鮑恩財,鄒志榮,張 勇(西北農林科技大學園藝學院,農業(yè)部西北設施園藝工程重點實驗室,楊凌 712100)
日光溫室墻體用相變固化土性能測試及固化機理
鮑恩財,鄒志榮,張 勇※
(西北農林科技大學園藝學院,農業(yè)部西北設施園藝工程重點實驗室,楊凌 712100)
中國西北非耕地地區(qū)面積遼闊,日光溫室的應用可以增加耕地面積,對于保障國家糧食安全、緩解經濟作物與糧食作物爭地矛盾具有重大的戰(zhàn)略意義。該文提出一種在西北非耕地地區(qū)建造日光溫室用的相變固化劑,研究其添加進土壤后相變固化土的力學及熱性能,并結合微觀結構揭示其固化機理。研究設計2種相變固化劑摻量(5%和10%),分析不同摻量處理風沙土和戈壁土后的力學性能、熱性能以及固化機理。抗壓強度試驗結果表明,5%和10%相變固化劑摻量的風沙土和戈壁土的抗壓強度均有較大幅度的提高,10%相變固化劑摻量的風沙土試塊平均抗壓強度為3.208 MPa,約為5%摻量試塊強度的2倍(P<0.01)。10%相變固化劑摻量的戈壁土試塊平均抗壓強度為3.671 MPa,約為5%摻量試塊強度的1.5倍(P<0.01)。差示掃描量熱法測試結果表明,考慮墻體溫度>0 ℃的實際狀況,5%相變固化劑摻量風沙土吸熱量和放熱量分別為28.16和29.89 J/g,5%相變固化劑摻量戈壁土吸熱量和放熱量分別為13.55和12.69 J/g。10%相變固化劑摻量的風沙土與戈壁土吸、放熱量均與5%摻量同一類型土壤的吸、放熱量相差甚微。掃描電子顯微鏡觀察結果從微觀方面解釋了相變固化土強度提高和高效蓄放熱的機理。該文從試驗角度證明5%摻量相變固化劑的風沙土或戈壁土具有作為日光溫室墻體的建筑結構和儲能主體材料的潛力,在西北非耕地地區(qū)將會有較好的應用前景。
相變材料;土壤;溫室;固化劑;抗壓強度;DSC;固化機理
中國耕地數(shù)量持續(xù)下降,1996—2010年14 a間共減少6.82%,累計減少0.09×109hm2[1]。根據國土資源部的數(shù)據,中國85%以上的土地資源為非耕地資源,且主要集中在光熱資源豐富(全年日照時數(shù)在2 800~3 300 h)的西北地區(qū)[2]。利用西北非耕地發(fā)展日光溫室園藝產業(yè)(如蔬菜、果樹及食用菌),減少對大量優(yōu)質農田的占用[2],對于緩解經濟作物與糧食作物爭地矛盾、保障國家糧食安全具有重大的戰(zhàn)略意義。
傳統(tǒng)日光溫室的墻體為生土夯實或磚砌,在生產實踐中存在巨大的能量不平衡,白天室內由于內部溫度過高而不得不進行通風換氣,而夜晚又由于溫室蓄熱不足出現(xiàn)低溫冷害,限制了日光溫室的高效應用。西北非耕地地區(qū)最常見的是風沙土(sand soil,SS)和戈壁土(Gobi soil,GS)。風沙土顆粒細小、均勻,粒間無凝聚力,是沙漠地區(qū)最廉價和豐富的建筑材料[3],但常因強度低、結構松散、易蝕、整體穩(wěn)定性差等影響工程應用。戈壁土具有較大的內聚力,壓縮性低、變形穩(wěn)定快、抗剪和承載能力高[4]。采用固化劑固化這些土壤進行日光溫室墻體建設對西北非耕地地區(qū)發(fā)展園藝產業(yè)具有重要意義。
土壤固化劑(soil curing agent,SCA)已在農業(yè)工程中廣泛應用[5]。李馳等[6]通過PX固化劑對庫布其沙漠風沙土進行加固;冀璐[7]研究了由水泥熟料為核心原料磨細而成的一種粉末狀固化劑MBER,并應用于干旱半干旱地區(qū)雨水集蓄設施;張麗萍等[8-10]從水土保持的角度研究了SSA土壤固化劑和EN-1土壤固化劑對黃土、砒砂巖的固化效果及其對雨水滲透性的影響;尹勇等[11-12]將固化土應用于沼氣池底座,發(fā)現(xiàn)建造的沼氣池強度符合國家驗收標準,且建池成本降低;邵玉芳等[13]將一種成分可調的水泥系土壤固化劑應用于湖泊淤泥的疏浚固化試驗,發(fā)現(xiàn)疏浚淤泥固化后可滿足路基填筑的強度要求。國外學者主要研究固化劑的配方、工程應用及固化機理,如Marto等[14]研發(fā)了一種SS299固化劑,與紅壤土固化后測試發(fā)現(xiàn)SS299土壤固化劑能顯著提高紅壤土的無側限抗壓強度和抗剪強度;Kim等[15]利用工業(yè)礦渣等廢棄物制備固化劑并試驗了固化劑的固化效果;Sato等[16]報道了在寒冷地區(qū)提高土壤固化劑工程應用效率的方法;為探明固化反應過程,Latifi等[17]用MgCl2作為固化劑與膨脹土和高嶺土固化后,發(fā)現(xiàn)能夠使抗壓強度提高2倍,固化過程發(fā)生了一系列的理化反應,膨脹土和高嶺土的孔隙由新產生的水合硅酸鎂(M-S-H)和鋁酸鎂水合物(M-A-H)這2種結晶化合物填充。
相變材料(phase change materials,PCMs)在溫室工程上應用廣泛。陳超等[18-22]從相變蓄熱材料制作方法、不同形式墻體結構等角度研究了相變蓄熱材料應用于日光溫室的效果;王宏麗等[23-25]研究了不同原料制備的相變材料,并采用砌塊和板材的形式制成日光溫室的墻體,探明其應用效果及蓄熱機理;郭靖等[26-28]設計了多種應用于日光溫室的太陽能相變蓄熱系統(tǒng),將相變材料制備成空心砌塊,研究了內滲型及外掛型2種不同封裝方式的相變材料的蓄熱效果;王宇欣等[29-30]研究了溫室蓄熱微膠囊相變材料的制備篩選及其性能特征;Benli等[31]利用相變材料制作的太陽能集熱器代替化石燃料對溫室供暖,并試驗分析了潛熱儲能系統(tǒng)的性能;Berroug等[32]將相變材料應用于溫室內,發(fā)現(xiàn)冬季夜間室內植物本身和空氣的溫度周期性波動較小,夜間室內平均相對濕度較對照溫室低10%~15%;Kumari等[33]利用相變材料制成墻板并安裝于溫室的北墻處,研究相變材料墻板對植物及室內空氣溫度的影響。
綜上,土壤固化劑和相變材料在農業(yè)工程方面已取得較好的應用效果,但均為單一應用。本文添加相變材料到土壤固化劑內,配制了一種相變固化劑(phase change materials additive for soil curing agent,PCC),選擇具有典型代表性的風沙土和戈壁土為供試材料,將相變固化劑添加進土壤中制成相變固化土(phase change cured soil),研究不同相變固化劑摻量下土壤的抗壓強度及熱性能,并通過固化前后土體微觀結構變化揭示其固化機理,以期為相變固化土在西北非耕地地區(qū)的應用提供依據。
1.1 供試材料
1.1.1 相變固化劑配制
本試驗采用的相變固化劑由相變母料、普通硅酸鹽水泥32.5(PO32.5)和粉末狀熟石灰(Ca(OH)2)按照質量比3:25:5干燥狀態(tài)下混合均勻。其中,相變母料為干燥粉末,由質量比為20:70:8:1:1的Na2SO4·10H2O、Na2HPO4·12H2O、CaCl2·6H2O、Na2B4O7·10H2O和CMC混合制備。相變固化劑常溫干燥保存待用。
1.1.2 相變固化土試塊的制備
試驗用風沙土取自內蒙古自治區(qū)烏海地區(qū)(39°39′N,106°47′E),戈壁土取自新疆維吾爾自治區(qū)喀什地區(qū)(39°47′N,75°99′E),取土深度均在地表下1~3 m。供試相變固化土試塊均按照土壤的最佳含水率狀態(tài)[6]來制備,參考文獻[34]的環(huán)刀法在實驗室內進行測量,風沙土的最佳含水率為12%,干密度為1.92 g/cm3;戈壁土的最佳含水率為15%,干密度為2.12 g/cm3。
參照美國材料實驗協(xié)會[35](American Society of Testing Materials,ASTM)有關水泥土試驗規(guī)程及中國試驗規(guī)程[34,36],將相變固化土試塊制備成邊長為70.7 mm的正方體。取風沙土和戈壁土各2份,其中1份按添加質量分數(shù)5%的相變固化劑摻和攪拌均勻,另1份按添加質量分數(shù)10%的相變固化劑摻和攪拌均勻。然后將拌勻的混合物與水按照5∶2的質量比攪拌均勻,拌合時間不少于10 min。裝入帶底試模中,采用人工振搗的方式分3層振搗,鋼制搗棒直徑為10 mm、長為350 mm、端部磨圓,均勻地由邊緣向中心按螺旋方式插搗25次。5%相變固化劑摻量風沙土試塊(5%PCC+SS)、10%相變固化劑摻量風沙土試塊(10%PCC+SS)、5%相變固化劑摻量戈壁土試塊(5%PCC+GS)、10%相變固化劑摻量戈壁土試塊(10%PCC+GS)壓實度分別為88.2%、89.3%、90.5%及91.4%,容重分別1.68、1.66、1.83和1.72 g/cm3。所有試塊制作后在室溫為(20 ± 5)℃的環(huán)境下靜置(24 ± 2)h,然后對試塊進行編號、拆模。試塊拆模后立即在標準養(yǎng)護條件下((20 ± 2)℃、相對濕度95%以上)養(yǎng)護28 d,試塊彼此間隔不小于10 mm。成型后即制成相變固化土試塊,每個試塊制作3個,即3個重復,相變固化土試塊見圖1。5%相變固化劑摻量風沙土試塊、5%相變固化劑摻量戈壁土試塊、10%相變固化劑摻量風沙土試塊、10%相變固化劑摻量戈壁土試塊實測含水率分別為11.5%、12.8%、12.2%及14.9%。
圖1 相變固化土試塊Fig.1 Test sample of phase change cured soil
1.2 試驗方法
1.2.1 抗壓強度測試
固化體的抗壓強度與固化體的物理力學性質密切相關,是其力學性能指標的集中反映。本試驗使用DNS100型電子萬能試驗機(長春機械科學院有限公司,最大試驗力100 kN,力測量精度在負荷傳感器容量的0.4%~100%范圍內,精度為示值的±0.5%)對各養(yǎng)護后的相變固化土試塊進行無側限抗壓強度測試,試驗在室溫條件下開展,施壓速度為0.5 kN/s。
1.2.2 差示掃描量熱曲線測試
相變固化土運用于主動蓄熱日光溫室時會凝結大量的冷凝水。研究表明[37],主動蓄熱風道的換熱量為20 715.89 kJ/h時可凝結3 714.69 g冷凝水。因此,相變固化土的換熱壁面處于濕潤狀態(tài)。本試驗從制備好的相變固化土試塊的正中部切割部分新鮮樣品,稱取質量3~5 mg,進行差示掃描量熱曲線測試(differential scanning calorimetry,DSC)。將小試塊放入小鋁盒內,蓋合壓實后放入儀器內,利用DSC Q2000差示掃描量熱儀(美國TA公司,溫度范圍為-180~725 ℃,量熱精度±0.05 ℃,升降溫速率 0.01~200 /min℃)對樣品進行相變溫度和潛熱值測定。測試條件:升降溫速率為5 /min℃,結合相變固化土在日光溫室內的實踐使用場景,溫度測試范圍為-20~50 ℃,液氮制冷。
1.2.3 電鏡測試
采用微型電動切割機將風干相變固化土試塊切成類圓柱體樣品(直徑約39 mm、高20 mm),取其較為平整的斷面,用吸耳球把表面的擾動顆粒除去,得到具有原狀結構的較完整的掃描電鏡斷面。利用導電膠固定樣品后進行噴金,完成后放入儀器內,采用S-3 400N掃描電鏡(日本Hitachi公司生產,高真空模式下30 kV加速電壓時有3 nm的二次電子(secondary electron,SE)成像分辨率;放大倍率達到5~3×105倍)對不同摻量的相變固化土進行測試,在高真空模式下采用5 kV加速電壓,放大倍率為100、500、1 000、3 000及6 000倍。
2.1 相變固化土抗壓強度分析
容重1.36 g/cm3時,風沙土的自然抗壓強度約為0.045 MPa[38]。加入相變固化劑后,由表1可以看出,5%相變固化劑摻量的試塊平均抗壓強度為1.667 MPa,超過國際上對固沙強度1 MPa的要求[39],10%相變固化劑摻量的試塊平均抗壓強度為3.208 MPa,約是5%相變固化劑摻量強度的2倍(P<0.01)。容重1.92~2.23 g/cm3時,戈壁土的自然抗壓強度約為1~1.5 MPa[40],5%相變固化劑摻量的戈壁土試塊平均抗壓強度為2.454 MPa,10%相變固化劑摻量的戈壁土試塊平均抗壓強度為3.671 MPa,約是5%相變固化劑摻量強度的1.5倍(P<0.01)。
表1 相變固化劑摻量不同的固化土的抗壓強度Table 1 Compressive strength of soil under different additive amount of PCC MPa
表1還表明,10%相變固化劑加量的風沙土和戈壁土之間沒有顯著差異(P>0.05),而5%相變添加量的風沙土和戈壁土間存在著顯著差異(P<0.05)。該結果表明無論是風沙土還是戈壁土,當添加10%固化劑后,其抗壓強度極顯著高于5%固化劑添加量的抗壓強度。因此,摻入相變固化劑后,風沙土和戈壁土的抗壓強度均明顯提高,且相變固化劑的摻量越多,其抗壓強度越高。風沙土的抗壓強度隨著相變固化劑的摻入量增加后其強度較戈壁土增加更明顯,這可能是因為風沙土的孔隙率較高,相變固化劑的滲透性好。
2.2 相變固化土DSC曲線分析
采用Advantage v5.5.3軟件繪制樣品DSC曲線如圖2所示,當熱流密度為負值時為吸熱過程,反之為放熱過程。由圖可知,所有樣品均有2次吸熱和放熱過程。
圖2 相變固化土DSC測試曲線Fig.2 DSC curves of phase change cured soil
圖2a是5%相變固化劑摻量風沙土的DSC測試曲線。第1次吸熱從-16.69 ℃開始,到1.35 ℃結束,最大吸熱溫度-3.96 ℃,吸熱量7.65 J/g;第2次吸熱從6.54 ℃開始,到42.68 ℃結束,最大吸熱溫度33.59 ℃,吸熱量28.16 J/g。第1次放熱從17.12 ℃開始,到1.59 ℃結束,最大放熱溫度16.42 ℃,放熱量為29.89 J/g;第2次放熱從-10.03 ℃開始,到-18.93 ℃結束,最大放熱溫度-9.69 ℃,放熱量為8.73 J/g。
圖2b是10%相變固化劑摻量風沙土的DSC測試曲線。第1次吸熱從-7.90 ℃開始,到2.94 ℃結束,最大吸熱溫度-3.44 ℃,吸熱量8.91 J/g;第2次吸熱從16.39 ℃開始,到43.16 ℃結束,最大吸熱溫度33.91 ℃,吸熱量28.56 J/g。第1次放熱從17.04 ℃開始,到0.88 ℃結束,最大放熱溫度17.78 ℃,放熱量為31.07 J/g;第2次放熱從-10.68 ℃開始,到-19.11 ℃結束,最大放熱溫度-9.93 ℃,放熱量為11.96 J/g。
圖2c是5%相變固化劑摻量戈壁土的DSC測試曲線。第1次吸熱從-14.92 ℃開始,到-0.06 ℃結束,最大吸熱溫度-5.98 ℃,吸熱量4.54 J/g;第2次吸熱從13.20 ℃開始,到37.79 ℃結束,最大吸熱溫度31.04 ℃,吸熱量13.55 J/g。第1次放熱從15.50 ℃開始,到0.05 ℃結束,最大放熱溫度13.73 ℃,放熱量為12.69 J/g;第2次放熱從-11.86 ℃開始,到-19.05 ℃結束,最大放熱溫度-11.86 ℃,放熱量為5.56 J/g。
圖2d是10%相變固化劑摻量戈壁土的DSC測試曲線。第1次吸熱從-19.05 ℃開始,到-3.07 ℃結束,最大吸熱溫度-8.44 ℃,吸熱量5.04 J/g;第2次吸熱從15.01 ℃開始,到37.56 ℃結束,最大吸熱溫度29.30 ℃,吸熱量14.20 J/g。第1次放熱從14.68 ℃開始,到-2.54 ℃結束,最大放熱溫度11.68 ℃,放熱量為13.10 J/g;第2次放熱從-13.63 ℃開始,到-19.23 ℃結束,最大放熱溫度-14.07 ℃,放熱量為3.41 J/g。
結合相變固化土抗壓強度分析可知,相對5%的相變固化劑摻量,10%相變固化劑摻量的風沙土和戈壁土均表現(xiàn)為獲得了更高的強度,而熱容量的總量和變化趨勢基本一致。4種相變固化土的吸、放熱溫度范圍基本一致,排除生產實踐中日光溫室墻體不會出現(xiàn)低于0 ℃以下低溫的情況,5%相變固化劑摻量風沙土、10%相變固化劑摻量風沙土、5%相變固化劑摻量戈壁土、10%相變固化劑摻量戈壁土吸熱范圍分別為6.54~42.68 ℃、16.39~43.16 ℃、13.20~37.79 ℃和15.01~37.56 ℃,放熱范圍分別為1.59~17.12 ℃、0.88~17.04 ℃、0.05~15.50 ℃和-2.54~14.68 ℃??芍?種試樣共同的吸熱溫度范圍為16.39~37.56 ℃、放熱溫度范圍為1.59~14.68℃,同等5%和10%的相變固化劑摻量下,風沙土的吸、放熱量均較戈壁土的大。
圖3 相變固化土微觀結構圖Fig.3 Microstructure of phase change cured soil
2.3 相變固化土固化機理分析
圖3是由掃描電鏡得到的固化土的微觀結構圖,并詳細顯示了土粒之間的連接情況。由圖3a和圖3b可以看出,5%和10%的相變固化劑的加入使風沙土顆粒間由原來的松散弱連接改變?yōu)橛上嘧児袒牧闲纬傻谋∧て瑺钅z結連接,形成了由風沙土顆粒和相變固化凝結物形成的整體結構。松散的風沙土顆粒通過相變固化劑膠結而連結成一個整體,提高了風沙土的強度,增強了風沙土的整體穩(wěn)定性。
由圖3c和圖3d可以看出,5%和10%的相變固化劑的加入增強了戈壁土顆粒間的粘結,由于戈壁土顆粒較小,相變固化劑形成的凝結物呈現(xiàn)為更加致密完整的片狀,較少出現(xiàn)由于顆粒間距離過大而在風沙土顆粒間形成的薄膜狀連接,微觀表現(xiàn)出較風沙土針狀膠結更加牢固的片狀和塊狀連接,連接面呈較致密的平面,從微觀的角度顯示固化后的戈壁土較固化后的風沙土有更高的強度。從圖3d的1 000及3 000倍的圖像下微觀縫隙處看出縫隙之間有針狀連接,該針狀連接為Na2SO4·10H2O的結晶,該結晶體互相交錯, 在土壤中形成穩(wěn)定網狀結構,使固化土體結構更加穩(wěn)固;另外由于相變固化劑中的主要成分是普通硅酸鹽水泥32.5(PO32.5),其主要成分為普通硅酸二鈣(2CaO·SiO2)、硅酸三鈣(3CaO·SiO2)、鋁酸三鈣(3CaO·Al2O3)和鐵鋁酸四鈣(4CaO·Al2O3·Fe2O3),因此除Na2SO4·10H2O結晶體外還生成了對應的水化物,這也是水泥的固化機理。該膨脹物有效地填充了網狀結構之間的孔隙,進一步改善了土壤中的孔隙結構,提高土壤強度。該微觀結構反映的結果與抗壓強度試驗表現(xiàn)在宏觀強度上的結果一致。
摻入相變固化劑后,戈壁土試塊的抗壓強度高于風沙土,這是由于戈壁土內含有黏土,且含有的水分較風沙土多,因長期土體自重的壓力在礫石、填充砂之間形成了膠狀,使礫石、填充砂、黏土混合形成整體,內聚力較大。這也解釋了風沙土的抗壓強度隨著相變固化劑的摻入量增加后其強度較戈壁土增加更明顯,這是因為風沙土的孔隙率較高,相變固化劑的滲透性較好。
相變固化劑的母料配方中進行了防過冷的組分(Na2B4O7·10H2O)設計,因此在日光溫室生產實踐溫度范圍內過冷對相變的影響較小。一般設施作物的適宜生長溫度為15~23 ℃、耐受溫度為5~40 ℃[41],結合前文分析可知4種試樣的吸熱溫度范圍16.39~37.56 ℃,吸熱在設施作物耐受高限(40 ℃)以下,放熱溫度范圍1.59~14.68 ℃,在設施作物耐受低限(5 ℃)以下仍能釋放熱量,故符合溫室生產需要。同一土壤類型的5%與10%相變固化劑摻量的吸、放熱量差距甚微,這是因為相變固化劑中相變母料的成分較少,也說明在滿足相變固化土承重要求的前提下,5%摻量較10%摻量更具有經濟性。但同一摻量下風沙土高于戈壁土的吸、放熱量,這可能是因為2種土壤類型及其成分不同導致與本試驗相變固化劑發(fā)生了某種反應而產生的現(xiàn)象,該部分原因在后續(xù)機理研究及實踐應用研究中待加強分析。
由掃描電鏡觀測可知,固化土無論是薄膜片狀或針狀連接,均與相變固化劑的成分有關,但本試驗沒有進一步詳細分析這些連接物質的成分,今后在研究中將著重研究這些物質的成分及固化反應過程,從而進一步揭示相變固化劑固化土壤的原理。
本試驗條件下,5%和10%相變固化劑摻量下風沙土和戈壁土試塊的平均抗壓強度均超過1.5 MPa,該強度達到了日光溫室墻體內填土對墻體圍護材料不產生側壓的設計要求。10%相變固化劑摻量的風沙土試塊平均抗壓強度為3.208 MPa,約是5%摻量試塊強度的2倍(P<0.01)。10%相變固化劑摻量的戈壁土試塊平均抗壓強度為3.671 MPa,約是5%摻量試塊強度的1.5倍(P<0.01)。因此,摻入相變固化劑后,風沙土和戈壁土的抗壓強度均明顯提高,且相變固化劑的摻量越多,其抗壓強度越高。
DSC測試表明,考慮墻體溫度>0 ℃的實際情況,5%相變固化劑摻量風沙土吸熱量為28.16 J/g、放熱量為29.89 J/g。10%相變固化劑摻量風沙土吸熱量為28.56 J/g、放熱量為31.07 J/g。5%相變固化劑摻量戈壁土吸熱量為13.55 J/g、放熱量為12.69 J/g。10%相變固化劑摻量戈壁土吸熱量為14.20 J/g、放熱量為13.10 J/g。同一土壤類型的5%與10%相變固化劑摻量的吸、放熱量差距甚微。
由掃描電鏡觀測到5%相變固化劑摻量和10%相變固化劑摻量的風沙土、戈壁土的微觀結構變化,相變固化劑的加入使原有顆粒間弱聯(lián)結變成薄膜片狀或針狀膠結聯(lián)結,在微觀結構方面可以明顯看到相變材料的結晶性狀,從微觀方面解釋了相變固化土的儲能機理和相變固化土較未固化前強度提高的內在因素。
因此,5%相變固化劑摻量的風沙土或戈壁土均可滿足日光溫室墻體的建造的承壓及儲能需要,在西北非耕地地區(qū)將會有較好的應用前景。同等相變固化劑摻量的風沙土較戈壁土的蓄熱性能好,在西北多沙地區(qū)更具推廣實用價值。
[1] 李倩倩,基于糧食安全的我國耕地保護紅線研究[D]. 北京:中國農業(yè)科學院,2012. Li Qianqian. Study on China’s Cultivated Land Protection Red Line Based on the Food Security[D]. Beijing: Chinese Academy of Agricultural Science, 2012.
[2] 蔣衛(wèi)杰. 第二屆綠洲論壇報告文集:西北非耕地高效開發(fā)利用現(xiàn)狀與展望[C]. 蘭州:甘肅人民出版社,2011.
[3] 曹麗花,趙世偉,趙勇鋼,等. 土壤結構改良劑對風沙土水穩(wěn)性團聚體改良效果及機理的研究[J]. 水土保持學報,2007,21(2):65-68. Cao Lihua, Zhao Shiwei, Zhao Yonggang, et al. Study on improvements of modifiers on soil water-stable aggregates and its mechanisms in aeolian sandy soil[J]. Journal of Soil and Water Conservation, 2007, 21(2): 65-68. (in Chinese with English abstract)
[4] Ishizuka M, Mikami M, Yamada Y, et al. An observational study of soil moisture effects on wind erosion at a gobi site in the Taklimakan Desert[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D18): 211-211.
[5] 邵玉芳. 土壤固化技術在農業(yè)工程中的應用[J]. 中國農機化,2005(3):60-61. Shao Yufang. Application of soil solidification in agricultural engineering[J]. Chinese Agricultural Mechanization, 2005(3): 60-61. (in Chinese with English abstract)
[6] 李馳,于浩. 固化風沙土強度特性及固化機制試驗研究[J].巖土力學,2009,30(Supp.2):48-52. Li Chi, Yu Hao. Experimental studies of strength characteristics and solidified mechanism for solidified aeolian sandy soil[J]. Rock and Soil Mechanics, 2009, 30(Supp.2): 48-52. (in Chinese with English abstract)
[7] 冀璐. 雨水集蓄設施結構分析與優(yōu)化設計[D]. 楊凌:西北農林科技大學,2012. Ji Lu. Structural Analysis and Optimum Design of Rainwater Collecting and Storing Facities[D]. Yangling: Northwest A&F University, 2012. (in Chinese with English abstract)
[8] 張麗萍,張興昌,孫強. SSA土壤固化劑對黃土擊實、抗剪及滲透特性的影響[J]. 農業(yè)工程學報,2009,25(7):45 -49. Zhang Liping, Zhang Xingchang, Sun Qiang. Effects of SSA soil stabilizer on compaction, shear strength and permeability characteristics of loess[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(7): 45-49. (in Chinese with English abstract)
[9] 蘇濤,張興昌. EN-1對砒砂巖固化土坡面徑流水動力學特征的影響[J]. 農業(yè)機械學報,2011,42(11):68-75. Su Tao, Zhang Xingchang. Effects of EN-1 soil stabilizer on slope runoff hydraulic characteristics of pisha sandstone stabilized soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(11): 68-75. (in Chinese with English abstract)
[10] 劉月梅,張興昌. EN-1對黃土性固化土水分垂直入滲特征的影響[J]. 農業(yè)機械學報,2012,43(11):65-73. Liu Yuemei, Zhang Xingchang. Effects of EN-1 soil stabilizer on water vertical infiltration characteristics for Loess stabilized soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 65-73. (in Chinese with English abstract)
[11] 尹勇,屈鋒,何萬寧,等. 固化土結構沼氣池試驗研究初報[J]. 農業(yè)工程學報,2007,23(10):216-219. Yin Yong, Qu Feng, He Wanning, et al. Preliminary experimental study on household biogas digester made of solidified soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(10): 216-219. (in Chinese with English abstract)
[12] 唐和建,尹勇,屈鋒,等. 土壤固化技術在農村戶用沼氣池建設中的應用[J]. 中國沼氣,2006,25(2):34-35,37. Tang Hejian, Yin Yong, Qu Feng, et al. The application of soil curing technology in the construction of biogas gas pool in rural households[J]. China Biogas, 2006, 25(2): 34-35, 37. (in Chinese with English abstract)
[13] 邵玉芳,龔曉南,鄭爾康,等. 疏浚淤泥的固化試驗研究[J]. 農業(yè)工程學報,2007,23(9):191-194. Shao Yufang, Gong Xiaonan, Zheng Erkang, et al. Experimental study on stabilization of dredged silts[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(9): 191-194. (in Chinese with English abstract)
[14] Marto A, Latifi N, Sohaei H. Stabilization of laterite soil using GKS soil stabilizer[J]. Electronic Journal of Geotechnical Engineering, 2013, 18(18): 521-532.
[15] Kim Y, Yu G, Mun K. Strength characteristics of solidified soil with hardening agents made of industrial by-products[J]. Journal of the Korean Geoenvironmental Society, 2012, 13(6): 19-26.
[16] Sato A, Yamanashi T, Suzuki T, et al. Land-Improvement Technology Using the Heat of Soil Stabilizer Reactions in Cold Regions[C]//Salt Lake City: 16th International Conference on Cold Regions Engineering, 2015.
[17] Latifi N, Rashid A S A, Siddiqua S, et al. Micro-structural analysis of strength development in low-and high swelling clays stabilized with magnesium chloride solution: A green soil stabilizer[J]. Applied Clay Science, 2015, 118: 195-206.
[18] 陳超,果海鳳,周瑋. 相變墻體材料在溫室大棚中的實驗研究[J]. 太陽能學報,2009,30(3):287-293. Chen Chao, Guo Haifeng, Zhou Wei. Experimental research of the composite phase change wall materials in greenhouse[J]. Acta Energiae Solaris Sinica, 2009, 30(3): 287-293. (in Chinese with English abstract)
[19] 管勇,陳超,李琢,等. 相變蓄熱墻體對日光溫室熱環(huán)境的改善[J]. 農業(yè)工程學報,2012,28(10):194-201. Guan Yong, Chen Chao, Li Zhuo, et al. Improving thermal environment in solar greenhouse with phase-change thermal storage wall[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(10): 194-201. (in Chinese with English abstract)
[20] 陳超,李琢,管勇,等. 制作方式對日光溫室相變蓄熱材料熱性能的影響[J]. 農業(yè)工程學報,2012,28(25):186-191. Chen Chao, Li Zhuo, Guan Yong, et al. Effects of building methods on thermal properties of phase change heat storage composite for solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(25): 186-191. (in Chinese with English abstract)
[21] 管勇,陳超,凌浩恕,等. 日光溫室三重結構相變蓄熱墻體傳熱特性分析[J]. 農業(yè)工程學報,2013,29(21):166-173. Guan Yong, Chen Chao, Ling Haoshu, et al. Analysis of heat transfer properties of three-layer wall with phase-change heat storage in solar greenhouse[J]. Transactions of the ChineseSociety of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 166-173. (in Chinese with English abstract)
[22] 凌浩恕,陳超,陳紫光,等. 日光溫室?guī)жQ向空氣通道的太陽能相變蓄熱墻體體系[J]. 農業(yè)機械學報,2015,46(3):336-343. Ling Haoshu, Chen Chao, Chen Ziguang, et al. Performance of phase change material wall with vertical air channels integrating solar concentrators[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 336-343. (in Chinese with English abstract)
[23] 王宏麗,鄒志榮,陳紅武,等. 溫室中應用相變儲熱技術研究進展[J]. 農業(yè)工程學報,2008,24(6):304-307. Wang Hongli, Zou Zhirong, Chen Hongwu, et al. Research advances in technologies of phase-change heat storage and its application in greenhouses[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(6): 304-307. (in Chinese with English abstract)
[24] 王宏麗,王朋,鄒志榮. 硬脂酸正丁酯/聚苯乙烯定形相變材料實驗[J]. 太陽能學報,2010,31(11):1471-1474. Wang Hongli, Wang Peng, Zou Zhirong. Experimental investigation of butyl stearate/polystyrene composite as form-stable PCM[J]. Acta Energiae Solaris Sinica, 2010, 31(11): 1471-1474. (in Chinese with English abstract)
[25] 王宏麗,李曉野,鄒志榮. 相變蓄熱砌塊墻體在日光溫室中的應用效果[J]. 農業(yè)工程學報,2011,27(5):253-257. Wang Hongli, Li Xiaoye, Zou Zhirong. Application of brick wall with phase change rice husk in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 253-257. (in Chinese with English abstract)
[26] 郭靖,鄒志榮,劉玉鳳. 不同方式封裝的相變材料蓄熱效果研究:基于日光溫室[J]. 農機化研究,2012(2):137-140. Guo Jing, Zou Zhirong, Liu Yufeng. Study on performance of heat preservation of phase change material packed in different ways[J]. Journal of Agricultural Mechanization Research, 2012(2): 137-140. (in Chinese with English abstract)
[27] 張勇,鄒志榮,李建明,等. 日光溫室相變空心砌塊的制備及功效[J]. 農業(yè)工程學報,2010,26(2):263-267. Zhang Yong, Zou Zhirong, Li Jianming, et al. Preparation of the small concrete hollow block with PCM and its efficacy in greenhouses[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 263-267. (in Chinese with English abstract)
[28] 閆彥濤,鄒志榮,李凱. 太陽能相變蓄熱系統(tǒng)在溫室加溫中的應用[J]. 中國農業(yè)大學學報,2016,21(5):139-146. Yan Yantao, Zou Zhirong, Li Kai. Application of solar-phase change heat storage system in greenhouse[J]. Journal of China Agricultural University, 2016, 21(5): 139-146. (in Chinese with English abstract)
[29] 王宇欣,劉爽,王平智,等. 日光溫室根區(qū)熱環(huán)境相變調控系統(tǒng)設計與性能試驗[J]. 農業(yè)機械學報,2016,47(8):294-304. Wang Yuxin, Liu Shuang, Wang Pingzhi, et al. Application effect of greenhouse root zone thermal environment control system with latent functionally thermal fluid[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 294-304. (in Chinese with English abstract)
[30] 王宇欣,劉爽,王平智,等. 溫室蓄熱微膠囊相變材料制備篩選與性能表征[J]. 農業(yè)機械學報,2016,47(9):348-358. Wang Yuxin, Liu Shuang, Wang Pingzhi, et al. Preparation and characterization of microencapsulated phase change materials for greenhouse application[J].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 348-358. (in Chinese with English abstract)
[31] Benli H, Durmus A. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating[J]. Solar Energy, 2009, 83(12): 2109-2119.
[32] Berroug F, Lakhal E K, El Omari M, et al. Thermal performance of a greenhouse with a phase change material north wall[J]. Energy and Buildings, 2011, 43(11): 3027-3035. [33] Kumari N, Tiwari G N, Sodha M S. Effect of phase change material on passive thermal heating of a greenhouse[J]. International Journal of Energy Research, 2006, 30(4): 221-236.
[34] 土工試驗方法標準:GB/T 50123-1999[S].
[35] Standard Practice for Verification of Test Frame and Specimen Alignment under Tensile and Compressive Axial Force Application: ASTM E1012-2014[S].
[36] 建筑砂漿基本性能試驗方法標準:JGJ/T 70-2009[S].
[37] 張勇,高文波,鄒志榮. 日光溫室主動蓄熱后墻傳熱CFD模擬及性能試驗[J]. 農業(yè)工程學報,2015,31(5):203-211. Zhang Yong, Gao Wenbo, Zou Zhirong. Performance experiment and CFD simulation of heat exchange in solar greenhouse with active thermal storage back-wall[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 203-211. (in Chinese with English abstract)
[38] Ei-HADY O A. 碳酸鈣和聚丙烯酰胺對沙土結構和穩(wěn)定性的影響[J]. 世界沙漠研究,1989(1):35-38.
[39] 韓致文,胡英娣,陳廣庭,等. 化學工程固沙在塔里木沙漠公路沙害防治中的適宜性[J]. 環(huán)境科學,2000,21(5):86-88. Han Zhiwen, Hu Yingdi, Chen Guangting, et al. The suitability of chemical engineering stabilization in controlling aeolian hazard along the highway in Tarim basin[J]. Environmental Sciences, 2000, 21(5): 86-88. (in Chinese with English abstract)
[40] 何慶豐. 戈壁地基承載能力[J]. 工業(yè)建筑,1989(7):2-5. [41] 張福墁. 設施園藝學:第2版[M]. 北京:中國農業(yè)大學出版社,2010.
Performance test and curing mechanism of phase change cured soil for solar greenhouse walls
Bao Encai, Zou Zhirong, Zhang Yong※
(College of Horticulture, Northwest A&F University, the Agriculture Ministry Key Laboratory of Protected Horticultural Engineering in Northwest, Yangling 712100, China)
Building solar greenhouse in these non-cultivated lands cannot only make full use of the land resources in the northwest of China, but also has great significance in ensuring national food security. However, traditional solar greenhouses with soil or brick walls often suffer from a huge energy imbalance. In In this study, we designed a phase change materials additive as a soil curing agent (PCC) and used it in sand soil (SS) and Gobi soil (GS) widely distributed in the northwest of China. The new phase change cured soil greenhouse wall materials were designed and their mechanical and thermal properties were evaluated and the curing mechanism was also studied. The main composition of phase change curing agent included phase change material, silicate cement (PO32.5) and powdered Ca(OH)2at a ratio of 3: 25: 5. The raw phase material was Na2SO4·10H2O : Na2HPO4·12H2O : CaCl2·6H2O : Na2B4O7·10H2O : CMC = 20 : 70 : 8 : 1: 1. All the materials were stored at room temperature before use. The sand soil had the optimal water content of 12% and the dry density of 1.92 g/cm3 of density. The sample Gobi soil had the water content and dry density of 15% and 2.12 g/cm3, respectively. The phase changed cured soil with 5% PCC in SS, 10% PCC in SS, 5% PCC in GS and 10% PCC in GS was prepared with 3 replicates for each treatment. The compressive strength was tested at room temperature. The thermal property was studied by differential scanning calorimetry method. The structure of soil was measured by an electron microscope. The results showed that the average compressive strength of 5% PCC + SS was 1.667 MPa, higher than the international standard for curing sand (1 MPa) and the non-additive SS (0.045 MPa). The average compressive strength of 10% PCC + SS was 3.208 MPa, which almost doubled that of 5% PCC + SS. The compressive strength for 5% PCC+ GS and 10% PCC+ GS was 2.454 and 3.671 MPa, respectively, which were both higher than the average compressive strength of GS (1-1.5 MPa). Both endothermic and exothermic processes appeared in the greenhouse. For the 5% PCC + SS, the endothermic process was from 6.54 ℃ to 42.68 ℃. The maximum
endothermic temperature was 33.59 ℃, with the heat absorption of 28.16 J/g. The exothermic process started at 17.12 ℃ and ended at 1.59 ℃. The maximum exothermic temperature was 16.42 ℃ and the over all exothermic volume was 29.89 J/g. In contrast, the heat flow change of the 10% PCC + SS was relatively small. For 5% PCC + GS, an overall similar endothermic and exothermic process was also observed. The endothermic process started at 13.20 ℃ and endedat 37.79 ℃. The maximum
endothermic temperature was 31.04 ℃, and the heat absorption was 13.55 J/g. The exothermic started at 15.50 ℃ and ended at
0.05 ℃. The maximum exothermic temperature was 13.73 ℃ and the heat absorption was 12.69 J/g. The heat flow c hange of the 10% PCC + GS was also very small. These results indicated that 5% PCC and 10% PCC both met the requirement of the greenhouse energy storage. Adding of PCC enhanced the poor connection of original particleS into cementation connection, thereby reducing the holes, enhancing mechanical strength and heat storage. This paper provided valuable suggestions for the utility of SS and GS as fundamental structural materials of solar greenhouses, especially in the wild northwest regions.
phase change materials; soils; greenhouse; SCA; compressive strength; DSC; curing mechanism
10.11975/j.issn.1002-6819.2017.16.027
S625.1
A
1002-6819(2017)-16-0203-08
鮑恩財,鄒志榮,張 勇. 日光溫室墻體用相變固化土性能測試及固化機理[J].農業(yè)工程學報[J]. 農業(yè)工程學報,2017,33(16):203-210.
10.11975/j.issn.1002-6819.2017.16.027 http://www.tcsae.org
Bao Encai, Zou Zhirong, Zhang Yong. Performance test and curing mechanism of phase change cured soil for solar greenhouse walls[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 203-210. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.16.027 http://www.tcsae.org
2017-03-07
2017-08-10
國家“863”計劃項目(2013AA102407);中國博士后基金項目特別資助 (2015T81053 );博士后科學基金(2014M562458);主動采光蓄熱溫室、超大跨度塑料大棚結構優(yōu)化與智能化環(huán)境調控裝備研制(2016BZ0901);設施農業(yè)采光蓄熱技術提升研究與示范(2016KTCL02-02)
鮑恩財,男,安徽合肥人,博士生,主要從事設施園藝工程方面的研究。楊凌 西北農林科技大學園藝學院,712100。
Email:baoencai1990@163.com
※通信作者:張 勇,男,陜西榆林人,副教授,博士,主要從事溫室建筑結構及光熱環(huán)境和建筑園藝研究。楊凌 西北農林科技大學園藝學院,712100。Email:Landscape@nwsuaf.edu.cn。中國農業(yè)工程學會高級會員:張 勇(E041200715S)