(溫州醫(yī)科大學(xué)眼視光與生物醫(yī)學(xué)工程學(xué)院 浙江 溫州 325035)
博弈論視角下學(xué)生評(píng)優(yōu)工作中的投訴問(wèn)題的管理對(duì)策
常笑張海鋒
(溫州醫(yī)科大學(xué)眼視光與生物醫(yī)學(xué)工程學(xué)院浙江溫州325035)
通過(guò)分析高校學(xué)生評(píng)優(yōu)中存在的問(wèn)題,提出了學(xué)生投訴中存在的博弈基礎(chǔ),構(gòu)建了投訴博弈模型,求出模型的納什均衡解,并對(duì)均衡解的影響因素進(jìn)行分析,最后給出高校管理對(duì)處理投訴問(wèn)題的政策建議。
博弈論;學(xué)生工作;投訴;對(duì)策
1967年美國(guó)喬治·梅森大學(xué)Gordon Tullock提出尋租理論的思想,1974年美國(guó)經(jīng)濟(jì)學(xué)家Anne Krueger建立了尋租理論,1988年我國(guó)吳敬璉教授等率先在《經(jīng)濟(jì)社會(huì)體制比較》雜志上介紹尋租理論,國(guó)內(nèi)的許多學(xué)者從不同角度進(jìn)行了管理分析[1,2,3]。尋租理論的提出,將經(jīng)濟(jì)學(xué)家研究的視野從生產(chǎn)性的尋利活動(dòng)擴(kuò)展到了非生產(chǎn)的尋租活動(dòng),把人們追求新增經(jīng)濟(jì)利益的行為和追求既得經(jīng)濟(jì)利益的行為區(qū)分開(kāi)來(lái)[1]。根據(jù)尋租理論的思想,管理部門(mén)運(yùn)用行政權(quán)力對(duì)被管理者的收益活動(dòng)進(jìn)行干預(yù)和管制,妨礙了自由競(jìng)爭(zhēng)的作用,從而創(chuàng)造了少數(shù)有特權(quán)者取得超額收益的機(jī)會(huì)。這種超額收益被稱為“租”(rent),謀求這種權(quán)力以獲得租金的活動(dòng),被稱作“尋租”,因此,尋租是與特權(quán)相伴而生的,而委托代理關(guān)系的存在又是產(chǎn)生特殊權(quán)力的根本原因[4]。
博弈論(Game Theory)研究的是決策主體間行為發(fā)生直接相互作用時(shí)的決策以及這種決策的均衡問(wèn)題。通過(guò)文獻(xiàn)檢索,目前很少有學(xué)者以高校學(xué)生工作中的投訴為模型建立相關(guān)博弈分析,本文通過(guò)構(gòu)建投訴博弈模型,求出模型的納什均衡解,并對(duì)均衡解的影響因素進(jìn)行分析,最終給出治理高校評(píng)獎(jiǎng)評(píng)優(yōu)過(guò)程中投訴問(wèn)題的對(duì)策建議。
隨著反腐及法制化建設(shè)的推進(jìn),高校學(xué)生的維權(quán)意識(shí)也逐漸提高[5]。高校學(xué)生工作中,評(píng)優(yōu)作為樹(shù)立典型,引領(lǐng)學(xué)生工作前進(jìn)的重要抓手,越來(lái)越受到教育管理部門(mén)的青睞。高等教育的普及,使得高校畢業(yè)生就業(yè)競(jìng)爭(zhēng)越來(lái)越激烈,用人單位在選人用人時(shí)也會(huì)以學(xué)生是否為中共黨員或者在校期間獲得哪些先進(jìn)榮譽(yù)等為重要參考,另外國(guó)家獎(jiǎng)學(xué)金等一些優(yōu)秀獎(jiǎng)學(xué)金金額較高,與利益掛鉤的獎(jiǎng)項(xiàng)向來(lái)是學(xué)生較為關(guān)切的,稍有不慎就會(huì)導(dǎo)致一些學(xué)生的不滿,高校的發(fā)展以安全穩(wěn)定為第一要?jiǎng)?wù),監(jiān)管部門(mén)在學(xué)生比較關(guān)切的敏感問(wèn)題上,一直處于高度關(guān)注狀態(tài)。以浙江省溫州市某高校為例,該校自2011年以來(lái),在歷次研究生先進(jìn)評(píng)選中,發(fā)生投訴10例,其中匿名投訴8例。
投訴是一方對(duì)于評(píng)判結(jié)果不滿意時(shí),向上級(jí)監(jiān)督管理部門(mén)提出異議的一種方式。投訴的發(fā)生有二種方式,一是管理部門(mén)權(quán)利尋租,使得評(píng)選結(jié)果有失公允,學(xué)生利益相關(guān)者不滿結(jié)果,發(fā)生投訴;二是管理部門(mén)在公開(kāi)公平的情況下,因?yàn)樾畔⒉粚?duì)稱,一些學(xué)生對(duì)于管理者或者獲獎(jiǎng)?wù)叽嬖诋愖h,在未核實(shí)的前提下,向相關(guān)部門(mén)提出質(zhì)疑。本研究構(gòu)建的投訴模型是基于以上兩種假定情況。
(一)博弈模型假定
假設(shè)高校評(píng)獎(jiǎng)評(píng)優(yōu)中的學(xué)生投訴活動(dòng)涉及三個(gè)參與者:投訴人、管理部門(mén)、監(jiān)督部門(mén)。投訴人有兩種策略:投訴和不投訴。監(jiān)督部門(mén)也有兩種策略:監(jiān)督和不監(jiān)督。投訴人的投訴概率為p,投訴人的正常支付為v,這個(gè)正常支付就是投訴人在不投訴情況下的正常的獲益值,當(dāng)投訴人投訴成功后,投訴人獲得額外的投訴收益Δv,為此投訴人為了投訴所帶來(lái)的負(fù)面影響及產(chǎn)生不良后果的效益值為αΔv(0<α<1),αΔv就是投訴人的投訴成本;管理部門(mén)的正常支付為s,被投訴產(chǎn)生的影響效益值為g;監(jiān)督部門(mén)的監(jiān)督成本為c,監(jiān)督概率為q,監(jiān)督成功的概率為u;投訴行為成功后,監(jiān)督部門(mén)的收益為m,并對(duì)管理部門(mén)進(jìn)行懲罰為n。所有變量取值均大于0,三方博弈支付模型如表1所示:
表1 博弈支付模型
(二)對(duì)模型進(jìn)行求解
1.監(jiān)督部門(mén)的期望總收益為E1:
E1=p(1-q)×0+pq(1-u)(-c)+pqu(m-c)+(1-p)(1-q)×0+(1-p)q(-c)
對(duì)q求一階導(dǎo)數(shù)得:
?E1/?q=pum-c
令:?E1/?q=0
推導(dǎo)可得投訴概率p的最優(yōu)值為:
p*=c/um
p>p*時(shí),監(jiān)管部門(mén)進(jìn)行監(jiān)管最為有利,p
2.管理部門(mén)接受投訴與不接受投訴的總收益為E2,則
E2=p(1-q)(s+g)+pq(1-u)(s+g)+pqu(s-g-n)+(1-p)(1-q)s+(1-p)qs
對(duì)p求一階導(dǎo)數(shù)得:
?E2/?p=g-2qug-qun
令:?E2/?p=0
推導(dǎo)可得監(jiān)督部門(mén)監(jiān)督概率的最優(yōu)值為:
q1*=g/u(2g+n)
當(dāng)q
3.投訴人進(jìn)行投訴與不進(jìn)行投訴時(shí)的期望總收益為E3,則
E3=p(1-q)(v-αΔV)+pq(1-u)(v-αΔV)+pqu(v+ΔV-αΔV)+(1-p)(1-q)v+(1-p)qv
對(duì)p求一階導(dǎo)數(shù)得:
?E3/?p=quΔV-αΔV
令:?E3/?p=0
推導(dǎo)可得監(jiān)督人監(jiān)督概率的最優(yōu)值為:
q2*=α/u
當(dāng)q
當(dāng)q=q2*時(shí),投訴人的投訴和不投訴的收益相等。
綜合上面的計(jì)算可得出高校評(píng)獎(jiǎng)評(píng)優(yōu)中的三方博弈模型的混合戰(zhàn)略納什均衡解為:
(p*,q1*)=[c/um,g/u(2g+n)]
(p*,q2*)=[c/um,α/u]
(一)對(duì)投訴概率最優(yōu)解的討論
由p*=c/um可知,投訴概率最優(yōu)值p*與監(jiān)督成本c、監(jiān)督成功的概率u、監(jiān)督部門(mén)的收益m有關(guān)。p*隨著監(jiān)督成本的增加而增加,即監(jiān)督成本c越大,腐敗行為發(fā)生的可能性就越大,投訴行為越有可能發(fā)生,因此要提高監(jiān)督效率u,盡量降低監(jiān)督成本,減少尋租行為的發(fā)生;p*隨著監(jiān)督成功概率u的增加而減少,即監(jiān)督成功的概率越大,管理部門(mén)的腐敗幾率就越少,投訴行為就越不容易發(fā)生;p*隨著監(jiān)督部門(mén)的監(jiān)督收益m的增大而減小,可理解為,監(jiān)督部門(mén)的收益來(lái)自于對(duì)管理部門(mén)的處罰,當(dāng)m越大說(shuō)明管理部門(mén)的尋租風(fēng)險(xiǎn)越高,發(fā)生尋租的可能性就越低,發(fā)生的投訴就越少。
(二)管理部門(mén)利益最大化傾向的情況
如果把評(píng)優(yōu)活動(dòng)中管理部門(mén)的利益放在第一位,投訴者的利益放在第二位,則監(jiān)督部門(mén)將以最優(yōu)概率q1*=g/u(2g+n)進(jìn)行監(jiān)督。管理部門(mén)利益最大化情況下的納什均衡解為(p*,q1*),此時(shí)監(jiān)督部門(mén)的最優(yōu)監(jiān)督概率為q1*,從上面的公式可知,q1*與管理部門(mén)的被投訴支付g、監(jiān)督成功的概率u及監(jiān)督部門(mén)對(duì)管理部門(mén)的懲罰n有關(guān)。如果管理部門(mén)的被投訴支付g=0,則q1*=0,即此項(xiàng)評(píng)優(yōu)活動(dòng)對(duì)管理部門(mén)沒(méi)有收益,換句話說(shuō)就是管理部門(mén)的評(píng)優(yōu)活動(dòng)是公平的,故沒(méi)有管理偏失行為發(fā)生,無(wú)需監(jiān)督,隨著管理部門(mén)的被投訴支付g的增加,監(jiān)管部門(mén)的監(jiān)督概率q1*也相應(yīng)增加;監(jiān)管部門(mén)的最優(yōu)監(jiān)督概率q1*隨監(jiān)督成功的概率u的增加而減少,即監(jiān)督成功的概率越大,管理部門(mén)的腐敗幾率就越少,最優(yōu)監(jiān)督概率q1*也就越小;監(jiān)督部門(mén)發(fā)現(xiàn)投訴行為后對(duì)管理部門(mén)的懲罰n越大,就越能減少管理部門(mén)的尋租行為發(fā)生,即建立對(duì)管理部門(mén)的問(wèn)責(zé)機(jī)制可以有效防止腐敗的發(fā)生。
(三)投訴者利益最大化傾向的情況
如果把評(píng)獎(jiǎng)評(píng)優(yōu)活動(dòng)中投訴者的利益放在第一位,管理部門(mén)的利益放在第二位,則監(jiān)管部門(mén)將以最優(yōu)概率q2*=α/u進(jìn)行監(jiān)督。投訴者利益最大化情況下的納什均衡解為(p*,q2*),此時(shí)監(jiān)督部門(mén)的最優(yōu)監(jiān)督概率為q2*,從上面的公式可知,q2*與監(jiān)督部門(mén)監(jiān)督成功的概率u、投訴者的投訴成本系數(shù)α有關(guān)。α越大,投訴者的投訴成本越高,相應(yīng)的管理部門(mén)的被投訴支付收益越高,腐敗發(fā)生的可能性越大,監(jiān)督部門(mén)的最優(yōu)監(jiān)督概率q2*也越大;如果α=0,則投訴者的投訴成本為0,投訴者的收益達(dá)到最大值V+ΔV,匿名投訴時(shí)即為此類(lèi)博弈,投訴方的收益最大,監(jiān)督概率q2*為0,即對(duì)于匿名投訴,管理方的最佳選擇是不予受理;如果α=1,說(shuō)明此時(shí)的投訴成本最大,投訴者通過(guò)投訴獲得的最大收益為V,投訴為了公平,不為自己的收益,此時(shí)對(duì)于監(jiān)督部門(mén)來(lái)說(shuō),最優(yōu)監(jiān)督概率也將增大;監(jiān)督部門(mén)的最優(yōu)監(jiān)督概率q2*隨監(jiān)督成功的概率u的增加而減少。
(一)增強(qiáng)投訴者的投訴成本并不能降低投訴行為的發(fā)生
根據(jù)上面對(duì)納什均衡解的討論可以很好的解釋當(dāng)前高校學(xué)生工作中的匿名投訴行為。目前高校中,評(píng)優(yōu)中投訴問(wèn)題層出不窮,多為匿名投訴,究其原因在于投訴者匿名投訴時(shí)幾乎沒(méi)有任何支付成本,投訴者心中的想法為,如果不投訴將不會(huì)有ΔV的收益,匿名投訴就有可能獲得ΔV的收益,另外投訴者了解,監(jiān)督部門(mén)不作為,將會(huì)有更上級(jí)管理部門(mén)問(wèn)責(zé),所以監(jiān)督部門(mén)會(huì)處理所有投訴,作為監(jiān)督部門(mén)對(duì)于這類(lèi)投訴最好的處理辦法就是建章立志,不予受理;增加投訴者的投訴成本并不能降低投訴率,對(duì)于監(jiān)督部門(mén)來(lái)說(shuō),只有建立完善的問(wèn)責(zé)機(jī)制才可以降低投訴機(jī)會(huì),可以降低投訴率。
(二)適當(dāng)增加管理部門(mén)的正常收益
管理部門(mén)的總收益值是恒定的,當(dāng)增加管理部門(mén)的正常收益值時(shí),管理部門(mén)的被投訴收益值就減少,g越小,可以減少管理部門(mén)的腐敗和失責(zé)行為。這個(gè)正常收益可以是增加物質(zhì)待遇也可以是提高管理人員的晉升機(jī)會(huì),因?yàn)楣芾聿块T(mén)的正常收益越大,其腐敗和失責(zé)行為被發(fā)現(xiàn)后損失就越大,即腐敗風(fēng)險(xiǎn)越大,對(duì)失去既得收益的擔(dān)憂在一定程度上可以降低管理部門(mén)的腐敗行為,這時(shí)監(jiān)督人就可以適當(dāng)減小監(jiān)督概率,這也與“高薪養(yǎng)廉”的道理一致。
(三)加大對(duì)監(jiān)督部門(mén)的績(jī)效考核
監(jiān)督部門(mén)可以設(shè)置重金獎(jiǎng)勵(lì)提供腐敗線索的證人及內(nèi)部員工等措施,提高監(jiān)督成功率,加大對(duì)管理部門(mén)尋租的懲罰,降低投訴率。
[1]孫萍,丁華.高??萍汲晒u(píng)價(jià)中的尋租博弈分析[J].湖南大學(xué)社會(huì)科學(xué)學(xué)報(bào),2016(4):106-109.
[2]洪必綱.我國(guó)尋租理論的研究現(xiàn)狀與展望[J].統(tǒng)計(jì)與決策,2009(7):138-139.
[3]王欣,賈元華,馬曉飛.國(guó)家科技計(jì)劃項(xiàng)目立項(xiàng)中的尋租博弈分析[J].科技進(jìn)步與對(duì)策,2011(8):27-30.
[4]梁保磊,張玉林.尋政府科技項(xiàng)目尋租治理及最優(yōu)監(jiān)管度研究[J].科技管理研究,2009(6):56-58.
[5]賴經(jīng)洪,程術(shù)兵.高校學(xué)生維權(quán)意識(shí)增強(qiáng)與學(xué)生管理對(duì)策研究[J].江西教育學(xué)院學(xué)報(bào),2011(6):184-186.
HowtoSolvetheComplaintsintheAwardsofStudentsWorkUnderGameTheoryPerspective
Based on the analysis of the problem in the college students work,a complain game model is built up and solved.Then the paper gives the policy implications of the parameters and variables through the Nash equilibrium solution and provides the government approach to deal with complaints game.
game theory;college students work;complain;countermeasure
常笑(1993-),女,馬鞍山人,溫州醫(yī)科大學(xué)碩士研究生,研究方向:學(xué)生管理、護(hù)理管理等。