李小冬,吳佳海,孫方,陳光吉,王小利
(貴州省農(nóng)業(yè)科學(xué)院草業(yè)研究所,貴州 貴陽(yáng) 550006)
過(guò)量表達(dá)Fa14-3-3C促進(jìn)擬南芥對(duì)低氮脅迫耐受性的研究
李小冬,吳佳海,孫方,陳光吉,王小利*
(貴州省農(nóng)業(yè)科學(xué)院草業(yè)研究所,貴州 貴陽(yáng) 550006)
氮元素是植物生長(zhǎng)發(fā)育過(guò)程必不可少的營(yíng)養(yǎng)元素之一,對(duì)禾本科作物生長(zhǎng)的影響更加明顯。本研究采用RACE技術(shù)從高羊茅葉片中克隆獲得Fa14-3-3C基因全長(zhǎng),并對(duì)其亞細(xì)胞定位與分子功能進(jìn)行系統(tǒng)研究。在煙草表皮細(xì)胞中觀察發(fā)現(xiàn)Fa14-3-3C-GFP主要定位在細(xì)胞質(zhì)中與細(xì)胞膜上。將Fa14-3-3C基因在擬南芥中過(guò)量表達(dá)獲得3個(gè)單拷貝轉(zhuǎn)基因株系(抗性分離比為3∶1)。在低氮脅迫反應(yīng)中,F(xiàn)a14-3-3C過(guò)量表達(dá)株系OE-1與OE-3的根鮮重顯著比野生型高,而OE-2與野生型差異不顯著,通過(guò)熒光定量PCR分析發(fā)現(xiàn)OE-1與OE-3過(guò)量表達(dá)明顯而OE-2沒(méi)有過(guò)量表達(dá),說(shuō)明Fa14-3-3C對(duì)植物耐低氮脅迫調(diào)節(jié)具有劑量效應(yīng)。定量觀察植物根系生長(zhǎng)發(fā)現(xiàn)在低氮處理早期OE-1轉(zhuǎn)基因株系就顯著優(yōu)于野生型,主要是通過(guò)補(bǔ)償根系生長(zhǎng)的方式緩解低氮脅迫對(duì)植物的傷害。因此本研究不僅獲得了耐低氮脅迫候選基因,而且驗(yàn)證了其在模式植物中的分子功能,為進(jìn)一步通過(guò)基因工程等手段培育耐低氮脅迫種質(zhì)資源奠定基礎(chǔ),具有重要理論研究?jī)r(jià)值與生產(chǎn)應(yīng)用前景。
高羊茅;Fa14-3-3C;低氮脅迫;轉(zhuǎn)基因
氮元素是影響植物生長(zhǎng)發(fā)育的主要營(yíng)養(yǎng)元素之一,其參與植物有機(jī)體的結(jié)構(gòu)組成,也參與植物生理代謝反應(yīng)。因此,合理施用氮肥對(duì)提高作物產(chǎn)量起到極大的促進(jìn)作用,但近年來(lái)農(nóng)業(yè)生產(chǎn)中氮肥的過(guò)量施用導(dǎo)致地下水硝酸鹽含量超標(biāo)、地表水富營(yíng)養(yǎng)化等環(huán)境問(wèn)題。我國(guó)是氮肥消費(fèi)大國(guó),并且氮肥使用量仍呈遞增的趨勢(shì),然而作物對(duì)人工施加氮肥的利用率不到50%[1-2],因此培育耐低氮肥脅迫的作物新品種對(duì)高效生產(chǎn)以及保護(hù)環(huán)境都有極其重要的意義。高羊茅(Festucaarundinacea)是主要的冷季型牧草和草坪草,在水土保持、環(huán)境保護(hù)、城市綠化和運(yùn)動(dòng)場(chǎng)建植上發(fā)揮著重要的作用[3]。但作為一種禾本科牧草,在其栽培和種子生產(chǎn)過(guò)程中對(duì)氮肥的依賴性很強(qiáng),因此,培育經(jīng)濟(jì)環(huán)保的耐低氮高羊茅新品種,對(duì)有效降低草地栽培管理成本,減少環(huán)境污染,促進(jìn)草地農(nóng)業(yè)生產(chǎn)可持續(xù)發(fā)展有重要促進(jìn)作用[4-5]。
由于氮元素對(duì)植物生長(zhǎng)以及農(nóng)業(yè)生產(chǎn)等至關(guān)重要,前人從氮元素的吸收、轉(zhuǎn)運(yùn)、同化、轉(zhuǎn)移、再生以及碳氮平衡等方面進(jìn)行了系統(tǒng)的研究,并已進(jìn)行了很好的綜述[6]。這些研究發(fā)現(xiàn)并闡述了多個(gè)家族基因的功能,其中包括響應(yīng)NO3-的NRT[7]、NAXT[8]、NAR[7, 9]等家族基因,響應(yīng)NH4+的AMT家族基因[10],以及響應(yīng)有機(jī)氮的ProT[11]、LHT[12]、AAP[13]等家族基因,并且這些基因在多個(gè)物種中的功能保守。除直接參與氮元素代謝的基因外,許多基因間接受氮元素含量的調(diào)節(jié),14-3-3家族基因是其中之一。
14-3-3蛋白在真核生物中保守性較高,常通過(guò)單體或二聚體形式與靶蛋白結(jié)合行使調(diào)節(jié)功能,在植物中亦被稱為GF家族蛋白[14-15]。因?yàn)榫哂薪Y(jié)合多種蛋白的功能,14-3-3家族基因不僅參與干旱[16]、高鹽[17]等多種植物逆境調(diào)節(jié),而且受鐵元素[18]、磷元素與鉀元素[19]等多種營(yíng)養(yǎng)元素含量水平的調(diào)控。氮元素的吸收與同化也顯著受14-3-3家族基因的調(diào)節(jié),前人研究發(fā)現(xiàn)14-3-3蛋白能夠通過(guò)與NIR結(jié)合調(diào)節(jié)氮同化過(guò)程的關(guān)鍵酶NR的活性[20],最近的研究發(fā)現(xiàn)14-3-3蛋白作為一種重要的信號(hào)轉(zhuǎn)導(dǎo)調(diào)節(jié)因子通過(guò)磷酸化靶標(biāo)蛋白參與碳水化合物代謝以及氮元素的同化與利用[21]。盡管14-3-3家族基因功能重要,且在多個(gè)作物中被廣泛研究,然而在牧草類作物中關(guān)于14-3-3家族基因的研究還比較少,其在牧草中的同源基因是否能夠調(diào)控植物抵抗相應(yīng)的逆境脅迫還不清楚,基于此,本研究克隆了Fa14-3-3C的全長(zhǎng),并將其在擬南芥中過(guò)量表達(dá),系統(tǒng)分析了Fa14-3-3C在耐低氮脅迫中的功能,為下一步采用分子育種手段培育耐低氮脅迫牧草種質(zhì)資源奠定基礎(chǔ)。
1.1材料
本研究采用的植物材料為黔草1號(hào)高羊茅(由貴州省草業(yè)研究所選育而成),以及哥倫比亞野生型擬南芥(ArabidopsisthalianaColumbia),由華中農(nóng)業(yè)大學(xué)周永明教授團(tuán)隊(duì)饋贈(zèng),擬南芥以及高羊茅種植參考Li等[22]的方法,在人工氣候室中設(shè)定生長(zhǎng)溫度為22 ℃,相對(duì)濕度為60%,光周期為16 h光照/8 h黑暗,光照強(qiáng)度為51750~67500 μmol/(m2·s)。Fa14-3-3C基因克隆于2014-2015年在貴州省草業(yè)研究所完成,亞細(xì)胞定位與耐低氮脅迫分析于2015-2016年在貴州省草業(yè)研究所完成。
1.2方法
1.2.1RNA的提取及反轉(zhuǎn)錄 稱取100 mg新鮮黔草1號(hào)高羊茅葉片,用液氮研磨成粉末,RNA的提取采用TRIZOLTMKit RNA提取試劑(Invitrogen,USA)。 cDNA 第一鏈的反轉(zhuǎn)錄采用RevertAid H Minus First Strand cDNA Synthesis Kit (Fermentas),操作參照所用試劑盒說(shuō)明進(jìn)行。
1.2.2Fa14-3-3C的克隆及過(guò)量表達(dá)載體的構(gòu)建 利用前期轉(zhuǎn)錄組數(shù)據(jù)設(shè)計(jì)引物,進(jìn)行5′RACE(rapid amplification of cDNA ends)以及3′RACE擴(kuò)增,設(shè)計(jì)的引物如下,5′RACE:FaGF14-C-REV1,5′-GTTCTTGTAGGCGACG-3′;FaGF14-C-REV2,5′-CTCCTCGACGGTGAGCTC-3′;FaGF14-C-REV-3,5′-CGACCATCTCCTCGTACC-3′。3′RACE:FaGF14-C-FWD1,5′-GCAGAGCAGGCTGAGAGTTATGAAGAGA-3′;FaGF14-C-FWD2,5′-TTCATGGAGAAGGTGGCAAAGACAGTT-3′,具體操作過(guò)程參照RACE試劑盒說(shuō)明書(Clontech SMART RACE kit,USA),獲得高羊茅Fa14-3-3C全長(zhǎng)mRNA的5′端與3′端的序列。
根據(jù)RACE結(jié)果,設(shè)計(jì)克隆Fa14-3-3C的全長(zhǎng)CDS的引物,F(xiàn)aGF14-C-FWD4,5′-CGGGATCCATGTCGGCACCAGCGGAGCTTTC-3′;FaGF14-C-REV4,5′-GCTCTAGACTCGGCGGCTCCCTTTCG-3′。反應(yīng)體系如下:10×buffer,2 μL;dNTP mix,0.5 μL;MgCl2,1.5 μL; FaGF14-C-FWD4,1 μL;FaGF14-C-REV4,1 μL;cDNA模板,2 μL;DNA Polymerase,0.2 μL;dd H2O,12 μL。程序如下,95 ℃ 1 min,95 ℃ 10 s,58 ℃ 10 s,72 ℃ 1 min,30個(gè)循環(huán),72 ℃ 5 min,25 ℃ 5 min。并將其連接到pEASY-Blunt克隆載體(pEASY-Blunt Cloning Kit,Transgene),進(jìn)行測(cè)序分析,利用BamHⅠ與XbaⅠ將正確的序列與p1300-GFP載體酶切后,用T4連接酶連接成p1300-Fa14-3-3C-GFP過(guò)量表達(dá)載體(Fermentas),具體操作參照試劑盒說(shuō)明書。
1.2.3Fa14-3-3C-GFP亞細(xì)胞定位 采用電轉(zhuǎn)法將p1300-Fa14-3-3C-GFP載體轉(zhuǎn)化到GV3101感受態(tài)細(xì)胞,利用硫酸慶大霉素和卡那霉素進(jìn)行抗性篩選,利用35S和FaGF14-C-REV4進(jìn)行PCR 鑒定,反應(yīng)體系與程序同F(xiàn)a14-3-3C克隆,獲得轉(zhuǎn)化p1300-Fa14-3-3C-GFP陽(yáng)性農(nóng)桿菌克隆。將陽(yáng)性菌落接種到5 mL Luria-Bertani培養(yǎng)基(LB)+25 mg/L 慶大霉素+50 mg/L卡那霉素的液體培養(yǎng)基中28 ℃, 220 r/min活化24 h。按照1∶50的比例將活化的菌液接種到200 mL LB+25 mg/L慶大霉素+50 mg/L卡那霉素的培養(yǎng)基28 ℃, 220 r/min培養(yǎng)8~12 h。室溫5000 r/min離心15 min。棄上清,將農(nóng)桿菌沉淀懸浮于新鮮配制的稀釋緩沖液[10 mmol/L MgCl2,10 mmol/L MES (2-4-morpholino ethanesulfonic acid),pH=5.7,0.5% 葡萄糖,200 mmol/L 乙酰丁香酮]。將活化好的農(nóng)桿菌用1 mL的一次性注射器打入煙草(Nicotianatabacum)葉片下表皮細(xì)胞,暗光培養(yǎng)3~5 d,撕煙草下表皮在紫外激發(fā)光下觀察508 nm的熒光信號(hào)(微分干涉熒光顯微鏡,Nikon,日本)。
1.2.4p1300-Fa14-3-3C-GFP轉(zhuǎn)化擬南芥 農(nóng)桿菌的活化及培養(yǎng)同1.2.3,將收集的農(nóng)桿菌菌體懸浮于新鮮配制的誘導(dǎo)培養(yǎng)基中(10 g 蔗糖充分溶解于200 mL蒸餾水中),在轉(zhuǎn)化之前加入20 μL Silwet(上海生工)。將去除花和角果的野生型植株浸泡在農(nóng)桿菌懸浮液30 s。避光培養(yǎng)過(guò)夜,然后正常培養(yǎng)至種子成熟,收獲的種子為T0轉(zhuǎn)基因擬南芥。
1.2.5轉(zhuǎn)基因擬南芥的篩選及分子鑒定 將T0代轉(zhuǎn)基因的擬南芥種子分裝成200 mg每管,用75%乙醇表面消毒1 min,用50% 84消毒液消毒3 min, 用無(wú)菌水清洗種子3~4次,均勻懸浮于0.1%的瓊脂糖,然后鋪布于1/2 Murashige & Skoog (MS)培養(yǎng)基+300 mg/L特美汀+50 mg/L潮霉素培養(yǎng)基,4 ℃放置3 d轉(zhuǎn)移到人工氣候室中篩選15~30 d,挑選綠色健壯的植株移栽到營(yíng)養(yǎng)土中備用??剐苑蛛x比的篩選挑選T1代種子,每份準(zhǔn)備30~60顆種子,消毒與篩選參考T0代方法,15~30 d后統(tǒng)計(jì)陽(yáng)性與非陽(yáng)性比例。挑選接近3∶1分離的株系進(jìn)行分子篩選(OE-1,OE-2,OE-3),采用天根植物DNA提取試劑盒(DP305)提取轉(zhuǎn)基因與野生型擬南芥的新鮮葉片組織的DNA,程序方法參照試劑盒說(shuō)明書。利用HptF+HptR以及35S+FaGF14-C-REV4兩個(gè)引物組合進(jìn)行PCR 鑒定,PCR反應(yīng)采用上海生工 2×Taq PCR反應(yīng)試劑盒,反應(yīng)體系如下:2×Taq PCR Mixture,10 μL;正向引物,1 μL;反向引物,1 μL;DNA,2 μL;dd H2O,6 μL。混勻后進(jìn)行PCR擴(kuò)增反應(yīng),程序如下:94 ℃ 3 min,94 ℃ 30 s,52 ℃ 30 s,72 ℃ 30 s,30個(gè)循環(huán),72 ℃ 5 min,25 ℃ 5 min。取8 μL PCR產(chǎn)物電泳檢測(cè),挑選陽(yáng)性植株用于表型考察與表達(dá)分析。
1.2.6熒光定量分析 RNA提取及反轉(zhuǎn)錄參照1.2.1,采用GoTaq Real-Time PCR Systems (Promega,A6001)檢測(cè)轉(zhuǎn)基因植物和野生型中14-3-3C的表達(dá),引物組合為:Fa14-3-3C-FWD5,5′-TTGCCTACCCTGGATAAGATCTAAG-3′與Fa14-3-3C-REV5,5′-TAATAAACCCAGTCGTATCGCTTAG-3′,內(nèi)參基因?yàn)閁biquitin,引物組合為UBI-FWD1,5′-CACCTCGATCACCCACCTCT-3′,UBI-REV1,5′-AGGGTCTCCGATAACCTCCA-3′,操作方法按照試劑盒說(shuō)明書,反應(yīng)程序?yàn)?4 ℃ 2 min,94 ℃ 15 s,58 ℃ 15 s,72 ℃ 30 s,讀取熒光信號(hào),45個(gè)循環(huán),72 ℃ 5 min,25 ℃ 5 min。采用2-ΔΔct方法[22]分析14-3-3C的表達(dá)變化,每個(gè)樣品3個(gè)生物學(xué)重復(fù),每個(gè)生物學(xué)重復(fù)3個(gè)技術(shù)重復(fù)。
1.2.7轉(zhuǎn)基因擬南芥耐低氮脅迫分析 將野生型以及轉(zhuǎn)Fa14-3-3C基因的擬南芥表面消毒后播種于Hoagland固體培養(yǎng)基中[1.25 mmol/L KNO3,1.25 mmol/L Ca(NO3)2·4H2O,0.5 mmol/L MgSO4·7H2O,0.25 mmol/L KH2(PO4),11.6 μmol/L H3BO3,4.6 μmol/L MnCl2·4H2O,0.19 μmol/L ZnSO4·7H2O,0.12 μmol/L Na2MoO4·2H2O,0.08 μmol/L CuSO4·5H2O 和10 μmol/L Fe(III)-EDTA,10 g/L瓊脂,用HCl調(diào)整pH值到6.0],正常條件預(yù)培養(yǎng)4 d,挑選整齊一致的幼苗分別移栽到Hoagland全營(yíng)養(yǎng)培養(yǎng)基與Hoagland缺氮培養(yǎng)基[1.25 mmol/L KCl,1.25 mmol/L CaCl2,0.5 mmol/L MgSO4·7H2O,0.25 mmol/L KH2(PO4),11.6 μmol/L H3BO3,4.6 μmol/L MnCl2·4H2O,0.19 μmol/L ZnSO4·7H2O,0.12 μmol/L Na2MoO4·2H2O,0.08 μmol/L CuSO4·5H2O 和 10 μmol/L Fe(III)-EDTA,10 g/L瓊脂,用HCl調(diào)整pH值到6.0]中生長(zhǎng)15 d,6株為一組分別取對(duì)應(yīng)植物的根樣稱量鮮重,每個(gè)材料4個(gè)生物學(xué)重復(fù)。根長(zhǎng)動(dòng)態(tài)觀察:野生型與Fa14-3-3COE-1材料表面消毒、預(yù)培養(yǎng)及處理與生物產(chǎn)量測(cè)定相同,每天對(duì)處理以及對(duì)照的植物拍照,利用Image J軟件統(tǒng)計(jì)每個(gè)植株根系生長(zhǎng),每個(gè)材料統(tǒng)計(jì)30個(gè)單株。
1.3數(shù)據(jù)分析
采用Excel 2010進(jìn)行實(shí)驗(yàn)數(shù)據(jù)分析,熒光定量、根鮮重以及根長(zhǎng)動(dòng)態(tài)觀察采用t測(cè)驗(yàn)分析差異顯著性,P<0.05被認(rèn)為是差異顯著,采用Excel 2010與PowerPoint 2010作圖。
2.1Fa14-3-3C的克隆及過(guò)量表達(dá)載體構(gòu)建
因?yàn)楦哐蛎榱扼w禾本科牧草,其基因組信息較少,本研究采用RACE (rapid amplification of cDNA end)技術(shù)以高羊茅葉片cDNA為模板,獲得Fa14-3-3C5′端(圖1A)與3′端(圖1B)序列,根據(jù)RACE結(jié)果擴(kuò)增Fa14-3-3C整個(gè)編碼區(qū)序列(圖1C),F(xiàn)a14-3-3C整個(gè)編碼區(qū)長(zhǎng)783 bp,編碼一個(gè)261氨基酸的小分子蛋白。利用設(shè)計(jì)的BamHⅠ與XbaⅠ酶切pGEM-Fa14-3-3C與p1300-GFP空載體,回收并連接線性化載體和Fa14-3-3C基因,獲得過(guò)量表達(dá)載體(圖1D)。
2.2Fa14-3-3C亞細(xì)胞定位
14-3-3家族基因在信號(hào)轉(zhuǎn)導(dǎo)、細(xì)胞凋亡、營(yíng)養(yǎng)物質(zhì)感應(yīng)等過(guò)程中起十分重要的作用。前人研究發(fā)現(xiàn)14-3-3 作為蛋白結(jié)合配體能夠與多種蛋白結(jié)合,通過(guò)目標(biāo)蛋白質(zhì)結(jié)合改變其在細(xì)胞內(nèi)定位,例如14-3-3 蛋白能夠促進(jìn)許多核定位的信號(hào)蛋白定位到細(xì)胞質(zhì)中,包括促凋亡蛋白BAD以及細(xì)胞周期調(diào)控磷酸酶Cdc25C等[23]。然而Fa14-3-3C在植物細(xì)胞中的定位還沒(méi)有被研究,本研究將Fa14-3-3C與綠色熒光蛋白GFP融合表達(dá),觀察其在煙草表皮細(xì)胞中的定位,發(fā)現(xiàn)Fa14-3-3C主要定位于細(xì)胞質(zhì)與細(xì)胞膜上(圖2A,B)。而對(duì)照35S:eGFP在細(xì)胞內(nèi)均有很強(qiáng)的熒光信號(hào)(圖2C,D)。
圖1 Fa14-3-3C的克隆與過(guò)量表達(dá)載體構(gòu)建Fig.1 Cloning of Fa14-3-3C and constructing of p1300-Fa14-3-3C-GFP over-expression vector A~C: Fa14-3-3C 5′端(A)、3′端(B)以及全長(zhǎng)編碼區(qū)(C)的克隆Electrophoresis of PCR products from 5′ RACE (A), 3′ RACE (B) and full coding sequence amplification (C) of Fa14-3-3C. D:p1300-Fa14-3-3C-GFP過(guò)量表達(dá)載體示意圖 Diagrammatic drawing of p1300-Fa14-3-3C-GFP overexpression vector.
圖2 Fa14-3-3C亞細(xì)胞定位Fig.2 Subcellular localization of Fa14-3-3C protein 在紫外激發(fā)光(A,C)以及白光(B,D)條件下,轉(zhuǎn)p1300-Fa14-3-3C-GFP表達(dá)載體(A~B)與p1300-GFP空載體對(duì)照(C~D)在煙草表皮細(xì)胞的熒光信號(hào)定位以及細(xì)胞形態(tài)。Fluorescence signal distribution and cellular morphology of tobacco adaxial epidermis cells transiently expressed p1300-Fa14-3-3C-GFP (A-B) and p1300-GFP mocked control (C-D), pictures were taken under ultraviolet light field (A, C) and bright light field (B, D).
2.3Fa14-3-3C轉(zhuǎn)基因擬南芥獲得與驗(yàn)證
在前期研究結(jié)果中,發(fā)現(xiàn)Fa14-3-3C能顯著被低氮脅迫誘導(dǎo),為進(jìn)一步研究Fa14-3-3C的功能,本研究利用農(nóng)桿菌介導(dǎo)的花器官侵染法將p1300-Fa14-3-3C-GFP轉(zhuǎn)化野生型擬南芥。以25 mg/L潮霉素進(jìn)行抗性篩選,共獲得12株陽(yáng)性轉(zhuǎn)基因植株,對(duì)各株系T2代植株抗性統(tǒng)計(jì)分析獲得3個(gè)分離比接近3∶1的株系,為可能的單拷貝插入轉(zhuǎn)基因植株,隨機(jī)挑選6個(gè)抗性單株分別用潮霉素抗性引物以及35S啟動(dòng)子與基因下游引物進(jìn)行組合擴(kuò)增,結(jié)果顯示抗性植株都為陽(yáng)性(圖3A,B)。
2.4Fa14-3-3C轉(zhuǎn)基因植株在低氮脅迫條件下的生物產(chǎn)量及表達(dá)分析
氮元素的吸收主要是通過(guò)植物根系起作用,本研究重點(diǎn)分析了3個(gè)抗性分離比接近3∶1的株系(OE-1,OE-2,OE-3)在低氮脅迫條件下根系鮮重的變化。在正常條件下,野生型與Fa14-3-3C過(guò)量表達(dá)植株的根鮮重沒(méi)有顯著區(qū)別(圖4A),而在低氮脅迫條件下,F(xiàn)a14-3-3COE-1與OE-3的根鮮重顯著比野生型高(圖4B),OE-2與野生型差異不顯著。OE-2與OE-1及OE-3的表型不一致,猜測(cè)這種現(xiàn)象可能與Fa14-3-3C在植物中的表達(dá)量有關(guān)。因此,分析在正常條件下,3個(gè)過(guò)表達(dá)株系與野生型擬南芥中Fa14-3-3C的表達(dá)變化,F(xiàn)a14-3-3C在OE-1與OE-3株系中均顯著上調(diào),而OE-2中Fa14-3-3C的表達(dá)與野生型差異不顯著。
為進(jìn)一步分析低氮脅迫條件下,F(xiàn)a14-3-3C對(duì)植物根系的影響,本研究平行觀察了OE-1與野生型擬南芥根系的變化。在正常情況下,OE-1與野生型沒(méi)有顯著區(qū)別(圖5A),其根長(zhǎng)從開(kāi)始處理到結(jié)束都與野生植株差異不顯著(圖5B)。在低氮脅迫條件下,OE-1的根長(zhǎng)顯著比野生型擬南芥長(zhǎng)(圖5C),在動(dòng)態(tài)觀察中,本研究發(fā)現(xiàn)從處理的第2天開(kāi)始,OE-1的根系顯著比野生型長(zhǎng),并且一直維持到處理結(jié)束(圖5D)。因此14-3-3C能夠顯著提高植物對(duì)低氮脅迫的耐受性。
圖3 Fa14-3-3C轉(zhuǎn)擬南芥植株分子鑒定Fig.3 Molecular detection of Fa14-3-3C transgenic plants in Arabidopsis A~B:轉(zhuǎn)基因擬南芥分子檢測(cè)示意圖,分別用潮霉素抗性引物(A,Hpt基因)與基因特異引物(B,35S+14-3-3C rev)檢測(cè)6株陽(yáng)性轉(zhuǎn)基因植株Molecular detections of hygromycim resistant plants with primers for hygromycim resistant gene (A, Hpt) and specific gene (B, 35S+14-3-3C rev), 6 individual plants were detected.
圖4 Fa14-3-3C轉(zhuǎn)基因擬南芥生物產(chǎn)量以及基因表達(dá)分析Fig.4 Bio-production and gene expression analysis in three Fa14-3-3C over expression strains and wild type plants A:在正常條件下以及低氮脅迫條件下,3個(gè)過(guò)表達(dá)株系(OE-1、OE-2與OE-3)與野生型根系生物產(chǎn)量分析Under normal and low nitrogen conditions, fresh weight of three different over expression (OE) strains and wild type plants; B:在正常條件下,過(guò)表達(dá)株系與野生型中14-3-3C基因的表達(dá)分析Gene expression analysis of three OE strains and wild type plants under normal growth condition;10株幼苗(包括根)混為1個(gè)樣品,每個(gè)樣品3個(gè)生物學(xué)重復(fù),用Ubiquitin基因做內(nèi)參, *表示差異在P<0.05達(dá)顯著水平。 Ten seedlings were grouped as a sample (root included); Each sample had three biological repeats, Ubiquitin were used as an internal reference, *stands for a significant difference at P<0.05 level. Col表示野生擬南芥,OE-1~OE-3表示3個(gè)Fa14-3-3C過(guò)量表達(dá)擬南芥株系Col stands for wild type seedlings, while OEs stands for different Fa14-3-3C over expression strains.
圖5 Fa14-3-3C OE-1在低氮脅迫條件下的表型考察Fig.5 Morphological observation of Fa14-3-3C OE-1 under low nitrogen stress 在正常條件下(A)與低氮脅迫條件下(C)OE-1與野生型擬南芥植株。在正常條件下(B)與低氮脅迫條件下(D)OE-1與野生型擬南芥根系動(dòng)態(tài)測(cè)量。*表示差異在P<0.05達(dá)顯著水平。 Seedlings of wild type and Fa14-3-3C OE-1 under normal (A) and low nitrogen stress (C) conditions. Dynamic analysis of root length in wild type and Fa14-3-3C OE-1 plants under normal (B) and low nitrogen (D) conditions. *stands for a significant difference at P<0.05 level.Col表示野生擬南芥,OE-1表示Fa14-3-3C OE-1過(guò)量表達(dá)擬南芥株系,植株先在1/2 MS培養(yǎng)基上育苗3 d,再轉(zhuǎn)移到低氮脅迫培養(yǎng)基上脅迫8 d。Col stands for wild type seedlings, while OE-1 stands for Fa14-3-3C over expression strains-1. Seedlings were pre-cultured in 1/2 MS for 3 d, then transferred into low nitrogen stress medium for 8 d.
在植物基因組中,一個(gè)生物學(xué)過(guò)程需要多個(gè)功能蛋白協(xié)同才能完成,同時(shí)某些蛋白與其他不同的蛋白互作表現(xiàn)不同的功能。14-3-3蛋白作為廣譜的代謝物質(zhì)感應(yīng)分子以及信號(hào)調(diào)節(jié)因子,主要是由其能與多個(gè)不同蛋白結(jié)合的特性決定,例如參與氮代謝的NR基因[24]、參與糖代謝的SPS基因[25]。在前期研究中發(fā)現(xiàn)4個(gè)Fa14-3-3家族基因能夠不同程度的受高溫、干旱、高鹽以及低氮脅迫誘導(dǎo)[26],而且過(guò)量表達(dá)Fa14-3-3C能夠顯著增強(qiáng)植物對(duì)低氮脅迫的抵抗力,其同源基因在其他植物的抗旱、耐鹽以及耐低磷低鉀等抗逆性中也均有報(bào)道[16-17,19],說(shuō)明Fa14-3-3家族基因可能與其同源基因類似,具有多效性,通過(guò)多個(gè)途徑調(diào)節(jié)植物對(duì)不同脅迫反應(yīng)的應(yīng)答。
14-3-3蛋白屬于小分子蛋白(25~32 Kd),在真核生物中廣泛存在,序列保守性較高[27],在細(xì)胞中常常以同聚化或者寡聚化的形式與靶標(biāo)蛋白結(jié)合,引導(dǎo)其在細(xì)胞結(jié)構(gòu)中的定位[28]。在本研究中,F(xiàn)a14-3-3C-GFP的熒光信號(hào)主要分布在細(xì)胞質(zhì)中以及細(xì)胞膜上,符合其作為信號(hào)轉(zhuǎn)導(dǎo)分子與多功能的小分子配體的特點(diǎn),并且以往研究發(fā)現(xiàn)14-3-3蛋白作為到校因子行使功能的機(jī)理之一是與靶標(biāo)蛋白結(jié)合并改變其亞細(xì)胞定位,如促凋亡蛋白BAD與細(xì)胞周期調(diào)控磷酸酶Cdc25C等[23]。
植物基因表達(dá)受轉(zhuǎn)錄因子調(diào)控,如果轉(zhuǎn)錄因子表達(dá)發(fā)生變化會(huì)由于級(jí)聯(lián)放大效應(yīng)導(dǎo)致下游基因的表達(dá)發(fā)生劇烈變化[29]。而對(duì)于直接行使功能的酶或配體作為直接的效應(yīng)分子,往往具有較明顯的劑量效應(yīng)。在本研究挑選的3個(gè)轉(zhuǎn)基因陽(yáng)性株系中,OE-1與OE-3根鮮重顯著高于野生型,而OE-2與野生型差異不顯著,這個(gè)表型與對(duì)應(yīng)株系中Fa14-3-3C的表達(dá)量相吻合(圖4),說(shuō)明Fa14-3-3C調(diào)節(jié)植物耐低氮脅迫反應(yīng)的劑量效應(yīng)比較明顯。而OE-2可能由于轉(zhuǎn)化過(guò)程中轉(zhuǎn)入片段不完全或者T-DNA插入的位置效應(yīng)使Fa14-3-3C不能過(guò)量表達(dá)導(dǎo)致與野生型耐低氮脅迫差異不明顯。
14-3-3家族基因能與碳、氮代謝的關(guān)鍵基因相互作用,說(shuō)明其協(xié)調(diào)與利用代謝物的機(jī)制可能具有普遍性[27],因?yàn)樘?、氮作為植物生長(zhǎng)發(fā)育最重要元素之一,其含量失衡會(huì)導(dǎo)致植物生理與發(fā)育改變[30]。例如,氮元素不僅能夠影響植物根系的形成,而且對(duì)植物光合作用的效率有重要影響[31]。前人研究發(fā)現(xiàn)在土豆(Solanumtuberosum)中過(guò)量表達(dá)14-3-3基因能顯著降低蔗糖、兒茶酚胺以及油脂的含量,反義表達(dá)14-3-3基因能影響土豆塊莖淀粉的含量與氨基酸的組成[32-33]。在本研究中只分析過(guò)量Fa14-3-3C在低氮脅迫條件下對(duì)植物根系形態(tài)的影響,其是否能調(diào)節(jié)植物對(duì)其他逆境的抵抗性,是否影響植物品質(zhì)性狀及其是否具有與其同源基因相同的分子作用機(jī)理還有待于進(jìn)一步研究。
高羊茅Fa14-3-3C蛋白在細(xì)胞中主要定位在細(xì)胞質(zhì)與細(xì)胞膜。作為耐低氮脅迫的關(guān)鍵調(diào)控基因,F(xiàn)a14-3-3C能正向調(diào)節(jié)擬南芥對(duì)低氮脅迫耐受性,并且具有顯著的劑量效應(yīng)。Fa14-3-3C能夠通過(guò)促進(jìn)根系生長(zhǎng)提高植物對(duì)低氮脅迫的耐受性。
References:
[1] Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 1999, 91(3): 357-363.
[2] Hodge A, Robinson D, Fitter A. Are microorganisms more effective than plants at competing for nitrogen. Trends in Plant Science, 2000, 5(7): 304-308.
[3] Wang X L, Liu Z S, Mou Q,etal. Genetic diversity ofFestucaarundinacesdetected by RAPD. Acta Prataculturae Sinica, 2007, 16(4): 82-86. 王小利, 劉正書, 牟瓊, 等. 高羊茅遺傳多樣性RAPD分析. 草業(yè)學(xué)報(bào), 2007, 16(4): 82-86.
[4] Li X D, Shu J H, Yu E R,etal. Proteomic analysis of nitrogen stress responsive proteins in the leaves of tall fescue. Acta Prataculturae Sinica, 2016, 25(3): 67-76. 李小冬, 舒健虹, 于二汝, 等. 高羊茅在低氮脅迫下的蛋白組學(xué)分析. 草業(yè)學(xué)報(bào), 2016, 25(3): 67-76.
[5] Li X D, Shu J H, Wang Q,etal. Auxin signaling pathways respond to low nitrogen stress as revealed by metabolomics profiling analysis in tall fescue. Acta Prataculturae Sinica, 2016, 25(9): 64-73. 李小冬, 舒鍵虹, 王茜, 等. 低氮脅迫對(duì)高羊茅 IAA 生長(zhǎng)素代謝組影響的研究. 草業(yè)學(xué)報(bào), 2016, 25(9): 64-73.
[6] Wang M, Shen Q, Xu G,etal. New insight into the strategy for nitrogen metabolism in plant cells. International Review of Cell & Molecular Biology, 2014, 310: 1-37.
[7] Tsay Y F, Chiu C C, Tsai C B,etal. Nitrate transporters and peptide transporters. Febs Letters, 2007, 581(12): 2290-2300.
[8] Dechorgnat J, Nguyen C T, Armengaud P,etal. From the soil to the seeds: the long journey of nitrate in plants. Journal of Experimental Botany, 2011, 62(4): 1349-1359.
[9] Okamoto M, Kumar A, Li W,etal. High-affinity nitrate transport in roots ofArabidopsisdepends on expression of the NAR2-like geneAtNRT3. 1. Plant Physiology, 2006, 140(3): 1036-1046.
[10] Ferreira L M, Souza V M D, Tavares O C H,etal.OsAMT1. 3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnology Reports, 2015, 9(4): 221-229.
[11] Lehmann S, Gumy C, Blatter E,etal. In planta function of compatible solute transporters of theAtProTfamily. Journal of Experimental Botany, 2011, 62(2): 787-796.
[12] Brady S M, Orlando D A, Lee J Y,etal. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science, 2007, 318(5851): 801-806.
[13] Ahmad I. Transporters inArabidopsisroots mediating uptake of amino acids at naturally occurring concentrations. New Phytologist, 2011, 191(2): 459-467.
[14] Hirsch S, Aitken A, Bertsch U,etal. A plant homologue to mammalian brain 14-3-3 protein and protein kinase C inhibitor. FEBS Letters, 1992, 296(2): 222-224.
[15] Rooney M F, Ferl R J. Sequences of threeArabidopsisgeneral regulatory factor genes encoding GF14 (14-3-3) proteins. Plant Physiology, 1995, 107(1): 283-284.
[16] Zhu J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 6(5): 441-445.
[17] Sehnke P C, Henry R, Cline K,etal. Interaction of a plant 14-3-3 protein with the signal peptide of a thylakoid-targeted chloroplast precursor protein and the presence of 14-3-3 isoforms in the chloroplast stroma. Plant Physiology, 2000, 122(1): 235-241.
[18] Wei F X, Wei M S. Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanumlycopersicum) roots: analysis by real-time RT-PCR. Annals of Botany, 2006, 98(5): 965-974.
[19] Bunney T D, van Walraven H S, de Boer A H. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proceedings of the National Academy of Sciences USA, 2001, 98(7): 4249-4254.
[20] Moorhead G, Douglas P, Morrice N,etal. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Current Biology, 1996, 6(6): 1104-1113.
[21] Liang B Z, Li A, Cai H,etal. The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression. Biologia, 2015, 70(10): 1340-1350.
[22] Li X D, Yu E R, Fan C C,etal. Developmental, cytological and transcriptional analysis of autotetraploidArabidopsis. Planta, 2012, 236(2): 579-596.
[23] Muslin A J, Xing H. 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cellular Signalling, 2000, 12(12): 703-709.
[24] Crawford N M. Nitrate: nutrient and signal for plant growth. Plant Cell, 1995, 7(7): 859-868.
[25] Cotelle V, Meek S E, Provan F,etal. 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starvedArabidopsiscells. Embo Journal, 2000, 19(12): 2869-2876.
[26] Wang X L, Li X D, Shu J H,etal. Expression analysis of 14-3-3 genes in tall fescue under several abiotic stress conditions. Agricultural Science & Technology, 2015, (10): 2207-2213. 王小利, 李小冬, 舒健虹, 等. 高羊茅14-3-3基因在多種逆境脅迫下表達(dá)分析. 農(nóng)業(yè)科學(xué)與技術(shù), 2015, (10): 2207-2213.
[27] Wang W, Shakes D C. Molecular evolution of the 14-3-3 protein family. Journal of Molecular Evolution, 1996, 43(4): 384-398.
[28] Comparot S, Lingiah G, Martin T. Function and specificity of 14-3-3 proteins in the regulation of carbohydrate and nitrogen metabolism. Journal of Experimental Botany, 2003, 54(382): 595-604.
[29] Yoo S J, Kim S H, Kim M J,etal. Involvement of theOsMKK4-OsMPK1 cascade and its downstream transcription factorOsWRKY53 in the wounding response in rice. Plant Pathology Journal, 2014, 30(2): 168-177.
[30] Palme K, Teale W, Dovzhenko A. Plant signaling: HY5 synchronizes resource supply. Current Biology, 2016, 26(8): 328-329.
[31] Heinonsalo J, Juurola E, Linden A,etal. Ectomycorrhizal fungi affect Scots pine photosynthesis through nitrogen and water economy, not only through increased carbon demand. Environmental & Experimental Botany, 2015, 109: 103-112.
[32] Prescha A, Swiedrych A, Biernat J,etal. Increase in lipid content in potato tubers modified by 14-3-3 gene overexpression. Journal of Agricultural & Food Chemistry, 2001, 49(8): 3638-3643.
[33] Swiedrych A, Prescha A, Matysiakkata I,etal. Repression of the 14-3-3 gene affects the amino acid and mineral composition of potato tubers. Journal of Agricultural & Food Chemistry, 2002, 50(7): 2137-2141.
EnhancedtoleranceofArabidopsisoverexpressingFa14-3-3Cfromtallfescue(Festucaarundinacea)tolow-nitrogenstress
LI Xiao-Dong, WU Jia-Hai, SUN Fang, CHEN Guang-Ji, WANG Xiao-Li*
GuizhouAcademyofAgricultureScience;GuizhouInstituteofPrataculture,Guiyang550006,China
Nitrogen is essential for the growth and development of plants, especially gramineous crop plants. In this study, the full-lengthFa14-3-3Cgene was obtained by rapid amplification of cDNA ends from leaves of tall fescue (Festucaarundinacea). Subcellular localization analyses showed thatFa14-3-3C-GFP was mainly located in the cytoplasm and cell membrane when it was transiently expressed in tobacco epidermal cells.Fa14-3-3Cwas transferred intoArabidopsis, and three single-copy T-DNA insertion strains showing a 3∶1 hygromycin resistance segregation ratio were obtained. When wild-type andFa14-3-3Coverexpression strains were subjected to nitrogen deficiency, the root fresh weight was higher in strains OE-1 and OE-3 (but not OE-2) than in wild type. Quantitative real-time PCR analyses showed thatFa14-3-3Cwas highly expressed in OE-1 and OE-3, but not in OE-2, reflecting a dosage effect on the response to nitrogen deficiency. Dynamic analyses of the root growth of wild-type andFa14-3-3Coverexpression strains in nitrogen-deficient medium revealed that OE-1 showed a dramatic advantage over wild-type plants at the early stage of nitrogen deficiency. This was mainly due to compensation growth to alleviate the negative effects of low-nitrogen stress in the OE-1 strain. Therefore, we have cloned a candidate gene conferring resistance to low-nitrogen stress, and verified its molecular function in the model plantArabidopsis. These results are fundamentally important for breeding crop plants resistant to low-nitrogen stress via genetic engineering.
tall fescue;Fa14-3-3C; low nitrogen stress; transgenic
10.11686/cyxb2017058
http://cyxb.lzu.edu.cn
李小冬, 吳佳海, 孫方, 陳光吉, 王小利. 過(guò)量表達(dá)Fa14-3-3C促進(jìn)擬南芥對(duì)低氮脅迫耐受性的研究. 草業(yè)學(xué)報(bào), 2017, 26(9): 104-112.
LI Xiao-Dong, WU Jia-Hai, SUN Fang, CHEN Guang-Ji, WANG Xiao-Li. Enhanced tolerance ofArabidopsisover expressingFa14-3-3Cfrom tall fescue (Festucaarundinacea) to low-nitrogen stress. Acta Prataculturae Sinica, 2017, 26(9): 104-112.
2017-02-20;改回日期:2017-03-31
貴州省重大科技專項(xiàng)(黔科合重大專項(xiàng)字[2014]6017),貴州省農(nóng)業(yè)科學(xué)院專項(xiàng)基金(黔農(nóng)科院院專項(xiàng) [2013]03)和貴州省百層次人才培養(yǎng)專項(xiàng)(黔科合人才[2016]4024)資助。
李小冬(1984-),男,湖南邵陽(yáng)人,副研究員,博士。 E-mail: lixiaodongzl@163.com*通信作者Corresponding author. E-mail:wangxiaolizhenyuan@126.com