廖宜濤,舒彩霞,廖慶喜,韋躍培,王 磊,王 都,鄭 娟
油菜精量直播機(jī)氣力式排種系統(tǒng)穩(wěn)壓控制方法與試驗(yàn)
廖宜濤,舒彩霞,廖慶喜,韋躍培,王 磊,王 都,鄭 娟
(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070;2. 農(nóng)業(yè)部長江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070)
針對氣力式油菜精量聯(lián)合直播機(jī)因拖拉機(jī)后輸出軸轉(zhuǎn)速變化影響氣力系統(tǒng)中風(fēng)機(jī)工作轉(zhuǎn)速,導(dǎo)致排種器工作氣壓波動(dòng),進(jìn)而降低排種性能的問題,提出一種基于溢流釋壓的氣力系統(tǒng)穩(wěn)壓控制方法,即通過測試風(fēng)機(jī)實(shí)際轉(zhuǎn)速變化情況、風(fēng)機(jī)轉(zhuǎn)速與氣力系統(tǒng)氣壓關(guān)系,確定溢流閥預(yù)設(shè)氣壓值,根據(jù)該預(yù)設(shè)值計(jì)算溢流閥的釋壓彈簧結(jié)構(gòu)參數(shù)和工作參數(shù),并通過流量-壓力理論分析和穩(wěn)壓控制性能試驗(yàn)驗(yàn)證參數(shù)有效性。以2BFQ-6型油菜精量聯(lián)合直播機(jī)氣力系統(tǒng)為對象,利用該方法開展穩(wěn)壓控制試驗(yàn):通過田間測試確定播種機(jī)組在田間穩(wěn)定作業(yè)時(shí)風(fēng)機(jī)工作轉(zhuǎn)速變異系數(shù)達(dá)8.15%,結(jié)合測定的氣力系統(tǒng)風(fēng)機(jī)轉(zhuǎn)速與氣壓關(guān)系,確定風(fēng)機(jī)實(shí)際工作轉(zhuǎn)速應(yīng)在2 020~2 620 r/min范圍內(nèi),正負(fù)氣壓閥溢流穩(wěn)壓控制預(yù)設(shè)值分別為1 000和?5 500 Pa;通過溢流釋壓閥結(jié)構(gòu)及釋壓特性分析,確定采用中徑30 mm、節(jié)距10 mm、有效圈數(shù)8圈、線徑為1.0、1.5 mm的碳素鋼絲圓柱螺旋彈簧作為正、負(fù)壓釋壓閥的釋壓彈簧,其彈簧調(diào)節(jié)螺栓預(yù)壓縮量分別為6.7和7.8 mm;穩(wěn)壓控制驗(yàn)證試驗(yàn)表明設(shè)計(jì)的穩(wěn)壓控制系統(tǒng)將排種器氣室正壓、負(fù)壓偏差率分別降低45%和110%,使氣室氣壓保持在適宜范圍內(nèi),氣壓控制響應(yīng)靈敏性及穩(wěn)定性均滿足要求;當(dāng)風(fēng)機(jī)工作轉(zhuǎn)速在2 000~2 700 r/min范圍內(nèi)變化時(shí),排種器的排種量變異系數(shù)減小2.68%,提高了排種穩(wěn)定性。研究表明提出的溢流釋壓穩(wěn)壓控制方法可有效解決油菜直播機(jī)田間作業(yè)時(shí)排種器工作氣壓波動(dòng)大、排種量穩(wěn)定性差的現(xiàn)實(shí)問題,可為播種機(jī)設(shè)計(jì)、氣力式排種系統(tǒng)性能優(yōu)化提供參考。關(guān)鍵詞:機(jī)械化;控制;種子;油菜精量聯(lián)合直播機(jī);氣力式排種系統(tǒng);溢流釋壓;穩(wěn)壓控制;試驗(yàn)
廖宜濤,舒彩霞,廖慶喜,韋躍培,王 磊,王 都,鄭 娟. 油菜精量直播機(jī)氣力式排種系統(tǒng)穩(wěn)壓控制方法與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):49-56. doi:10.11975/j.issn.1002-6819.2017.15.006 http://www.tcsae.org
Liao Yitao, Shu Caixia, Liao Qingxi, Wei Yuepei, Wang Lei, Wang Du, Zheng Juan. Air pressure stabilizing method and experiment of pneumatic seed-metering system of precision rapeseed planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 49-56. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.006 http://www.tcsae.org
氣力式排種技術(shù)具有對種子品種與形狀適應(yīng)性強(qiáng)、傷種率低、易實(shí)現(xiàn)精量播種等特點(diǎn),在國內(nèi)外得到了廣泛的研究和應(yīng)用[1-4]。其中排種器工作氣壓穩(wěn)定性是影響排種性能的關(guān)鍵因素之一[5-7]。特別是采用氣力式排種器播種油菜、谷子、蔬菜等小粒徑種子,因種子粒徑小、質(zhì)量輕,排種過程更易受氣壓波動(dòng)的影響:吸種負(fù)壓絕對值過大會導(dǎo)致重吸增加,重播指數(shù)高,吸種負(fù)壓絕對值過低,漏吸增加,漏播指數(shù)高[8-11];投種正壓變化過大會影響投種軌跡,影響播種均勻性[12-13]。正負(fù)氣壓組合式油菜精量排種器采用負(fù)壓吸種、正壓投種,前期研究表明排種器正壓氣室氣壓在200~400 Pa,負(fù)壓氣室氣壓在?4 000~?3 000 Pa區(qū)間內(nèi),排種效果較好[14-15]。
現(xiàn)有氣力式播種機(jī)氣力系統(tǒng)的風(fēng)機(jī)主要由拖拉機(jī)后動(dòng)力輸出軸通過帶傳動(dòng)驅(qū)動(dòng)[16-18]。播種機(jī)組田間作業(yè)時(shí),存在田塊地表與土壤物理特性差異、機(jī)手操作及機(jī)組負(fù)載波動(dòng)等因素,影響拖拉機(jī)發(fā)動(dòng)機(jī)及后輸出軸轉(zhuǎn)速、導(dǎo)致風(fēng)機(jī)工作轉(zhuǎn)速變化,進(jìn)而造成排種器工作氣壓波動(dòng)、影響排種效果。在播種機(jī)氣力系統(tǒng)設(shè)計(jì)中,保證排種器處于適宜的工作氣壓范圍,是保證播種效果的關(guān)鍵[9,19-21]。
為解決播種機(jī)田間作業(yè)時(shí)風(fēng)機(jī)工作轉(zhuǎn)速波動(dòng)、氣力系統(tǒng)氣壓供給不穩(wěn)定的問題,有研究提出將風(fēng)機(jī)安裝在拖拉機(jī)上由發(fā)動(dòng)機(jī)直接驅(qū)動(dòng),或采用液壓馬達(dá)、電機(jī)等驅(qū)動(dòng),但存在受發(fā)動(dòng)機(jī)工作狀態(tài)波動(dòng)影響、配套拖拉機(jī)動(dòng)力要求高、需要對配套拖拉機(jī)改裝、成本高、適用性差等問題[22-23]。在氣壓或液壓系統(tǒng)中,溢流閥被廣泛的用于壓力調(diào)節(jié),使系統(tǒng)滿足工作要求[24-26]。其中直動(dòng)溢流釋壓閥依靠氣流直接作用在閥芯上,通過與釋壓彈簧的作用力相互平衡,自動(dòng)控制閥口啟閉,結(jié)構(gòu)簡單、工作可靠[27]。在高壓風(fēng)機(jī)排風(fēng)系統(tǒng)中,常將釋壓閥安裝在風(fēng)機(jī)出口或入口管道上,當(dāng)氣力系統(tǒng)氣壓值大于預(yù)設(shè)值時(shí),釋壓閥將壓力通過風(fēng)流釋放出,保護(hù)高壓風(fēng)機(jī),但現(xiàn)有RV-01、RV-02型釋壓閥調(diào)節(jié)壓力在0~30 000 Pa和0~60 000 Pa,采用的釋壓彈簧剛度大,閥口開度變化引起的壓力變化大,不適用于氣力式播種機(jī)的低壓氣力系統(tǒng)釋壓要求。本文以2BFQ-6型油菜精量聯(lián)合直播機(jī)為對象,針對直播機(jī)組田間作業(yè)時(shí)風(fēng)機(jī)轉(zhuǎn)速變化引起氣壓波動(dòng),影響排種器工作穩(wěn)定性的問題,提出了一種基于直動(dòng)溢流釋壓的播種機(jī)氣力系統(tǒng)穩(wěn)壓控制方法,以期有效提高排種系統(tǒng)排種穩(wěn)定性。
氣力排種系統(tǒng)如圖1所示,是直播機(jī)的關(guān)鍵部件,主要包括風(fēng)機(jī)、總輸氣管與分配管、正負(fù)氣壓組合式油菜精量排種器[15,28]。工作時(shí)拖拉機(jī)后動(dòng)力輸出軸驅(qū)動(dòng)風(fēng)機(jī)運(yùn)轉(zhuǎn),產(chǎn)生的負(fù)、正氣壓經(jīng)氣流輸送和分配管為排種器吸種、攜種過程提供氣吸力,為投種過程提供氣吹力;排種盤由地輪驅(qū)動(dòng)而轉(zhuǎn)動(dòng),將種子由充種區(qū)運(yùn)移至投種區(qū),然后在正壓氣流與重力作用下與型孔分離,經(jīng)導(dǎo)種管播入田間。
圖1 直播機(jī)氣力式油菜精量排種系統(tǒng)Fig.1 Pneumatic seed-metering system of rapeseed planter
氣力系統(tǒng)的穩(wěn)壓控制由2個(gè)溢流釋壓閥執(zhí)行,分別安裝于總負(fù)壓和總正壓輸氣管上,構(gòu)成如圖2所示氣壓穩(wěn)定控制系統(tǒng)。
圖2 氣壓穩(wěn)定控制系統(tǒng)示意圖Fig.2 Schematic of air pressure stabilizing system
釋壓閥實(shí)物如圖3a所示,其結(jié)構(gòu)組成如圖3b。其中基座頂部為釋壓閥出氣口,罩殼底部是進(jìn)氣口,閥芯與導(dǎo)桿剛性連接,向上移動(dòng)開啟最大高度Smax為11 mm;彈簧置于閥芯與滑塊中間,裝配后閥體內(nèi)彈簧可伸長最大長度Hmax為65 mm;調(diào)節(jié)螺栓預(yù)縮壓量ΔL與閥口開度X之和不大于25 mm。
工作時(shí)進(jìn)口氣流經(jīng)導(dǎo)流閥座作用在閥芯底部端面,氣力系統(tǒng)管道內(nèi)氣壓低于預(yù)設(shè)值P0時(shí),閥芯底部端面產(chǎn)生的壓力低于彈簧預(yù)壓緊力F0,閥芯在彈簧作用下與導(dǎo)流閥座接觸,閥口閉合;當(dāng)氣力系統(tǒng)氣壓增加,進(jìn)氣口氣壓增加,在閥芯底部端面產(chǎn)生的壓力高于彈簧壓緊力F0時(shí),閥芯上升,釋壓閥開啟。溢流釋壓時(shí),正壓輸氣管上釋壓閥可使多余氣體回流至大氣中,負(fù)壓輸氣管上釋壓閥可使大氣中適量空氣流入管道內(nèi);壓力越大,閥口開度越大,溢流量越大,形成動(dòng)態(tài)平衡,保證氣力系統(tǒng)氣壓穩(wěn)定。改變調(diào)節(jié)螺栓預(yù)縮壓量ΔL,可改變彈簧壓緊力F0,即可調(diào)整釋壓預(yù)設(shè)值P0。
圖3 釋壓閥實(shí)物與結(jié)構(gòu)示意圖Fig.3 Physical photograph and structure of relief valve
對閥芯受力狀態(tài)分析可得式(1)~(14)[29-30]。閥口處于開啟臨界狀態(tài)時(shí),閥芯受力平衡方程:
式中P0為釋壓預(yù)設(shè)值,Pa;A0為閥芯底部端面受力面積,mm2;k為釋壓彈簧剛度系數(shù),N/mm;H0為彈簧自由高,mm;Hmax為閥體內(nèi)彈簧可伸長最大長度,mm;ΔL為調(diào)節(jié)螺栓預(yù)縮壓量,mm;D5為閥芯外徑,mm;D2為閥芯內(nèi)徑,mm;n為彈簧有效圈數(shù);t為彈簧節(jié)距,mm;dt為彈簧線徑,mm;G為彈簧線材剛性模量,MPa;Dm為彈簧中徑,mm。
閥口打開時(shí),閥芯受力平衡方程:
式中P為進(jìn)氣口氣壓,Pa;X為閥口開度,mm;Fw為穩(wěn)態(tài)液動(dòng)力,因閥芯為平底閥體,其值近似為0,忽略不計(jì)。
綜合(1)~(5)得:
閥口開啟溢流時(shí)的壓力-流量方程:
式中Q為溢流量,m3/h;ΔP為釋壓閥閥芯兩側(cè)的工作壓差,近似等于進(jìn)氣口氣壓值P;ρ為空氣密度,1.29 kg/m3;Cd為流量系數(shù),一般取0.77~0.80;A為釋壓閥過流面積,mm2。設(shè)A1為進(jìn)氣口處截面,A2為閥側(cè)面,A3為閥芯閥座間截面,則:式中D4為進(jìn)氣口內(nèi)徑,mm;D3為導(dǎo)流閥座外徑,mm;D6為閥腔內(nèi)徑,mm;D1為導(dǎo)桿外徑,mm。
根據(jù)閥體結(jié)構(gòu)參數(shù)可得X≤3.8 mm時(shí),A=A3,則
由式(1)、(5)、(12)得釋壓閥Q-P關(guān)系方程如下
當(dāng)閥口開度X>3.8 mm時(shí),A=A2,Q-P關(guān)系方程為
由上述分析可知,氣力系統(tǒng)的溢流釋壓效果與釋壓閥的閥口過流面積A、彈簧線徑dt、有效圈數(shù)n、閥口開度X、調(diào)節(jié)螺栓預(yù)壓縮量ΔL等參數(shù)有關(guān)。
根據(jù)播種機(jī)氣力排種系統(tǒng)結(jié)構(gòu)、釋壓閥結(jié)構(gòu)及釋壓特性提出播種機(jī)氣力系統(tǒng)穩(wěn)壓控制方法,實(shí)施步驟如下:1)測定播種機(jī)組田間作業(yè)工況下,拖拉機(jī)后動(dòng)力輸出軸的轉(zhuǎn)速變化范圍;2)測定氣力排種系統(tǒng)總輸氣管、排種器氣室的氣壓值和配套風(fēng)機(jī)工作轉(zhuǎn)速的關(guān)系;3)根據(jù)排種器工作氣壓下限值和拖拉機(jī)后動(dòng)力輸出軸轉(zhuǎn)速下限值設(shè)計(jì)播種機(jī)風(fēng)機(jī)的傳動(dòng)比,計(jì)算出風(fēng)機(jī)實(shí)際工作轉(zhuǎn)速范圍,確定排種器實(shí)際工作氣壓值變化區(qū)間,進(jìn)而確定氣力系統(tǒng)中溢流閥預(yù)設(shè)氣壓值;4)通過分析計(jì)算確定釋壓彈簧結(jié)構(gòu)參數(shù),并根據(jù)其流量-壓力特性曲線分析釋壓閥是否滿足氣力系統(tǒng)穩(wěn)壓控制要求;5)試驗(yàn)驗(yàn)證釋壓閥對氣力系統(tǒng)的穩(wěn)壓控制效果。
以2BFQ-6型油菜精量聯(lián)合直播機(jī)為對象,于2014年5月7日在黃岡市團(tuán)風(fēng)縣開展田間作業(yè)風(fēng)機(jī)轉(zhuǎn)速測試,如圖4所示。拖拉機(jī)型號為博馬854,后動(dòng)力輸出軸額定轉(zhuǎn)速為760 r/min;試驗(yàn)用播種機(jī)配套風(fēng)機(jī)為額定功率2 200 W漩渦風(fēng)機(jī),為排種器同時(shí)提供吸種負(fù)壓和投種正壓,帶傳動(dòng)比0.25,額定轉(zhuǎn)速2 800 r/min;利用自制磁感應(yīng)式轉(zhuǎn)速儀(采用速為SW6234C型轉(zhuǎn)速測量儀標(biāo)定,誤差小于0.3%)采集風(fēng)機(jī)轉(zhuǎn)速,數(shù)據(jù)采集頻率為1 Hz。機(jī)組由啟動(dòng)到持續(xù)作業(yè)完一廂為一次測試,總計(jì)測試8次;其中拖拉機(jī)以低4擋作業(yè)4次,用于分析同一擋位作業(yè)條件下風(fēng)機(jī)轉(zhuǎn)速變化情況;以低1擋、低2擋、低3擋、中2擋作業(yè)各1次,用于分析不同擋位條件下風(fēng)機(jī)轉(zhuǎn)速變化情況。
圖4 田間作業(yè)現(xiàn)場風(fēng)機(jī)轉(zhuǎn)速測試Fig.4 Field testing of air pump rotating speed
利用圖5所示油菜氣力式精量排種系統(tǒng)試驗(yàn)臺開展試驗(yàn)[9],測定風(fēng)機(jī)在100~2 700 r/min范圍內(nèi)氣力系統(tǒng)總輸氣管和排種器氣室氣壓,以確定氣力系統(tǒng)風(fēng)機(jī)傳動(dòng)比和實(shí)際工作轉(zhuǎn)速、溢流閥預(yù)設(shè)氣壓值P0和溢流彈簧參數(shù)。
試驗(yàn)中總輸氣管和氣室正壓采用CP113-PO 型微差壓變送器(法國KIMO,量程為0~5 000 Pa,精度±1%測量值);負(fù)壓值采用CP114-PO 型(法國KIMO,量程為?49 033~0 Pa,精度±1%);氣力系統(tǒng)試驗(yàn)臺中數(shù)據(jù)巡檢儀以1 Hz頻率采集氣壓值并將其存儲至PC機(jī)用于分析;排種器以20 r/min正常排種,試驗(yàn)用油菜籽為“華油雜62”商品化種子。
利用油菜氣力式精量排種系統(tǒng)試驗(yàn)臺開展氣力系統(tǒng)溢流穩(wěn)壓控制效果驗(yàn)證試驗(yàn),包括1)氣壓偏差率:在安裝和未安裝穩(wěn)壓控制釋壓閥狀態(tài)下,將風(fēng)機(jī)從0加速至設(shè)計(jì)最高轉(zhuǎn)速,加速時(shí)間為8 min,保持1 min后減速至0,采集該過程中排種器正負(fù)氣室氣壓值用于分析,每組數(shù)據(jù)重復(fù)3次。2)氣壓控制靈敏性:氣力系統(tǒng)安裝釋壓閥,將風(fēng)機(jī)分別從0加速至1 400、1 800、2 200、2 600 r/min,加速時(shí)間5 s,保持6 s后減速至0,采集該過程中排種器正、負(fù)氣室氣壓,試驗(yàn)重復(fù)3次。3)氣壓控制穩(wěn)定性:氣力系統(tǒng)安裝釋壓閥,將風(fēng)機(jī)從0加速至2 600 r/min,加速時(shí)間5 s,保持10 s后減速至0;重復(fù)5個(gè)周期,采集排種器正負(fù)氣室氣壓值,用于穩(wěn)壓控制穩(wěn)定性分析。4)排種量穩(wěn)定性:風(fēng)機(jī)轉(zhuǎn)速水平取2 000、2 100、2 200、2 300、2 400、2 500、2 600、2 700 r/min,分別測量安裝和未安裝釋壓閥狀態(tài)下排種器3 min內(nèi)的排種量,試驗(yàn)重復(fù)3次。
圖5 油菜直播機(jī)氣力式精量排種系統(tǒng)試驗(yàn)臺Fig.5 Experimental platform of pneumatic seed-metering system of rapeseed planter
通過試驗(yàn)測試機(jī)組田間作業(yè)時(shí)風(fēng)機(jī)轉(zhuǎn)速變化,不考慮啟停階段,機(jī)組在穩(wěn)定作業(yè)時(shí)間段內(nèi)風(fēng)機(jī)轉(zhuǎn)速在2 340~3 000 r/min內(nèi),由傳動(dòng)比計(jì)算得拖拉機(jī)后動(dòng)力輸出軸工作轉(zhuǎn)速約為585~750 r/min。選取機(jī)組穩(wěn)定作業(yè)時(shí)間段內(nèi)風(fēng)機(jī)轉(zhuǎn)速進(jìn)行統(tǒng)計(jì)分析,如表1所示。機(jī)組作業(yè)8次,每次持續(xù)穩(wěn)定作業(yè)階段,風(fēng)機(jī)轉(zhuǎn)速都會發(fā)生隨機(jī)性波動(dòng),變異系數(shù)在2.09%~4.34%之間;其中低1擋作業(yè)時(shí)風(fēng)機(jī)轉(zhuǎn)速波動(dòng)最大,變異系數(shù)達(dá)4.34%;低4擋作業(yè)4次,風(fēng)機(jī)轉(zhuǎn)速變異系數(shù)在2.14%~3.18%之間;表明機(jī)組在持續(xù)穩(wěn)定作業(yè)過程中,拖拉機(jī)的后動(dòng)力輸出軸轉(zhuǎn)速也會發(fā)生變化。表1中各次試驗(yàn)的風(fēng)機(jī)轉(zhuǎn)速平均值差異較大,在2 400~2 903 r/min之間;統(tǒng)計(jì)分析低1擋到中2擋作業(yè)的風(fēng)機(jī)轉(zhuǎn)速平均值可知:不同擋位之間風(fēng)機(jī)平均轉(zhuǎn)速的變異系數(shù)為8.15%(低4擋作業(yè)時(shí)取第1次平均值2 448 r/min用于計(jì)算);以低4擋重復(fù)作業(yè)4次,各次風(fēng)機(jī)平均轉(zhuǎn)速之間的變異系數(shù)仍達(dá)7.70%。試驗(yàn)證明機(jī)組作業(yè)時(shí),拖拉機(jī)后動(dòng)力輸出軸轉(zhuǎn)速會發(fā)生變化,進(jìn)而導(dǎo)致風(fēng)機(jī)轉(zhuǎn)速波動(dòng)。
表1 風(fēng)機(jī)轉(zhuǎn)速統(tǒng)計(jì)Table 1 Statistics of air pump rotating speed
輸氣總管和排種器氣室氣壓與風(fēng)機(jī)轉(zhuǎn)速的關(guān)系如圖6所示。風(fēng)機(jī)轉(zhuǎn)速1 300 r/min時(shí),排種器正壓氣室氣壓約200 Pa,正壓總管氣壓約1 000 Pa;負(fù)壓氣室氣壓約?600 Pa,負(fù)壓總管氣壓約?1 700 Pa。風(fēng)機(jī)轉(zhuǎn)速2 000 r/min時(shí),正壓氣室氣壓約300 Pa,正壓總管氣壓約1 900 Pa;負(fù)壓氣室氣壓達(dá)到?3 000 Pa,負(fù)壓總管氣壓約?5 500 Pa。
圖6 風(fēng)機(jī)轉(zhuǎn)速與氣力系統(tǒng)氣壓值關(guān)系曲線Fig.6 Curves of air pump rotating speed and air pressure of pneumatic system
直播機(jī)田間作業(yè)時(shí)負(fù)壓絕對值不小于3 000 Pa[14-15],按拖拉機(jī)后動(dòng)力輸出軸轉(zhuǎn)速585 r/min、風(fēng)機(jī)轉(zhuǎn)速保持2 000 r/min以上設(shè)計(jì),風(fēng)機(jī)傳動(dòng)比i 取0.29,則風(fēng)機(jī)實(shí)際工作轉(zhuǎn)速范圍為2 020~2 620 r/min。由圖6可知,當(dāng)風(fēng)機(jī)以轉(zhuǎn)速上限值2 620 r/min工作,正壓總管氣壓約為2 700 Pa,正壓室氣壓大于400 Pa,投種均勻性會下降;負(fù)壓總管氣壓約為?10 000 Pa,負(fù)壓室氣壓約?7 000 Pa,會導(dǎo)致重吸增加、重播率增大。因此需在氣力系統(tǒng)中安裝釋壓閥進(jìn)行穩(wěn)壓控制。為保證排種器排種效果,正壓釋壓閥預(yù)設(shè)氣壓值P0+應(yīng)為1 000 Pa,最佳調(diào)節(jié)范圍為1 000~2 700 Pa,負(fù)壓釋壓閥預(yù)設(shè)氣壓值P0-應(yīng)為?5 500 Pa,可調(diào)范圍為?10 000~?5 500 Pa。
選用中徑Dm=30 mm,節(jié)距t=10 mm系列碳素鋼絲圓柱螺旋彈簧,G=79 000 MPa,由方程(1)~(4)求解得到彈簧線徑dt、有效圈數(shù)n、預(yù)壓縮量ΔL等參數(shù)與釋壓閥預(yù)設(shè)氣壓值P0的關(guān)系如圖7所示。由圖7可知,要滿足釋壓閥預(yù)設(shè)氣壓值,選用線徑越小的彈簧,要求其有效圈數(shù)越多,調(diào)整螺栓預(yù)壓縮量越大;選用線徑過大的彈簧,較小的預(yù)壓縮量即引起較大的氣壓值變化;線徑在0.9~1.2 mm范圍內(nèi)的彈簧適用于氣力系統(tǒng)正壓釋壓,線徑在1.4~1.6 mm范圍內(nèi)的彈簧適用于負(fù)壓釋壓。根據(jù)標(biāo)準(zhǔn)彈簧參數(shù),選用彈簧有效圈數(shù)為8,線徑1.0、1.5 mm的彈簧用于正、負(fù)壓釋壓,其彈簧調(diào)節(jié)螺栓預(yù)壓縮量應(yīng)分別設(shè)置為6.7和7.8 mm。
圖7 釋壓閥性能與釋壓彈簧參數(shù)關(guān)系Fig.7 Relation of relief valve performance and relief spring parameter
根據(jù)式(13)、(14)計(jì)算的正負(fù)壓釋壓閥的流量-壓力特性曲線如圖8所示。
圖8 釋壓閥流量-壓力特性曲線Fig.8 Air flow and air pressure characteristics of relief valve
當(dāng)閥口開度X在3.8 mm以內(nèi)時(shí),系統(tǒng)溢流釋壓后正壓總管氣壓在1 000~1 160 Pa,負(fù)壓總管氣壓絕對值在5 500~6 300 Pa間,閥口開度隨氣力系統(tǒng)流量增加而增大,過流面積A增大,溢流量增大,氣力系統(tǒng)氣壓隨溢流量增大而緩慢增加,溢流釋壓效果明顯;當(dāng)閥口開度大于3.8 mm后,過流面積A恒定,系統(tǒng)氣壓隨溢流量的增大而大幅增加,溢流穩(wěn)壓能力下降;當(dāng)正壓總管內(nèi)氣流經(jīng)溢流釋壓后氣壓大于1 460 Pa、負(fù)壓總管內(nèi)氣流釋壓后氣壓絕對值大于7 850 Pa以上時(shí),正、負(fù)壓管釋壓閥口開度均達(dá)到最大值11 mm;理論分析表明釋壓閥能參數(shù)滿足氣力系統(tǒng)穩(wěn)壓控制要求。
3.3.1 氣壓偏差率
氣力系統(tǒng)在有無釋壓閥穩(wěn)壓狀態(tài)下,排種器氣室氣壓隨風(fēng)機(jī)轉(zhuǎn)速變化的情況如圖9所示。風(fēng)機(jī)加速約240 s后,排種器正壓氣室達(dá)到200 Pa,此時(shí)正壓釋壓閥打開,開始溢流釋壓,氣力系統(tǒng)內(nèi)正壓隨風(fēng)機(jī)轉(zhuǎn)速增加保持穩(wěn)定;風(fēng)機(jī)加速約320 s后,正壓管釋壓閥開度大于3.8 mm,氣力系統(tǒng)正壓隨風(fēng)機(jī)轉(zhuǎn)速升高、流量增大而逐漸升高;約360 s后,負(fù)壓氣室達(dá)到?3 000 Pa,負(fù)壓釋壓閥打開,開始溢流釋壓,系統(tǒng)負(fù)壓基本保持穩(wěn)定;風(fēng)機(jī)加速約430 s后,負(fù)壓管釋壓閥開度大于3.8 mm,氣力系統(tǒng)負(fù)壓隨風(fēng)機(jī)轉(zhuǎn)速升高、流量增大而逐漸升高;穩(wěn)壓控制效果與理論計(jì)算結(jié)果一致。
圖9 有無釋壓閥時(shí)排種器氣室氣壓變化曲線Fig.9 Pressure change curves of air pressure chamber of seed-metering device with and without relief valve
無釋壓閥穩(wěn)壓控制時(shí),風(fēng)機(jī)轉(zhuǎn)速2 620 r/min時(shí),排種器正壓室氣壓達(dá)到440 Pa,正壓偏差率為120%,負(fù)壓室負(fù)壓達(dá)到?7 200 Pa,負(fù)壓偏差率為140%;安裝釋壓閥后排種器正壓范圍200~350 Pa,偏差率75%,負(fù)壓范圍為?3 900~?3 000 Pa,偏差率30%;通過釋壓閥穩(wěn)壓使排種器正壓、負(fù)壓氣壓偏差率分別降低45%、110%,穩(wěn)壓控制效果較好;風(fēng)機(jī)在2 020~2 620 r/min工作內(nèi),通過穩(wěn)壓控制可保證排種器工作在適宜氣壓下。
3.3.2 氣壓控制靈敏性與穩(wěn)定性
風(fēng)機(jī)從0分別加速至1 400、1 800、2 200、2 600 r/min等4個(gè)轉(zhuǎn)速水平,加速時(shí)間5 s,保持6 s后減速至0,排種器正、負(fù)氣室氣壓值隨時(shí)間變化關(guān)系如圖10a、10b所示,釋壓閥均能及時(shí)開啟與關(guān)閉,穩(wěn)壓控制靈敏性較好。風(fēng)機(jī)從0加速至2 600 r/min,加速時(shí)間5 s,保持10 s后減速至0,重復(fù)5個(gè)周期,排種器正、負(fù)氣室氣壓值隨時(shí)間變化關(guān)系如圖10c、10d所示,氣壓變化過程基本一致,表明穩(wěn)壓控制的穩(wěn)定性較好。
圖10 穩(wěn)壓控制靈敏性與穩(wěn)定性Fig.10 Air pressure regulating sensitivity and stability
穩(wěn)定性試驗(yàn)中風(fēng)機(jī)轉(zhuǎn)速保持2 600 r/min時(shí)氣壓值統(tǒng)計(jì)結(jié)果如表2。由表2可知單個(gè)周期內(nèi),氣力系統(tǒng)正、負(fù)壓波動(dòng)變異系數(shù)絕對值分別在3.65%和7.35%以下,該波動(dòng)與排種盤旋轉(zhuǎn)、排種盤與氣室裝配誤差、吸種狀態(tài)等有關(guān)[9],且波動(dòng)氣壓范圍在排種器允許工作范圍以內(nèi);統(tǒng)計(jì)分析5個(gè)周期的正、負(fù)壓平均值可知重復(fù)周期之間的正、負(fù)壓變異系數(shù)絕對值分別為0.72%和0.94%,表明系統(tǒng)穩(wěn)壓控制重復(fù)性高、一致性較好,系統(tǒng)穩(wěn)定性好。
表2 穩(wěn)壓控制穩(wěn)定性數(shù)據(jù)統(tǒng)計(jì)Table 2 Statistics of air pressure stability
3.3.4 排種量穩(wěn)定性
氣力系統(tǒng)在有無釋壓閥穩(wěn)壓控制狀態(tài)下,排種器在風(fēng)機(jī)轉(zhuǎn)速2 000~2 700 r/min、3 min內(nèi)排種量數(shù)據(jù)統(tǒng)計(jì)如表3所示。風(fēng)機(jī)在各轉(zhuǎn)速水平下3次重復(fù)的排種量變異系數(shù)均不大于1%,表明在穩(wěn)定的氣壓條件下,排種器的排種穩(wěn)定性較好。無穩(wěn)壓控制時(shí),排種量隨風(fēng)機(jī)轉(zhuǎn)速增加而明顯增加,風(fēng)機(jī)2 700 r/min時(shí)的排種量比2 000 r/min時(shí)高11.37%,表明隨著風(fēng)機(jī)轉(zhuǎn)速增大,氣力系統(tǒng)負(fù)壓變大,排種器重吸增加;通過釋壓閥穩(wěn)壓控制后排種量隨風(fēng)機(jī)轉(zhuǎn)速增加而緩慢增加,風(fēng)機(jī)2 700 r/min時(shí)的排種量比2 000r/min時(shí)高2.93%,表明風(fēng)機(jī)轉(zhuǎn)速較大時(shí),釋壓閥進(jìn)行溢流釋壓,排種器工作氣壓穩(wěn)定在適宜范圍內(nèi),重吸增加不明顯。統(tǒng)計(jì)分析不同風(fēng)機(jī)轉(zhuǎn)速水平的排種量平均值可得:無穩(wěn)壓控制時(shí),不同風(fēng)機(jī)轉(zhuǎn)速水平之間的排種量變異系數(shù)為3.84%,表明氣力系統(tǒng)氣壓出現(xiàn)波動(dòng),排種器的排量穩(wěn)定性會下降;經(jīng)釋壓閥穩(wěn)壓控制后,不同風(fēng)機(jī)轉(zhuǎn)速水平之間的排種量變異系數(shù)為1.16%,降低了2.68%,表明在不穩(wěn)定的風(fēng)機(jī)轉(zhuǎn)速下,氣力系統(tǒng)通過穩(wěn)壓控制能有效提高排種量穩(wěn)定性。
表3 排種器排種量統(tǒng)計(jì)Table 3 Seeding quantity statistics of seed-metering device
本文提出一種基于溢流釋壓的氣力系統(tǒng)穩(wěn)壓控制方法,即通過測試風(fēng)機(jī)實(shí)際轉(zhuǎn)速變化情況、風(fēng)機(jī)轉(zhuǎn)速與氣力系統(tǒng)氣壓關(guān)系,確定溢流閥預(yù)設(shè)氣壓值,據(jù)該預(yù)設(shè)值計(jì)算溢流閥的釋壓彈簧結(jié)構(gòu)參數(shù)和工作參數(shù),并通過流量-壓力理論分析和穩(wěn)壓控制性能試驗(yàn)驗(yàn)證參數(shù)有效性。
1)以2BFQ-6型油菜精量聯(lián)合直播機(jī)為研究對象,播種機(jī)在田間穩(wěn)定作業(yè)時(shí)風(fēng)機(jī)工作轉(zhuǎn)速變異系數(shù)達(dá)8.15%,風(fēng)機(jī)實(shí)際轉(zhuǎn)速在2 020~2 620 r/min范圍內(nèi),正負(fù)氣壓閥溢流穩(wěn)壓控制預(yù)設(shè)值分別為1 000和?5 500 Pa。
2)氣力式排種系統(tǒng)穩(wěn)壓控制正、負(fù)壓釋壓閥采用中徑30 mm、節(jié)距10 mm、有效圈數(shù)8圈、線徑分別為1.0、1.5 mm的碳素鋼絲圓柱螺旋彈簧,彈簧調(diào)節(jié)螺栓預(yù)壓縮量分別為6.7、7.8 mm,可將排種器氣室正壓、負(fù)壓偏差率分別降低45%和110%,使氣室氣壓保持在適宜范圍內(nèi),排種器的排種量變異系數(shù)減小2.68%,氣壓控制響應(yīng)靈敏性及穩(wěn)定性均滿足要求。
本文開展了基于溢流釋壓的油菜精量聯(lián)合直播機(jī)氣力系統(tǒng)穩(wěn)壓控制方法研究,試驗(yàn)驗(yàn)證了釋壓閥的穩(wěn)壓控制效果,對其他規(guī)格彈簧、氣力傳輸管道布局及管徑大小等因素對排種器正負(fù)壓的影響有待進(jìn)一步研究。
[1] 楊善東,張東興,刁培松,等. 側(cè)正壓玉米排種器的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊1):8-13.
Yang Shandong, Zhang Dongxing, Diao Peisong, et al. Design and experiment of side positive pressure seed metering device [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 8-13. (in Chinese with English abstract)
[2] 高筱鈞,周金華,賴慶輝. 中草藥三七氣吸滾筒式精密排種器的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):20-28.
Gao Xiaojun, Zhou Jinhua, Lai Qinghui. Design and experiment of pneumatic cylinder precision seed-metering device for panax notoginseng[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 20-28. (in Chinese with English abstract)
[3] 邢赫,臧英,王在滿,等. 水稻氣力式排種器分層充種室設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):42-48.
Xing He, Zang Ying, Wang Zaiman, et al. Design and experiment of stratified seed-filling room on rice pneumatic metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 42-48. (in Chinese with English abstract)
[4] Khobragade H M, Kamble A K, Dave A K. Performance evaluation of pneumatic seed metering device for paddy in puddle[J]. International Journal of Agricultural Engineering, 2012, 5(1): 98-102.
[5] 侯沖,胡建平,郭坤,等. 氣吸板式超級稻精密排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊1):14-20.
Hou Chong, Hu Jianping, Guo Kun, et al. Design and experiment of precision air-suction plate seed metering device for super hybrid rice [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 14-20. (in Chinese with English abstract)
[6] Karayel D, Barut Z B, ?zmerzi A. Mathematical modelling of vacuum pressure on a precision seeder[J]. Biosystems Engineering, 2004, 87(4): 437-444.
[7] Dylan S J, Hesterman D C, Guzzomi A L. Precision metering of santalum spicatum (Australian sandalwood) seeds[J]. Biosystems Engineering, 2013, 115(2): 171-183.
[8] 廖慶喜,李繼波,覃國良. 氣力式油菜精量排種器試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(8):44-48.
Liao Qingxi, Li Jibo, Qin Guoliang. Experiment of pneumatic precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(8): 44-48. (in Chinese with English abstract)
[9] Li X, Liao Q, Yu J, et al. Dynamic analysis and simulation on sucking process of pneumatic precision metering device for rapeseed[J]. Journal of Food, Agriculture & Environment, 2012, 10(1): 450-454
[10] 王芳,呂冰,王洪明,等. 氣吸式谷子排種裝置吸種孔的結(jié)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):30-36.
Wang Fang, Lü Bing, Wang Hongming, Zhao Manquan. Structural design and test of seed-suction hole of air-sucking seedmetering device for millet[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 30-36. (in Chinese with English abstract)
[11] 張靜,李志偉,劉皞春,等. 氣力滾筒式排種器種子吸附邊界模型及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):12-20.
Zhang Jing, Li Zhiwei, Liu Haochun, Wu Gang. Mathematical modeling and validation of seeder’s suction-boundary on pneumatic-roller type metering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 12-20. (in Chinese with English abstract)
[12] 余佳佳,丁幼春,廖宜濤,等. 基于高速攝像的氣力式油菜精量排種器投種軌跡分析[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,33(3):103-108.
Yu Jiajia, Ding Youchun, Liao Yitao, et al. High-speed photograpy analysis of dropping trajectory on pneumatic metering device for rapeseed[J]. Journal of Huazhong Agricultural University, 2014, 33(3): 103-108. (in Chinese with English abstract).
[13] 邢赫,臧英,曹曉曼,等. 水稻氣力式排種器投種軌跡試驗(yàn)與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):23-30.
Xing He, Zang Ying, Cao Xiaoman, et al. Experiment and analysis of dropping trajectory on rice pneumatic metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 23-30. (in Chinese with English abstract)
[14] 李旭. 氣力式油菜精量排種器工作機(jī)理與試驗(yàn)研究[D].武漢:華中農(nóng)業(yè)大學(xué),2012.
Li Xu. Experimental Study and Working Mechanism of Pneumatic Precision Metering Device for Rapeseed[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese with English abstract)
[15] 舒彩霞,韋躍培,廖宜濤,等. 油菜氣力式排種系統(tǒng)參數(shù)對其負(fù)壓特性的影響及風(fēng)機(jī)選型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(10):26-33.
Shu Caixia, Wei Yuepei, Liao Yitao, et al. Influence of air blower parameters of pneumatic seedmetering system for rapeseed on negative pressure characteristics and air blower selection[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(10): 26-33. (in Chinese with English abstract)
[16] Kumar R, Adamala S, Rajwade Y A, et al. Performance evaluation of a tractor mounted pneumatic planter for sorghum in dryland[J]. African Journal of Agricultural Research, 2015, 10(39): 3767-3772.
[17] 史嵩,張東興,楊麗,等. 氣壓組合孔式玉米精量排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(5):10-18.
Shi Song, Zhang Dongxing, Yang Li, et al. Design and experiment of pneumatic maize precision seed-metering device with combined holes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 10-18. (in Chinese with English abstract)
[18] 田波平,廖慶喜,黃海東,等. 2BFQ-6 型油菜精量聯(lián)合直播機(jī)的設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(10):211-213.
Tian Boping, Liao Qingxi, Huang Haidong, et al. Design of 2BFQ-6 type precision combined direct planter for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10): 211-213. (in Chinese with English abstract)
[19] 廖慶喜,楊松,廖宜濤,等. 油菜精量聯(lián)合直播機(jī)氣力排種系統(tǒng)性能和參數(shù)建模[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(17):9-15.
Liao Qingxi, Yang Song, Liao Yitao, et al. Modeling for performance and parameters of pneumatic seed-metering system of precision planter for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 9-15. (in Chinese with English abstract)
[20] 殷小偉,楊麗,張東興,等. 氣壓式玉米精量播種機(jī)均勻低損配氣機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(19):9-17.
Yin Xiaowei, Yang Li, Zhang Dongxing, et al. Design and experiment of balance and low-loss air allotter in air pressure maize precision planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(19): 9-17. (in Chinese with English abstract)
[21] 張志彥. 2BQS-6型氣吸式精量播種機(jī)風(fēng)機(jī)傳動(dòng)裝置的改裝[J]. 農(nóng)業(yè)機(jī)械,2005(7):125.
[22] 于斌. 氣吸式播種機(jī)液壓驅(qū)動(dòng)風(fēng)機(jī)系統(tǒng)研究[J]. 農(nóng)機(jī)使用與維修,2013(4):18-19.
[23] 劉月. 氣吸播種機(jī)電力風(fēng)機(jī)系統(tǒng)探討[J]. 河北農(nóng)機(jī),2012(5):62-63.
[24] 李君海,俞南嘉,蔡國飆. 雙工況流量調(diào)節(jié)閥的設(shè)計(jì)與試驗(yàn)[J]. 航空動(dòng)力學(xué)報(bào),2013,28(1):219-225.
[25] 李榮泉,謝建蔚,劉義. 精密氣體減壓閥的靜態(tài)特性分析[J].流體傳動(dòng)與控制,2014(4):38-41.
[26] 楊金梅,幸福堂. 高爐煤氣減壓閥數(shù)值模擬[J]. 流體機(jī)械,2013,41(1):41-44.
[27] 左建民. 液壓與氣壓傳動(dòng)[M]. 北京:機(jī)械工業(yè)出版社,2011.
[28] 楊松,廖宜濤,廖慶喜. 2BFQ-6型油菜精量聯(lián)合直播機(jī)氣力式排種系統(tǒng)試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(17):57-62.
Yang Song, Liao Yitao, Liao Qingxi. Experimental study on pneumatic seed-metering system of 2BFQ-6 precision planter for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 57-62. (in Chinese with English abstract)
[29] 李洪濤,劉元林. 閥口動(dòng)壓力平衡式直動(dòng)溢流閥的靜特性研究[J]. 機(jī)械工程師,2013(6):17-19.
[30] 郁凱元,盛敬超. 關(guān)于內(nèi)流式錐閥穩(wěn)態(tài)液動(dòng)力方向的探討:與有關(guān)液壓傳動(dòng)教科書作者們商榷[J]. 液壓與氣動(dòng),2006,2006(10):26-28.
Air pressure stabilizing method and experiment of pneumatic seed-metering system of precision rapeseed planter
Liao Yitao, Shu Caixia, Liao Qingxi, Wei Yuepei, Wang Lei, Wang Du, Zheng Juan
(1. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; 2. Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture, Wuhan 430070, China)
The tractor load keeps varying randomly during the tractor - pneumatic planter unit working. It could cause the air pressure in pneumatic precision seed-metering system to become not as constant as the design due to the working speed fluctuation of air pump on the planter led by the variation in rotation velocity of the tractor’s power output shaft. Consequently, it would deteriorate the distribution uniformity of seeds in the field and worsen the growth and final yield of crops. To solve this problem, an effective air pressure stabilizing method of pneumatic seed-metering system was proposed based on spring-loaded air pressure relief valve. The first step was to measure the rotation velocity of the tractor’s power output shaft in the field. After that, the relationships of the speed of the air pump and the air pressure of the pipeline and the seed-metering device were determined through the bench test. Then, the predetermined control point value of air pressure relief valve was estimated, and the structure and working parameters of air pressure relief valve spring were calculated and selected. Additionally, theoretical analysis and experiments were performed to demonstrate the efficiency of the selected relief valve. A practical engineering in precision combined rapeseed planter, called 2BFQ-6, was used to demonstrate the application of proposed air pressure stabilizing method. A field test was conducted to determine the working speed of the air pump and a laboratory test was implemented to confirm the relationships of the air pump working speed, air pressure in the pipes and air pressure in the chamber of seed-metering device. The test results showed that the coefficient of variation of working speed of the air pump was less than 4.38% when the tractor was working with the same gear, and the coefficient of variation was less than 9.2% as the tractor was working with different gear. To ensure persistent seeding of the seed-metering device, the working speed of the air pump should be in the range of 2 020-2 620 r/min. In order to stabilize air pressure of the pneumatic seed-metering system, the predetermined point value of relief valves were 1 000 and -5 500 Pa with positive and negative air pressure respectively. A type of spring-loaded air pressure relief valve was selected and its construction and working parameters were calculated and analyzed. Carbon steel wire cylindrical spiral spring was employed in the valve. The intermediate diameter and the pitch of the spring were 30 and 10 mm respectively. The number of active coils of the spring was 8. The line diameter of the spring was 1.0 mm for positive pressure relief and 1.5 mm for negative pressure relief. The precompression distance of adjustment bolts were 6.7 and 7.8 mm for positive and negative pressure relief respectively. Theoretical analysis based on air pressure - flow rate characteristics verified that the relief valve used in this pneumatic seed-metering system could be used for air pressure adjusting. Furthermore, air pressure and seeding quantity experiments were performed to evaluate the performance of the selected valve as well as to confirm the feasibility of the proposed stabilizing method. The results showed that the positive and negative air pressure of the seed-metering device could range from 200 to 350 Pa and from -3 900 to -3 000 Pa respectively by employing the relief valves, under which the pneumatic seed-metering system could work stably, showing a contrast to the speed fluctuation of the air pump. The air pressure stabilizing system decreased the deviation rate of the positive and negative air pressure in the air chamber of seed-metering device by 45% and 110%, respectively, which facilitated the pressure-regulating response sensitivity and stability to satisfy the requirement. With the increase of the air pump working speed from 2 000 to 2 700 r/min, the coefficient of variation of seeding quantity was 3.84% without the air pressure stabilizing. However, it was reduced to 1.16% when the air pressure stabilizing method with the customized valves was applied, which decreased by 2.68%, indicating the improvement of seeding quantity stability. The research has confirmed that the air pressure stabilizing method by employing air pressure relief valve can effectively solve the problems that the working pressure in the seed-metering device fluctuates when the rapeseed planter works in the field. The method can provide a technical reference for pneumatic planter design and optimization.
mechanization; control; seed; pneumatic precision combined planter for rapeseed; pneumatic seed-metering system; overflow and air pressure relief; air pressure stabilizing; experiment
10.11975/j.issn.1002-6819.2017.15.006
S223.2+4
A
1002-6819(2017)-15-0049-08
2017-01-12
2017-05-28
國家自然科學(xué)基金資助項(xiàng)目(51405180);國家油菜產(chǎn)業(yè)體系專項(xiàng)資助項(xiàng)目(CARS-13);農(nóng)業(yè)部科研杰出人才及創(chuàng)新團(tuán)隊(duì)資助項(xiàng)目;湖北省重大技術(shù)創(chuàng)新專項(xiàng)資助項(xiàng)目(2016ABA094)
廖宜濤,男,湖北荊州人,博士,副教授,主要從事現(xiàn)代農(nóng)業(yè)裝備設(shè)計(jì)與測控研究。武漢 華中農(nóng)業(yè)大學(xué)工學(xué)院,430070。
Email:liaoetao@mail.hzau.edu.cn