王 藝,王 英(西南大學計算機與信息科學學院,重慶 400715)
柑橘肥水智能決策支持系統(tǒng)的變化預測方法及應用效果
王 藝,王 英
(西南大學計算機與信息科學學院,重慶 400715)
本體是農(nóng)業(yè)智能信息系統(tǒng)的核心,是實現(xiàn)精準農(nóng)業(yè)信息服務的關(guān)鍵。本體的維護和管理過程將導致本體發(fā)生各種變化,從而對其支撐的應用程序產(chǎn)生不同程度的影響。如何有效地分析本體元素的變化對應用程序的影響是農(nóng)業(yè)智能信息系統(tǒng)維護和管理的難題。該文提出一種基于界面組件依賴矩陣、本體概念依賴矩陣及本體概念-界面組件依賴矩陣的系統(tǒng)變化預測方法,實現(xiàn)了避免代碼層分析而較準確預測本體概念的變化對應用程序用戶界面組件的影響。以包含22個本體概念和6個界面組件的柑橘肥水智能決策支持系統(tǒng)為案例分析,驗證結(jié)果表明:該變化預測方法能夠達到85%的平均準確率和98%的平均召回率。該變化預測方法對解決以本體為核心的農(nóng)業(yè)智能信息系統(tǒng)的變化管理難題可提供有效的解決方案。
系統(tǒng)分析;軟件結(jié)構(gòu);預測;語義本體;本體變化管理;柑橘肥水決策支持系統(tǒng);軟件變化管理
智能農(nóng)業(yè)信息系統(tǒng)以高質(zhì)量的領(lǐng)域本體為核心,以期實現(xiàn)精準及個性化的農(nóng)業(yè)決策支持服務[1-8]。在開發(fā)此類系統(tǒng)時,由于農(nóng)業(yè)領(lǐng)域知識具有海量和多源的特點,本體的開發(fā)一般以決策支持任務為目標,進行相關(guān)部分本體的構(gòu)建,而不是完成全部本體再進行應用程序開發(fā)工作[9-13]。針對不同應用領(lǐng)域的農(nóng)業(yè)本體構(gòu)建工作取得一定進展[4,14-20],包括標準詞匯如AGROVOC[14]和NAL農(nóng)業(yè)術(shù)語集[15],柑橘肥水本體[4]、土豆本體[16]、大米本體[17]、農(nóng)產(chǎn)品冷鏈管理體系本體[18]、水質(zhì)本體[19]及玉米病蟲害本體[20]。當本體變化時,例如本體元素的刪除或者增加,本體所支撐的應用程序,將會受到不同程度的影響,甚至導致應用程序的功能失效[21-24]。因此,以本體為核心的農(nóng)業(yè)信息系統(tǒng)需要解決:當本體元素有變化時,如何預測并獲取其支撐的應用程序功能受到的影響情況。
現(xiàn)有相關(guān)研究主要集中于本體進化管理[21-24],以及軟件系統(tǒng)的變化管理[25-32],而缺乏針對基于本體的智能決策系統(tǒng)的變化管理的研究,因而無法解決本體變化所導致的應用程序的變化影響分析和預測問題。
本文提出一種本體概念的變化對應用程序界面組件影響的預測方法,以期為智能農(nóng)業(yè)信息系統(tǒng)的變化管理難題提供可行的解決方法,并以柑橘肥水智能決策支持系統(tǒng)[4]為案例進行驗證。
如圖1所示,基于本體的柑橘肥水智能決策支持系統(tǒng)由柑橘肥水本體、基于本體的應用程序以及界面組件構(gòu)成。本體包含了施肥和排灌專家知識,是決策支持系統(tǒng)的核心。本體由概念、實例和屬性組成。實例是概念所包含的成員,屬性體現(xiàn)實例間的關(guān)系?;诟涕俦倔w的應用及程序可基于各類平臺,如Web應用、安卓手機應用等,進行訪問。界面組件包含文本框和下拉菜單等常用界面元素,它體現(xiàn)了應用程序的功能,實現(xiàn)應用程序與用戶的交互[4,28]。
圖1 柑橘肥水智能決策支持系統(tǒng)及其變化管理Fig.1 Citrus fertilization and irrigation intelligent decision support system and its change management
由于系統(tǒng)維護以及用戶需求變化等,本體會不斷進行修改和擴展[23-24]。當本體有變化時,構(gòu)建在本體之上的應用程序?qū)⑹艿讲煌潭鹊挠绊?。直觀地說,用戶交互界面組件可能發(fā)生改變,例如:增加了用戶輸入信息的要求或者刪除某個下拉菜單選項等。本文的方法是基于本體概念和界面組件在概念層的直接關(guān)聯(lián)矩陣,構(gòu)建變化影響傳播樹,計算本體概念的變化預測值,實現(xiàn)本體概念變化對用戶界面組件的預測。
設集合C={c1, …, cn}包含本體的所有與領(lǐng)域直接相關(guān)的概念,不考慮通用的概念如owl:Thing等。集合IC= {ic1, …, icm}包含應用程序的所有組件。集合V=, …, v包含所有界面變量。令V(ic)?V,表示組件ic關(guān)聯(lián)的界面變量集合。對界面組件依賴矩陣、本體概念依賴矩陣、本體概念-界面組件依賴矩陣和變化影響傳播樹進行定義和說明如下。
2.1 依賴矩陣定義
2.1.1 界面組件依賴矩陣
界面組件依賴矩陣Mic=(ωij)m×m,是m階矩陣,表示組件ici依賴于組件icj的程度,ωij介于0~1之間
式中|V(ici) ∩V(icj)|表示ici和icj共同的界面變量的個數(shù),|V(ici) ∪V(icj)|表示ici和icj包含的所有界面變量的個數(shù)。
界面組件依賴矩陣Mic通過界面組件間共同的界面變量在概念層建立了界面組件間的關(guān)聯(lián)[28]。這里,概念層是指應用程序的設計和用戶界面層,它是相對于程序源代碼層而言。
2.1.2 本體概念依賴矩陣
本體概念依賴矩陣Mc=(rij)n×n,是n階矩陣,rij介于0~1之間,表示本體概念ci依賴cj的程度。設在本體中ci與包含cj的共K<n個概念通過本體屬性有關(guān)聯(lián),則
本體概念依賴矩陣描述本體概念間的相互關(guān)聯(lián)度。Mc元素rij的計算采用依賴圖算法[29]。
圖2 本體概念及與界面組件間的依賴關(guān)系圖Fig.2 Ontology concept dependency and dependency between ontology concept and interface component
2.1.3 本體概念-界面組件依賴矩陣
本體概念-界面組件依賴矩陣Mc->ic=(dij)m×n,dij介于0~1之間,表示概念cj對組件ici的影響程度。設ici同時關(guān)聯(lián)于包含cj的R<n個概念,則
本體概念-界面組件依賴矩陣描述了本體概念對界面組件在概念層的直接關(guān)聯(lián)。
2.2 變化影響傳播樹
2.2.1 變化影響傳播樹定義及算法
變化影響傳播樹T=(X, Z)是一棵樹,其根節(jié)點是r∈C, r為發(fā)生初始變化的本體概念,節(jié)點集合X由IC和C中所有元素構(gòu)成,邊集合Z=(vi,vj),vi, vj∈X,表示vi對vj有影響。從根節(jié)點r到任何葉節(jié)點的路徑p=r…vt,不允許有重復的節(jié)點出現(xiàn)。算法1是構(gòu)建以本體概念cs為根的變化影響傳播樹的方法,其中threshold是樹高閾值,h是表示樹高的變量。
算法1
2.2.2 變化影響傳播樹的構(gòu)建過程
給定Mic,Mc及Mc->ic,圖3是概念c1的變化影響傳播樹且樹高閾值threshold為3。變化影響樹的樹根為c1,即X0={c1}。檢索Mic,Mc及Mc->ic知c1對ic1, ic3, c3, c5均有影響,得到X1={ic1, ic3, c3, c5},即如圖3所示的樹高度為1的所有節(jié)點。對X1中的所有節(jié)點,檢索Mic,Mc及Mc->ic,找出相應的影響節(jié)點,并排除從根節(jié)點到所有節(jié)點的路徑上有重復節(jié)點的情況。以ic1為例,由Mic知,ic1影響ic2, ic4, ic5, 得到圖3所示ic1的3個子節(jié)點。以此類推,得到X2={ ic1, ic2, ic4, ic5, c2, c4, c6},如圖3所示的樹高度為2的所有節(jié)點。同理可得樹高度為3的所有節(jié)點集合X3。
圖3 概念c1的變化影響傳播樹及概念c1對ic2的變化影響路徑Fig.3 Change impact propagation tree for concept c1and change impact paths from c1to ic2
2.2.3 變化預測值的計算方法
根據(jù)界面組件依賴矩陣Mic、本體概念依賴矩陣Mc及本體概念-界面組件依賴矩陣Mc->ic所描述的元素間直接關(guān)聯(lián)所構(gòu)建的變化影響傳播樹,反映了本體概念對界面組件的綜合影響情況。為量化本體概念對界面組件的綜合影響程度,本文提出如下方法計算該綜合影響程度,并將量化的綜合影
響程度稱為變化預測值。變化預測值的計算方法是:將變化影響傳播樹看作邏輯樹,即樹的同一條路徑的節(jié)點看作“與”(and),而分支節(jié)點看作“或”(or)運算[30],根據(jù)邏輯樹的“與”和“或”計算式(4)(5)所示,可獲取本體概念對界面組件的變化預測值。
其中vivjvk是一條路徑,evi→vj和evj→vk分別是vi對vj的變化預測值(表示vi的變化對vj產(chǎn)生影響的程度,其值介于0~1之間)和vj對vk的變化預測值(表示vj的變化對vk產(chǎn)生影響的程度,其值介于0~1之間)。若vi(vj)對vj(vk)有直接影響,其數(shù)值分別由矩陣Mic,Mc和Mc->ic的相應元素ωij、γij和dij給出。
其中vivj和vivk是變化影響傳播樹的2條路徑,vi是分支節(jié)點。
圖3中c1到ic2有8條間接影響路徑(圖3所示圓圈標示),分別通過4個節(jié)點ic1、ic3、c3和c5傳播變化影響,故c1對ic2的變化預測值可依據(jù)式(4)、式(5)計算所得為0.52。
故當c1改變時,導致界面組件ic2發(fā)生變化的可能性為52%。
2.2.4 變化影響傳播樹的高度限制
變化影響傳播樹的樹高用變量threshold進行了限制,其原因是:首先,當節(jié)點數(shù)量較大時,變化影響傳播樹從根至葉節(jié)點的路徑會很長,數(shù)據(jù)處理的時間復雜度呈路徑長度的指數(shù)增長[30]。語義本體的概念數(shù)量通常較大(例如AGROVOC[14]本體有32 000個概念),因此必須限定樹高以控制計算復雜度。其次,由式(4)知,路徑越長,概念對組件的間接影響值會減弱較快。故限定樹的高度以控制計算復雜度并獲得滿意的預測結(jié)果是合理且相關(guān)研究推薦策略,一般建議樹高為3[30]。
本文以柑橘肥水智能決策支持系統(tǒng)[4]對所提變化預測方法進行驗證。驗證方法是對本體概念的變化,根據(jù)所提變化預測方法計算得到界面組件的變化預測值,通過與變化預測閾值比較,得到預測所有影響的界面組件,將其與系統(tǒng)組件變化的實際結(jié)果比較,以評價所提預測方法的有效性。系統(tǒng)變化的實際結(jié)果通過直接分析柑橘肥水智能決策支持系統(tǒng)的源代碼得到。
柑橘肥水智能決策支持系統(tǒng)[4]有3個子系統(tǒng):施肥查詢、病癥查詢及排灌監(jiān)測,其界面組件共6個:按果園查詢(ic1),初次查詢(ic2),施肥建議(ic3),選擇病癥(ic4),查詢結(jié)果(ic5),監(jiān)控主頁(ic6),共關(guān)聯(lián)30個系統(tǒng)變量,得到界面組件依賴矩陣Mic。
柑橘肥水本體[4]共22個領(lǐng)域概念,根據(jù)其本體概念依賴關(guān)系圖,得到相應的本體概念依賴矩陣Mc。
最后得到柑橘肥水決策系統(tǒng)的本體概念-界面組件依賴矩陣Mc->ic
表1是通過構(gòu)建變化影響傳播樹,并根據(jù)變化預測值的計算方法得到的22個概念對6個界面組件的變化預測值,以表示本體概念的變化對界面組件的綜合影響程度。
為驗證變化影響預測的準確性,對柑橘肥水智能決策支持系統(tǒng)[4]JSP/Servlet源碼進行人工分析,得到本體概念變化對界面組件影響的實際結(jié)果(如表2所示)。為從表1獲取本體概念對界面組件的變化預測結(jié)果,以便與實際結(jié)果比較,本文采用設定變化預測閾值λ的方法。變化預測閾值λ介于0%~100%之間,是變化預測值有效的最低值,即:當概念對界面組件的變化預測值大于等于λ時,則判斷概念的變化對界面組件有影響;否則概念的變化對界面組件沒有影響。以概念c1為例,當變化預測閾值λ為5%時,由表1知c1對ic3, ic4和ic5的變化預測值均大于λ,故c1變化會影響ic3, ic4和ic5,即c1的變化預測結(jié)果為{ic3, ic4, ic5}。表2是根據(jù)表1的數(shù)據(jù)分別取變化預測閾值λ1=5%和λ2=10%所得到的界面組件的預測結(jié)果。
本文采用廣泛應用于統(tǒng)計學和信息檢索領(lǐng)域的2個度量值準確率和召回率(見式(6)、(7)),用于評價方法的有效性。P是變化影響預測結(jié)果集合,E是源代碼分析結(jié)果,p是預測的準確率,r是預測的召回率。注意到,當E為空集時,r為1。若E和P同時為空集,p為1。這里,準確率p表示預測結(jié)果集合P中,有多少組件是真正的受到變化影響的。召回率r表示有多少實際組件集合E中的元素被正確預測到。以表2中c22為例,當λ1=5%時,P={ic3,ic4, ic5},E={ic4, ic5},由式(6)得p為0.67,由式(7)得r為1,說明該方法能正確預測67%的組件,且100%預測到受影響的組件。一般情況下,準確率和召回率是沖突的,即高準確率會導致低召回率,反之,高召回率可能導致低準確率。表2給出了變化預測閾值λ1=5%和λ2=10%的相應準確率和召回率。試驗結(jié)果表明,當設定較小的變化預測閾值時可以得到較高的召回率,而準確率有所下降;反之,當設定較大的變化預測閾值時,則可以得到較高的準確率,但召回率就有所下降。式(8)、(9)是平均準確率和平均召回率,用于評價22個本體概念的平均預測結(jié)果。其中pi表示ci的準確率,ri是召回率,n是概念總數(shù)。
表1 本體概念對界面組件的變化預測值Table 1 Change prediction values for interface components relating to ontology concepts %
表2 本體概念對界面組件變化預測結(jié)果及其準確率和召回率分析Table 2 Change prediction results for interface components relating to ontology concepts and analysis of precision and recall rates
準確率p和召回率r在不同應用領(lǐng)域和需求有不同的參考范圍[28,31-34]。在軟件系統(tǒng)管理領(lǐng)域,準確率高于40%而召回率高于60%,可以證明方法的有效性[28,31-32];在知識提取領(lǐng)域[33-34],準確率高于60%,而召回率高于40%,可以證明方法的有效性。表2的驗證結(jié)果顯示,當變化預測閾值取5%時,22個概念的預測平均準確率為77%,平均召回率為98%;當變化預測閾值取10%時,22個本體概念的預測平均準確率為85%,平均召回率為74%,證明該方法的有效性。當把預測結(jié)果的閾值從5%提高到10%時,精確率由77%提升到85%,而召回率由98%下降到74%。閾值5%和10%是根據(jù)參考文獻[28,30]及筆者試驗所取的經(jīng)驗值,可以根據(jù)實際需要在此基礎(chǔ)上調(diào)整。
本文針對在基于語義本體的農(nóng)業(yè)決策支持系統(tǒng)中,分析和管理本體概念變化對應用程序界面組件的綜合變化影響難題,提出了基于界面組件依賴矩陣、本體概念依賴矩陣、本體概念-界面組件依賴矩陣及變化影響傳播樹的變化影響分析和預測方法。本文以柑橘肥水智能決策支持系統(tǒng)為案例研究對象,驗證了所提出的系統(tǒng)變化預測方法的有效性,主要有以下結(jié)論:
1)對柑橘肥水本體的22個本體概念,6個界面組件,在不需要查看系統(tǒng)源代碼的情況下,僅根據(jù)概念層的直觀依賴關(guān)系,能夠達到85%的平均準確率和98%的平均召回率,證明了所提方法的有效性。
2)在軟件系統(tǒng)變化管理領(lǐng)域,該方法的準確率和召回率能夠滿足應用需求,可大幅度降低本體變化影響分析的人工成本,提高智能決策支持系統(tǒng)的管理效率。試驗結(jié)果說明,當期望較高準確率時,應設定較大的變化預測閾值;當期望較高召回率時,應設定較小的變化預測閾值。
3)本文針對基于語義本體的柑橘肥水智能決策支持系統(tǒng)所提出的變化預測方法能夠應用到其他智能信息系統(tǒng),可用于預測本體元素的變化對系統(tǒng)其他組件的影響情況。
[1] 陳立平,趙春江,劉學馨,等. 精確農(nóng)業(yè)智能決策支持平臺的設計與實現(xiàn)[J]. 農(nóng)業(yè)工程學報,2002,18(2):145-148. Chen Liping, Zhao Chunjiang, Liu Xuexin,et al. Design and implementation of intelligent decision support system for precision agriculture [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(2): 145-148. (in Chinese with English abstract)
[2] Beck H, Morgan K, Jung Y, et al. Ontology-based simulation in agricultural systems modeling[J]. Agricultural Systems, 2010, 103(7): 463-477.
[3] Nikkil? R, Seilonen I, Koskinen K. Software architecture for farm management information systems in precision agriculture[J]. Computers and Electronics in Agriculture, 2010, 70(2): 328-336.
[4] 王藝,王英,原野,等. 基于語義本體的柑橘肥水管理決策支持系統(tǒng) [J]. 農(nóng)業(yè)工程學報,2014,30(9):93-101. Wang Yi, Wang Ying, Yuan Ye, et al. A decision support system for fertilization and irrigation management of citrus based on semantic ontology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(9): 93-101. (in Chinese with English abstract)
[5] Xu Liyuan, Chen Liping, Chen Tianen, et al. SOA-based precision irrigation decision support system[J]. Mathematical and Computer Modelling, 2011, 54(3): 944-949.
[6] 陳葉旺,李海波,余金山. 一種基于農(nóng)業(yè)領(lǐng)域本體的語義檢索模型[J]. 華僑大學學報:自然學科版,2012,33(1):27-32. Chen Yewang, Li Haibo, Yu Jinshan. A semantic retrieval model based on agricultural field ontology [J]. Journal of Huaqiao University: Natural Science, 2012, 33(1): 27-32. (in Chinese with English abstract)
[7] 孫想,吳華瑞,朱華吉,等. 基于語義Web的農(nóng)業(yè)生產(chǎn)協(xié)同決策服務機制研究[J]. 農(nóng)機化研究,2011(3):34-38. Sun Xiang, Wu Huarui, Zhu Huaji, et al. Research on the mechanism of agricultural collaborative decision making service based on semantic web[J]. Journal of Agricultural Mechanization Research, 2011(3): 34-38. (in Chinese with English abstract)
[8] Ginige A, De Silva L, Ginige T, et al. Towards an agriculture knowledge ecosystem: a social life network for farmers in Sri Lanka[C]//9th Conference of the Asian Federation for Information Technology in Agriculture (AFITA 2014): ICT’s for Future Economic and Sustainable Agricultural Systems, Perth, Australia. 2014: 170-179.
[9] Allemang D, Hendler J. Semantic web for the working ontologist: effective modeling in RDFS and OWL[M]. Burlington: Morgan Kaufmann Publishers, 2011.
[10] Noy N F. Semantic integration: a survey of ontology- basedapproaches [J]. ACM Sigmod Record, 2004, 33(4): 65-70.
[11] K?emen P, Kouba Z. Ontology-driven information system design[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(3): 334-344.
[12] Amarger F, Chanet J P, Haemmerlé O, et al. Skos sources transformations for ontology engineering: Agronomical taxonomy use case[C]//Research Conference on Metadata and Semantics Research. Springer International Publishing, 2014: 314-328.
[13] Wang H, Tudorache T, Dou D, et al. Analysis of user editing patterns in ontology development projects[C]//OTM Confederated International Conferences, On the Move to Meaningful Internet Systems. Springer Berlin Heidelberg, 2013: 470-487.
[14] AGROVOC Multilingual agricultural thesaurus[Z]. http:// aims.fao.org/vest-registry/vocabularies/agrovoc-multilingualagricultural-thesaurus.
[15] The national agricultural library's agricultural thesaurus[Z]. http://agclass.nal.usda.gov/agt.shtml.
[16] Haverkort A J, Top J L. The potato ontology: Delimitation of the domain, modelling concepts, and prospects of performance[J]. Potato Research, 2011, 54(2): 119-136.
[17] Thunkijjanukij A. Ontology development for agricultural research knowledge management: A case study for Thai rice[D]. Bangkok: Kasetsart University, 2009.
[18] 牟向偉,陳燕,曹妍. 農(nóng)產(chǎn)品冷鏈HACCP管理體系知識建模與推理[J]. 農(nóng)業(yè)工程學報,2016,32(2):300-308. Mou Xiangwei, Chen Yan, Cao Yan. HACCP knowledge modeling and reasoning for agricultural products cold-chain logistics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 300-308. (in Chinese with English abstract)
[19] Jajaga E, Ahmedi L, Ahmedi F. An expert system for water quality monitoring based on ontology[C]//Research Conference on Metadata and Semantics Research. Springer International Publishing, 2015: 89-100.
[20] 張伶子,段青玲,李道亮. 玉米病蟲害診治本體構(gòu)建技術(shù)研究[J]. 農(nóng)機化研究,2012(1):41-45. Zhang Lingzi, Duan Qingling, Li Daoliang. Study on ontology construction of diagnostic of corn’s disease[J]. Journal of Agricultural Mechanization Research, 2012(1): 41 -45. (in Chinese with English abstract)
[21] Falconer S, Tudorache T, Noy N F. An analysis of collaborative patterns in large-scale ontology development projects[C]//Proceedings of the sixth international conference on Knowledge capture. ACM, 2011: 25-32.
[22] Touhami R, Buche P, Dibie J, et al. Ontology evolution for experimental data in food[C]//Research Conference on Metadata and Semantics Research. Springer International Publishing, 2015: 393-404.
[23] Flouris G, Manakanatas D, Kondylakis H, et al. Ontology change: Classification and survey[J].The Knowledge Engineering Review, 2008, 23(2): 117-152.
[24] Khattak A M, Latif K, Lee S. Change management in evolving web ontologies[J]. Knowledge-Based Systems, 2013, 37: 1-18.
[25] Buckley J, Mens T, Zenger M, et al. Towards a taxonomy of software change[J]. Journal of Sotware Maitenance and Evolution: Research and Practice, 2005, 17(5): 309-332.
[26] Mohan K, Xu P, Cao L, et al. Improving change management in software development: Integrating traceability and software configuration management[J]. Decision Support Systems, 2008, 45(4): 922-936.
[27] Bhattacharya P, Iliofotou M, Neamtiu I, et al. Graph-based analysis and prediction for software evolution[C]//Software Engineering (ICSE), 2012 34th International Conference on. IEEE, 2012: 419-429.
[28] Aryani A, Peak I D, Hamilton M. Domain-based change propagation analysis: An enterprise system case study [C]//Proceedings of the 2010 IEEE International Conference on Software Maintenance, Romania, IEEE Computer Society, 2010: 1-9.
[29] Stuckenschmidt H, Schlicht A. Structure-based partitioning of large ontologies[C]//In Modular Ontologies, Springer Berlin Heidelberg, 2009:187-210.
[30] Clarkson P J, Simons C, Eckert C. Predicting change propagation in complex design[J]. Journal of Mechanical Design, 2004, 126(5), 788-797.
[31] Treude C, Robillard M P, Dagenais B. Extracting development tasks to navigate software documentation[J]. IEEE Transactions on Software Engineering, 2015, 41(6): 565-581.
[32] Choetkiertikul M, Dam H K, Tran T, et al. Predicting delays in software projects using networked classification[C]//2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE, 2015: 353-364.
[33] Corcoglioniti F, Rospocher M, Aprosio A P. A 2-phase frame-based knowledge extraction framework[C]// Proceedings of the 31st Annual ACM Symposium on Applied Computing. ACM, 2016: 354-361.
[34] Mukherjee S, Ajmera J, Joshi S. Domain cartridge: Unsupervised framework for shallow domain ontology construction from corpus[C]//Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. ACM, 2014: 929-938.
Change prediction approach and application effect for citrus fertilization and irrigation intelligent decision support system
Wang Yi, Wang Ying
(School of Computer and Information Science, Southwest University, Chongqing 400715, China)
Agricultural information systems rely heavily on ontologies to realize intelligent and precision agricultural information services such as disease diagnosis and crop planting management. In the development of agricultural applications, due to the massive and cross domain knowledge required in the agricultural domain, it is impossible to develop applications after the completion of domain ontologies. Due to various reasons, ontologies are constantly modified, augmented, or evolved during the application development. Since ontologies are often tightly interwoven with applications, when changes occur in ontologies, the applications such as query services and decision support services that rely on them will be affected in different ways and may not function correctly. Therefore, it is important to provide mechanisms that fill the gap between ontology evolution management and the change management of knowledge based systems. In this paper, we proposed an approach to analyze and predict change impacts on user interface components when the underlying ontology is changed of its concepts. Our approach avoided the hard and error-prone task to analyze change impacts at the lower level, i.e., source code level. Instead, in our method, the change impact prediction was accomplished at the higher conceptual level. Specifically, we focused on the problem that when ontology concepts were changed, how to determine the affected user interface components of applications without diving into the source codes of the system. Our approach was based on constructing three matrices: the interface component dependency matrix, the ontology concept dependency matrix, and the ontology concept-user interface component correlation matrix, at the conceptual level. The interface component dependency matrix specified the direct reliance between interface components based on the shared interface variables of interface components. The ontology concept dependency matrix described the direct relationships between ontology concepts derived from domain ontology. The ontology concept-user interface component correlation matrix specified the direct dependencies between concepts and interface components. With the three matrices, we provided an algorithm to create the change impact propagation tree for each involved ontology concept. By treating the change impact propagation tree as a logical tree, we were able to calculate the change impact prediction probabilities for each concept and interface component. By setting appropriate prediction thresholds, we can obtain the predicted change impact results. To evaluate our approach of change prediction for interface components relating to ontology concepts, we applied the proposed method to the citrus fertilization and irrigation intelligent decision support system. The citrus decision support system was supported by a citrus fertilization and irrigation ontology, which contained 22 domain concepts. The decision support system had six user interface components. For each of the 22 concepts, we calculated the change impact probabilities for each of the six interface components by the change impact propagation trees. In addition, we obtained the actual data by analyzing the Java source codes of the citrus decision support systems. In order to compare the experiment data with the actual data, we set two empirical prediction thresholds, 5% and 10%, based on the existing related studies for filtering the experiment data. We applied two traditional statistic indicators, precision and recall, to evaluate the results. The final evaluation results showed that given the prediction threshold of 5%, the average precision of change impact prediction for the 22 concepts was 77% and the average recall was 98%. Given the threshold of 10%, the average precision of change impact prediction for the 22 concepts reached 85% and the average recall was 74%. There was a tradeoff between precision and recall, i.e., a higher precision indicated a lower recall. In our cases, the precision and recall rates for the both thresholds indicated satisfied results for our proposed change impact prediction approach. The proposed approach provides a feasible and effective solution to the challenging task of change management problem in agricultural information systems based on ontologies.
systems analysis; software architecture; prediction; semantic ontology; ontology change management; citrus fertilization and irrigation decision support system; software change management
10.11975/j.issn.1002-6819.2017.16.023
S126
A
1002-6819(2017)-16-0174-08
王 藝,王 英. 柑橘肥水智能決策支持系統(tǒng)的變化預測方法及應用效果[J]. 農(nóng)業(yè)工程學報,2017,33(16):174-181.
10.11975/j.issn.1002-6819.2017.16.023 http://www.tcsae.org
Wang Yi, Wang Ying. Change prediction approach and application effect for citrus fertilization and irrigation intelligent decision support system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 174-181. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.16.023 http://www.tcsae.org
2017-03-08
2017-06-30
國家自然科學基金(61303229);第47批留學回國人員科研啟動基金;西南大學基本科研業(yè)務費專項(XDJK2016C040)
王 藝,女,重慶人,副教授,博士,主要從事語義網(wǎng)應用、服務計算及工作流變化管理研究。重慶 西南大學計算機與信息科學學院,400715。Email:echowang@swu.edu.cn