰的影響。

圖5 夏玉米滴灌條件下土壤蒸發(fā)E、植物蒸騰T和蒸散量ETFig.5 Evaporation E, transpiration T and evapotranspiration ET under drip irrigation for summer maize

表6 2015和2016年夏玉米生育期土壤蒸發(fā)量(E)、植株蒸騰量(T)、蒸散量(ET)和蒸發(fā)占比(E/ET)Table 6 Evaporation, transpiration, evapotranspiration and ratio of evaporation to evapotranspiration during growing stage of summer maize in 2015 and 2016

不同水分處理土壤蒸發(fā)量和植物蒸騰量以及不同生育期土壤蒸發(fā)占比(蒸發(fā)量占蒸散量的比例,%)如表6所示,夏玉米生長(zhǎng)初期E較高(45.6~54.1 mm),T為10.4~15.8 mm,此時(shí)蒸發(fā)占比在全生育期內(nèi)最大,為76.3%~83.5%。此時(shí)段為保證出苗整齊,統(tǒng)一灌水且灌水定額較高,表層濕潤(rùn)面積較大,土壤蒸發(fā)的有效面積大,且氣溫高是此時(shí)蒸發(fā)占比較高的主要原因。進(jìn)入快速生長(zhǎng)期,夏玉米冠層覆蓋度和蒸騰速率逐漸增大,E隨之減少而T逐步增大。2 a的E、T和E/ET分別介于14.6~40.6 mm,67.0~119.8 mm和14.9%~26.9%;W1、W2和W3隨水分虧缺程度的增加E和T呈現(xiàn)下降趨勢(shì)。進(jìn)入生長(zhǎng)中期,其株高和冠層覆蓋度都達(dá)到最大值,E相對(duì)較小而T較大,滿足玉米營(yíng)養(yǎng)生長(zhǎng)到生殖生長(zhǎng)的水分和能量所需。2 a的E、T和E/ET分別介于5.8~11.7 mm,89.4~160.3 mm和4.4%~11.7%;W1、W2和W3隨著水分虧缺程度的增加T呈現(xiàn)下降趨勢(shì)。進(jìn)入生育后期,其株高和冠層覆蓋度都略有下降,此時(shí)關(guān)中地區(qū)正好處于雨季,氣溫相對(duì)較低,E和T較小。對(duì)于整個(gè)生育期而言,W1~W3處理E為78.1~100.2 mm,T為221.8~293.3 mm,ET為299.3~383.0 mm,蒸發(fā)占比為24.1%~28.7%。其中,2 a E、T和ET隨灌水量減少逐漸下降,與W1處理相比,W2和W3處理分別平均下降3.74%、18.0%,16.4%、21.7%和13.3%、21.0%;而2 a 蒸發(fā)占比隨著灌水量的減少呈上升趨勢(shì),與W1處理相比,W2和W3處理分別平均增加11.1%和3.8%。

3 討 論

3.1 夏玉米滴灌條件下基礎(chǔ)作物系數(shù)

作物系數(shù)反映了作物本身的生物學(xué)特性、產(chǎn)量水平、土壤水肥狀況以及管理水平等對(duì)作物需水量的影響[34]。前人對(duì)于玉米的基礎(chǔ)作物系數(shù)做了大量的研究。Martins等[17-18]利用SIMDualKc模型研究巴西南部圣瑪麗亞地區(qū)覆蓋秸稈條件下噴灌和滴灌玉米作物系數(shù)為Kcbini=0.2,Kcbmid=1.12,Kcbend=0.2。Rosa等[11,13]研究葡萄牙南部地區(qū)玉米的作物系數(shù)為Kcbini=0.15,Kcbmid=1.05,Kcbend= 0.55;而在鹽分脅迫下作物系數(shù)為Kcbini=0.07,Kcbmid=1.15,Kcbend=0.15~0.25。國(guó)內(nèi)學(xué)者也在玉米作物系數(shù)方面做了一些研究,陳鳳等[35]通過大型稱重式蒸滲儀研究楊陵地區(qū)夏玉米作物系數(shù)得出Kcbini=0.25,Kcbmid=1.25,Kcbend=0.65;趙娜娜等[20]利用莖流計(jì)實(shí)測(cè)夏玉米在水分脅迫下的蒸騰量求得作物系數(shù)為Kcbmid=0.98,Kcbend=0.28;趙娜娜等[19]利用SIMDualKc模型研究得出夏玉米的基礎(chǔ)作物系數(shù)為Kcbini=0.2,Kcbmid=1.1,Kcbend=0.45。Ran 等[21]研究春玉米覆膜條件下的基礎(chǔ)作物系數(shù)為Kcbini=0.1,Kcbmid= 1.1,Kcbend=0.3。本研究在滴灌不同水分供應(yīng)條件下利用SIMDualKc模型得出夏玉米基礎(chǔ)作物系數(shù)為Kcbini= 0.15,Kcbmid=1.13,Kcbend=0.2。與前人研究略有差異,究其原因可能是:1)本研究選取玉米品種、耕作農(nóng)藝措施以及土壤肥力不同,且肥料采用文丘里施肥器對(duì)進(jìn)行追施,保證玉米生育期土壤肥力十足,滿足作物生長(zhǎng)需要。2)本研究是在完全控水條件下進(jìn)行的,沒有降雨的影響,作物對(duì)水分的吸收主要來自灌溉和初始土壤水分。

3.2 夏玉米滴灌條件下土壤水分脅迫系數(shù)

KS反映作物受到水分脅迫的綜合指標(biāo)[9],它的大小不僅與土壤質(zhì)地特性有關(guān),而且與作物品種、生育期、長(zhǎng)勢(shì)、根系分布及其抗旱能力有關(guān),在對(duì)水分比較敏感的時(shí)期與氣象因素也有關(guān)系,特別地干熱風(fēng)、持續(xù)高溫天氣等??傊?,KS的大小與2個(gè)方面的因素有關(guān),即土壤供給作物水分的能力和作物潛在的蒸散量大小[1,36]。本研究在設(shè)置灌水水平時(shí)綜合考慮不同生育期夏玉米對(duì)水分的敏感程度。生育初期,作物需水量較少,冠層覆蓋度較低,地表裸露,土壤水分大部分被蒸發(fā),苗期一定程度的水分脅迫有利于蹲苗;快速生長(zhǎng)期至生育中期,植物蒸騰較大作物對(duì)于水分相對(duì)較為敏感,應(yīng)保證水分供應(yīng)才能滿足作物生長(zhǎng)需要;生育后期,籽粒逐漸開始成熟,土壤水分過高不利于植株養(yǎng)分向籽粒轉(zhuǎn)移,貪青晚熟,應(yīng)減少該生育期的灌水量。通過SIMDualKc模型得到的KS與設(shè)置的水分脅迫程度一致性較高;播種后尚未出苗時(shí)的KS有高估趨勢(shì),究其原因可能是實(shí)際播種深度為5~7 cm,而模型初始的根系深度設(shè)置為0 cm,故只要表層土壤水分低于凋萎系數(shù)則會(huì)出現(xiàn)土壤水分脅迫。

3.3 夏玉米滴灌條件下蒸發(fā)占比

土壤蒸發(fā)不參與植物生長(zhǎng)過程是農(nóng)田水分的無效散失,進(jìn)而減少土壤蒸發(fā)量是發(fā)展節(jié)水農(nóng)業(yè)的主要目標(biāo)[37-38]。本研究表明,滴灌條件下E、T、ET和E/ET值分別約為78.1~100.2 mm、221.8~293.3 mm、299.3~383.3 mm和24.1%~28.7%。Martins等[17]得出在秸稈覆蓋條件下玉米滴灌E/ET在8%~9%,較本研究低很多,可能是因?yàn)榘臀髂喜坑衩咨捌跉鉁剌^低且秸稈覆蓋減少玉米初期的土壤蒸發(fā)量引起的。Rosa等[11]研究葡萄牙南部地區(qū)玉米的E/ET在12%~16%,同樣較本研究低很多,可能是葡萄牙南部靠近大西洋,屬于地中海亞熱帶氣候,玉米生育期內(nèi)溫度相對(duì)較低。Zhao等[19-20]認(rèn)為夏玉米E/ET在37%~45%左右;Kang等[39]得出關(guān)中地區(qū)夏玉米E/ET在33%;Xu等[40]認(rèn)為華北地區(qū)夏玉米E/ET在25%~36%;Liu等[41]研究得出夏玉米E/ET在30%左右。較本研究略高一些,可能是本研究采用滴灌節(jié)水的灌溉方式、土壤質(zhì)地、夏玉米品種以及種植密度等不同引起的。綜上所述,本研究所得E/ET較國(guó)外高,而顯著低于常規(guī)地面灌溉,故在關(guān)中地區(qū)發(fā)展滴灌灌水技術(shù)具有較大的節(jié)水潛力。關(guān)中地區(qū)種植模式為冬小麥-夏玉米一年兩熟,建議冬小麥?zhǔn)斋@時(shí)將秸稈全部還田,增加秸稈覆蓋量,減少生育初期裸露在空氣中的土壤表面積進(jìn)而減少土壤蒸發(fā);同時(shí),采用免耕的措施種植夏玉米,可以減少因翻耕導(dǎo)致大量水分蒸發(fā)影響出苗。

4 結(jié) 論

基于2 a試驗(yàn),采用SIMDualKc模型模擬土壤含水率,土壤蒸發(fā)、作物蒸騰和蒸散量,結(jié)果表明:

1)SIMDualKc模型模擬土壤含水率變化趨勢(shì)與實(shí)測(cè)的土壤水分變化趨勢(shì)基本一致(R2>0.88、nRMSE<5%、RSR<0.5)。

2)運(yùn)用SIMDualKc模型研究夏玉米初期、中期、后期不同水分供應(yīng)條件下的基礎(chǔ)作物系數(shù)為0.15、1.13、0.2。

3)播種后尚未出苗時(shí)的土壤水分脅迫系數(shù)有高估的趨勢(shì);出苗后,W1最大水分脅迫出現(xiàn)在8月下旬, W2最大水分脅迫出現(xiàn)在8月上旬,W3最大水分脅迫大致出現(xiàn)在收獲期。

4)W1~W3處理土壤蒸發(fā)為78.1~100.2 mm,作物蒸騰為221.8~293.3 mm,蒸散量為299.3~383.0 mm,蒸發(fā)占比為24.1%~28.7%。土壤蒸發(fā)、作物蒸騰和蒸散量隨灌水量減少逐漸下降;而2 a 蒸發(fā)占比隨著灌水量減少呈上升趨勢(shì)。因此,運(yùn)用SIMDualKc模型可以準(zhǔn)確估算夏玉米滴灌不同水分條件下的蒸散量,能夠準(zhǔn)確地將土壤蒸發(fā)和植株蒸騰分開,可以預(yù)測(cè)滴灌條件下土壤水分動(dòng)態(tài)變化過程,為農(nóng)業(yè)生產(chǎn)提供理論依據(jù)。

[1] Allen R, Pereira L, Smith M, et al. FAO-56 Dual crop coefficient method for estimating evaporation from soil and application extensions[J]. Journal of Irrigation and Drainage Engineering,2005, 131(1): 2-13.

[2] 康紹忠,杜太生,孫景生,等. 基于生命需水信息的作物高效節(jié)水調(diào)控理論與技術(shù)[J]. 水利學(xué)報(bào),2007,38(6):661 -667. Kang Shaozhong, Du Taisheng, Sun Jingsheng, et al. Theory and technology of improving irrigation water use efficiency based on crop growing water demand information[J]. Journal of Hydraulic Engineering, 2007, 38(6): 661-667. (in Chinese with English abstract)

[3] Lascano R J, Van Bavel C H M, Hatfield J L, et al. Energy and water balance of a sparse crop: simulated and measured soil and crop evaporation[J]. Soil Science Society of America Journal, 1987, 51(5): 1113-1121.

[4] Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society, 1985, 111(469): 839-855.

[5] 楊雨亭,尚松浩. 雙源蒸散發(fā)模型估算潛在蒸散發(fā)量的對(duì)比[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(24):85-91. Yang Yuting, Shang Songhao. Comparison of dual-source evapotranspiration models in estimating potential evaporationandtranspiration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 85-91. (in Chinese with English abstract)

[6] Jiang Shuang, Pang Liping, Buchan G D, et al. Modeling water flow and bacterial transport in undisturbed lysimeters under irrigations of dairy shed effluent and water using HYDRUS-1D[J]. Water Research, 2010, 44(4): 1050-1061.

[7] Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration: Guidelines or Computing Crop Water Requirements [M]. Rome: FAO Irrigation and Drainage, 1998: 56.

[8] Kool D, Agam N, Lazarovitch N, et al. A review of approaches for evapotranspiration partitioning[J]. Agricultural and Forest Meteorology, 2014, 184(1): 56-70.

[9] 馮禹,崔寧博,龔道枝,等. 基于葉面積指數(shù)改進(jìn)雙作物系數(shù)法估算旱作玉米蒸散[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):90-98. Feng Yu, Cui Ningbo, Gong Daozhi, et al. Estimating rainfed spring maize evapotranspiration using modified dual crop coefficient approach based on leaf area index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 90-98. (in Chinese with English abstract)

[10] 文冶強(qiáng),楊健,尚松浩. 基于雙作物系數(shù)法的干旱區(qū)覆膜農(nóng)田耗水及水量平衡分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):138-147. Wen Yeqiang, Yang Jian, Shang Songhao. Analysis on evapotranspiration and water balance of cropland with plastic mulch in arid region using dual crop coefficient approach[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 138-147. (in Chinese with English abstract)

[11] Rosa R D, Paredes P, Rodrigues G C, et al. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy[J]. Agricultural Water Management, 2012, 103(1): 8-24.

[12] Rosa R D, Paredes P, Rodrigues G C, et al. Implementing the dual crop coefficient approach in interactive software: 2. Model testing[J]. Agricultural Water Management, 2012, 103(1): 62-77.

[13] Rosa R D, Ramos T B, Pereira L S. The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model[J]. Agricultural Water Management, 2016, 177: 77-94.

[14] Gao Yang, Yang Linlin, Shen Xinjun, et al. Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency[J]. Agricultural Water Management, 2014, 146: 1-10.

[15] 楊林林,高陽(yáng),韓敏琦,等. 基于SIMDual_Kc模型的豫北地區(qū)麥田土壤水分動(dòng)態(tài)和棵間蒸發(fā)模擬[J]. 水土保持學(xué)報(bào),2016,30(4):147-153. Yang Linlin, Gao Yang, Han Minqi, et al. Simulation of moisture dynamics and soil evaporation of winter wheat based on SIMDual_Kc model in Northern Henan Province[J]. Journal of Soil Water Conservation, 2016, 30(4): 147-153 .(in Chinese with English abstract)

[16] 王子申,蔡煥杰,虞連玉,等. 基于SIMDualKc模型估算西北旱區(qū)冬小麥蒸散量及土壤蒸發(fā)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(5):126-136. Wang Zishen, Cai Huanjie, Yu Lianyu, et al. Estimation of evapotranspiration and soil evaporation of winter wheat in arid region Northwest China based on SIMDualKc model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(5): 126-136. (in Chinese with English abstract)

[17] Martins J D, Rodrigues G C, Paredes P, et al. Dual crop coefficients for maize in southern Brazil: Model testing for sprinkler and drip irrigation and mulched soil[J]. Biosystems Engineering, 2013, 115(3): 291-310.

[18] González M G, Ramos T B, Carlesso R, et al. Modelling soil water dynamics of full and deficit drip irrigated maize cultivated under a rain shelter[J]. Biosystems Engineering, 2015, 132: 1-18.

[19] Zhao Nana, Liu Yu, Cai Jiabing, et al. Dual crop coefficient modelling applied to the winter wheat-summer maize crop sequence in North China Plain: basal crop coefficients and soil evaporation component[J]. Agricultural Water Management, 2013, 117(117): 93-105.

[20] 趙娜娜,劉鈺,蔡甲冰,等. 雙作物系數(shù)模型SIMDual_Kc的驗(yàn)證及應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(2):89-95. Zhao Nana, Liu Yu, Cai Jiabing, et al, Validation and application of dual crop coefficient model SIMDual_Kc[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 89-95. (in Chinese with English abstract)

[21] Ran Hui, Kang Shaozhong, Li Fusheng, et al. Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China[J]. Agricultural Systems, 2017, 151: 20-32.

[22] 孫銳,朱平,王志敏,等. 春玉米葉面積系數(shù)動(dòng)態(tài)特征的密度效應(yīng)[J]. 作物學(xué)報(bào),2009,35(6):1097-1105. Sun Rui, Zhu Ping, Wang Zhimin, et al. Effect of plant density on dynamic characteristics of leaf area index in development of spring Maize. Acta Agronomica Sinica, 2009, 35(6):1097-1105. (in Chinese with English abstract)

[23] Li Sien, Kang Shaozhong, Li Fusheng, et al. Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China[J]. Agricultural Water Management, 2008, 95(11): 1214-1222.

[24] Allen R G, Pereira L S. Estimating crop coefficients from fraction of ground cover and height[J]. Irrigation Science, 2009, 28(1): 17-34.

[25] Jones C A, Bland W L, Ritchie J T, et al. Simulation of root growth[J]. Modeling Plant and Soil Systems, 1991: 91-123.

[26] Doorenbos J, Pruitt W O. Guidelines for predicting crop water requirements[J]. Irrigation & Drainage Paper, 1977, 24 :15-29

[27] Fernando R M C. Quantifica??o Do Balan?o Hídrico De Um Solo Regado Na Presen?a De Uma Toalha Freática: Simula??o Com O Modelo SWATRER[D]. Lisboa: Universidade Técnica de Lisboa, 1993. (inPortuguese)

[28] Legates D R, Mccabe G J. Evaluating the use of 'goodnessof-fit' measures in hydrologic and hydroclimatic model validation[J]. Water Resources Research, 1999, 35(1): 233-241

[29] Loague K, Green R E. Statistical and graphical methods for evaluating solute transport models: overview and application[J]. Journal of Contaminant Hydrology, 1991, 7(1): 51-73.

[30] Willmott C J. Some comments on the evaluation of model performance[J]. Bulletin of the American Meteorological Society, 1982, 63(11): 1309-1313.

[31] Jamieson P D, Porter J R, Wilson D R. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand[J]. Field Crops Research, 1991, 27(4): 337-350.

[32] Willmott C J. On the validation of models[J]. Physical Geography, 1981, 2(55): 184-194.

[33] Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900.

[34] 趙娜娜,劉鈺,蔡甲冰. 夏玉米作物系數(shù)計(jì)算與耗水量研究[J]. 水利學(xué)報(bào),2010,41(8):953-959,969 Zhao Nana, Liu Yu, Cai Jiabing. Calculation of crop coefficient and water consumption of summer maize[J]. Journal of Hydraulic Engineering, 2010, 41(8): 953-959, 969. (in Chinese with English abstract)

[35] 陳鳳,蔡煥杰,王健,等. 楊凌地區(qū)冬小麥和夏玉米蒸發(fā)蒸騰和作物系數(shù)的確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(5):191-193. Chen Feng, Cai Huanjie, Wang Jian, et al. Estimation of evapotranspiration and crop coefficients of winter wheat and summer maize in Yangling Zone[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(5): 191-193. (in Chinese with English abstract)

[36] 胡慶芳,尚松浩,田俊武,等. FAO56計(jì)算水分脅迫系數(shù)的方法在田間水量平衡分析中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(5):40-43. Hu Qingfang, Shang Songhao, Tian Junwu, et al. Application of water stress coefficient from FAO56 to the field water balance analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(5): 40-43. (in Chinese with English abstract)

[37] Penman H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 1948, 193(1032): 120-145.

[38] 劉群昌,謝森傳. 華北地區(qū)夏玉米田間水分轉(zhuǎn)化規(guī)律研究[J]. 水利學(xué)報(bào),1998,29(1):62-69. Liu Qunchang, Xie Shenchuan. A study on field soil water balance for summer corn in north China plain[J]. Journal of Hydraulic Engineering, 1998, 29(1): 62-69. (in Chinese with English abstract)

[39] Kang Shaozhong, Gu Binjie, Du Taisheng, et al. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region[J]. Agricultural Water Management, 2003, 59(3): 239-254.

[40] Xu Duoxia, Mermoud A. Modeling the soil water balance based on time-dependent hydraulic conductivity under different tillage practices[J]. Agricultural Water Management, 2003, 63(2): 139-151.

[41] Liu Changming, Zhang Xiying, Zhang Yongqiang. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter[J]. Agricultural and Forest Meteorology, 2002, 111(2): 109-120.

Estimation of drip irrigated summer maize soil water content and evapotranspiration based on SIMDualKc model

Yan Shicheng, Zhang Fucang※, Wu You, Qiang Shengcai, Zou Haiyang, Xiang Youzhen, Fan Junliang, Tian Jianke
(Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling 712100, China)

Accurate estimation of soil evaporation, crop transpiration, evapotranspiration (ET), and the ratio of soil evaporation to evapotranspiration are critical for the precise water management in areas with scarce water resources. This study aimed to evaluate the SIMDualKc model for ET estimation and partition in terms of accuracy in summer maize under drip irrigation. A 2-year controlled drip irrigation experiment was conducted in the summer maize field in semi-arid regions of northwest China. This drip irrigation experiment included 3 water-supply levels (i.e., normal irrigation, W1; moderate deficit, W2; and medium deficit, W3). The measured soil water content for W2 treatment was selected for parameter calibration in SIMDualKc model, while the measured soil water content for W1 and W3 treatments were used for model validation. Based on those, the parameters such as transpiration, soil evaporation, ET and soil water stress coefficient for each treatment were simulated and analyzed. The results showed a good agreement in the measured soil water content and the simulated values from SIMDualKc model, with R2> 0.88 and normalized root mean square error smaller than 5%, which indicated that the SIMDualKc model was suitable for describing the dynamic changes of soil water content in this experiment. The values of basal crop coefficient for summer maize at the initial-, mid-, and late-season growth stages was 0.15, 1.13, and 0.2, respectively. Furthermore, the SIMDualKc model exhibited a high accuracy in estimating soil water stress coefficient, transpiration and soil evaporation during the whole growth stage of summer maize for all the treatments, but it overestimated soil water stress coefficient before the seed emergence. Soil evaporation mainly occurred in the early growth stage. While for transpiration, it was mainly in the rapid growth period and middle growth period. It increased and then decreased in the whole growth, peaking at the development and mid-season stages. Evapotranspiration varied with changes in the soil evaporation and crop transpiration, which was mainly affected by soil evaporation at the initial stage, and by crop transpiration at the development, mid-season and later stages. Specifically, values of soil evaporation, transpiration, ET, and the ratio of soil evaporation to ET for W1-W3 were 78.1-100.2 mm, 221.8-293.3 mm, 299.3-383.0 mm, and 24.1%-28.7%, respectively. Besides, values of soil evaporation, transpiration and ET had a downward trend with the decrease in water supply amount. Compared with the W1, the W2 and W3 declined on average by 3.74%-21.7%, while the ratio of soil evaporation to ET increased with the decrease in water supply amount. The W2 and W3 treatments increased by 11.1% and 3.8% as compared to W1 during the 2 growing seasons. This study can provide a basis for the establishment of reasonable drip irrigation scheduling and irrigation decision-making for summer maize in the semi-arid regions of northwest China.

evapotranspiration; soil water content; stress; drip irrigation; SIMDualKc model; summer maize

10.11975/j.issn.1002-6819.2017.16.020

S275.6; S161.4

A

1002-6819(2017)-16-0152-9

閆世程,張富倉(cāng),吳 悠,強(qiáng)生才,鄒海洋,向友珍,范軍亮,田建柯. 滴灌夏玉米土壤水分與蒸散量SIMDualKc模型估算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):152-160.

10.11975/j.issn.1002-6819.2017.16.020 http://www.tcsae.org

Yan Shicheng, Zhang Fucang, Wu You, Qiang Shengcai, Zou Haiyang, Xiang Youzhen, Fan Junliang, Tian Jianke. Estimation of drip irrigated summer maize soil water content and evapotranspiration based on SIMDualKc model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 152-160. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.16.020 http://www.tcsae.org

2017-01-11

2017-06-10

國(guó)家“十二五”863計(jì)劃項(xiàng)目課題(2011AA100504);農(nóng)業(yè)部公益性行業(yè)科研專項(xiàng)(201503124);教育部高等學(xué)校創(chuàng)新引智計(jì)劃項(xiàng)目(B12007)

閆世程,男,甘肅民勤人,博士生,主要從事節(jié)水灌溉理論與技術(shù)研究。楊凌 西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,712100。Email:jintian5200@163.com

※通信作者:張富倉(cāng),男,陜西武功人,教授,博士生導(dǎo)師,主要從事節(jié)水灌溉理論與技術(shù)研究。楊凌 西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,712100。Email:zhangfc@nwsuaf.edu.cn

猜你喜歡
夏玉米土壤水分灌水
灌水取球
番茄灌水掌握技巧
冬季棚菜灌水四關(guān)鍵
小麥?zhǔn)崭钪?如何種植夏玉米才能高產(chǎn)
夏玉米高產(chǎn)的關(guān)鍵栽培技術(shù)措施
西藏高原土壤水分遙感監(jiān)測(cè)方法研究
灌水秘笈
不同覆蓋措施對(duì)棗園土壤水分和溫度的影響
植被覆蓋區(qū)土壤水分反演研究——以北京市為例
土壤水分的遙感監(jiān)測(cè)方法概述
红安县| 澎湖县| 嘉祥县| 邢台县| 灯塔市| 横峰县| 东乡县| 莆田市| 福贡县| 永川市| 丹棱县| 武邑县| 通江县| 灵台县| 民县| 安化县| 岚皋县| 英吉沙县| 宜州市| 盐源县| 洛阳市| 肇州县| 乐平市| 班玛县| 合水县| 安阳市| 交口县| 昌江| 白朗县| 郸城县| 昌黎县| 汶上县| 靖边县| 临江市| 司法| 名山县| 嵩明县| 泸西县| 屯留县| 南和县| 太谷县|