郭冬發(fā),李金英,李伯平,謝勝凱,譚 靖,張彥輝,劉瑞萍
(1.核工業(yè)北京地質(zhì)研究院分析測試研究所,北京 100029;2.中國核工業(yè)建設(shè)集團(tuán),北京 100037)
電感耦合等離子體質(zhì)譜分析方法的重要進(jìn)展(2005~2016年)
郭冬發(fā)1,李金英2,李伯平1,謝勝凱1,譚 靖1,張彥輝1,劉瑞萍1
(1.核工業(yè)北京地質(zhì)研究院分析測試研究所,北京 100029;2.中國核工業(yè)建設(shè)集團(tuán),北京 100037)
2005~2016這十幾年中,電感耦合等離子體質(zhì)譜(ICP-MS)儀器的性能得到了大幅改善,其靈敏度最高可達(dá)106cps/(1 μg/L, In),穩(wěn)定性為1%~2%。多接收ICP-MS精密度的提高尤其顯著,同位素測量精密度優(yōu)于0.01%。各類ICP-MS普遍采用高速數(shù)據(jù)采集技術(shù)與數(shù)據(jù)庫技術(shù),使數(shù)據(jù)處理能力進(jìn)一步加強(qiáng)。以三重四極桿和高分辨為代表的ICP-MS對基體干擾和多原子離子干擾消除能力進(jìn)一步加強(qiáng),綠色節(jié)能環(huán)保型和智能型ICP-MS也得到了關(guān)注。一些電離能較高的貴金屬、類金屬和非金屬元素分析技術(shù)得到重視。以激光燒蝕(LA)、高效液相色譜(HPLC)、氣相色譜(GC)、離子色譜(IC)、毛細(xì)管電泳(CE)、電熱蒸發(fā)(ETV)和化學(xué)氣體發(fā)生(CVG)為代表的聯(lián)用技術(shù)及形態(tài)分析發(fā)展快速。單顆粒(SP)和單細(xì)胞(SC)等技術(shù)與ICP-MS的聯(lián)用產(chǎn)生了以功能定義的專用ICP-MS,大大擴(kuò)展了ICP-MS的應(yīng)用領(lǐng)域。ICP-MS分析技術(shù)從傳統(tǒng)的無機(jī)元素分析發(fā)展到有機(jī)生物及形態(tài)分析,從傳統(tǒng)的樣品消解后溶液進(jìn)樣分析發(fā)展到固體樣品在線進(jìn)樣分析,從傳統(tǒng)的元素含量分析發(fā)展到2D-3D成像分析和高精度同位素分析。ICP-MS在能源、地質(zhì)、材料、環(huán)保、生物醫(yī)學(xué)、食品、國土安全等諸多領(lǐng)域的應(yīng)用進(jìn)一步擴(kuò)展,成熟的ICP-MS分析方法實(shí)現(xiàn)了標(biāo)準(zhǔn)化并得到推廣和普及。本工作從6個(gè)方面總結(jié)回顧了2005~2016年間ICP-MS的重要進(jìn)展,并對其發(fā)展前景進(jìn)行了展望。
電感耦合等離子體質(zhì)譜(ICP-MS);性能;技術(shù);標(biāo)準(zhǔn)方法;2005~2016年;進(jìn)展
Abstract: In the last years(2005-2016), the performance of inductively coupled plasma mass spectrometry (ICP-MS) has been greatly improved, and its sensitivity was up to 106cps/(1 μg/L, In), and the stability to 1%-2%. The precision of MC-ICP-MS has been remarkably improved, and the precision of isotope measurement is better than 0.01%. High speed data acquisition technology and database technology have been widely used in all kinds of ICP-MS, so that the data processing ability has been further strengthened. The ability to eliminate the interference from matrix and polyatomic ions has been further improved by triple tandem quadrupole and high resolution techniques. Various green energy saving and environmental protection measures for ICP-MS get attention. Analysis techniques for some high ionization energy elements like precious metals, metalloid and non-metals have been significantly addressed. Hyphenated techniques and speciation analysis of ICP-MS based on laser ablation (LA), high performance liquid chromatography (HPLC), gas chromatography (GC), ion chromatography (IC), capillary electrophoresis (CE), electrothermal vaporization (ETV) and chemical vapor generation (CVG) have been rapidly developed during this period. ICP-MS combined with single particle (SP) and single cell (SC) techniques led to the emergence of function defined ICP-MS and greatly expanded the applications of ICP-MS. Rapid development of ICP-MS technology has driven the ICP-MS applications from traditional inorganic elements analysis to organic biological and morphological analysis; from traditional solution sample introduction analysis to online solid sample introduction analysis; from traditional elements content analysis to 2D-3D imaging analysis and high precision isotope analysis. ICP-MS analysis technology in the field of energy, geology, materials, environmental protection, biomedicine, food, homeland security, and many other areas of application has been further expanded. The mature ICP-MS analysis methods have been standardized and widely applied to the routine analysis nationwide. This paper briefly summarized and reviewed the major advances of ICP-MS in the years of 2005-2016.
Keywords: inductively coupled plasma mass spectrometry (ICP-MS); performance; techniques; standard methods; 2005-2016; advances
電感耦合等離子體質(zhì)譜(ICP-MS)在過去的十幾年中(2005~2016)得到了飛速發(fā)展。研究領(lǐng)域從早期的微量元素分析發(fā)展到后來的與激光燒蝕(LA)聯(lián)用及其2D-3D成像分析,多接收電感耦合等離子體質(zhì)譜(MC-ICP-MS)的高精密度同位素分析,與各類分離技術(shù)聯(lián)用的形態(tài)分析、納米顆粒分析、單細(xì)胞分析等諸多方面。ICP-MS儀器本身的發(fā)展也非??欤簭淖畛醯膯嗡臉O桿ICP-MS發(fā)展到三重四極桿ICP-MS,并且強(qiáng)調(diào)低消耗和功能性;強(qiáng)調(diào)檢測速度的電感耦合等離子體飛行時(shí)間質(zhì)譜(ICP-TOF-MS)及其成像型激光燒蝕-電感耦合等離子體飛行時(shí)間質(zhì)譜(LA-ICP-TOF-MS)和全譜型ICP-MS都得到了迅速發(fā)展。在軟件方面,新的算法、圖像處理功能、數(shù)據(jù)處理功能以及節(jié)能待機(jī)和智能操控等方面得到了加強(qiáng)。在ICP-MS國產(chǎn)化方面,基本突破了其關(guān)鍵技術(shù),并有商品化的四極桿電感耦合等離子體質(zhì)譜(Q-ICP-MS)儀器整機(jī)、核心部件和輔助設(shè)備得到應(yīng)用。在學(xué)術(shù)交叉和應(yīng)用方面,ICP-MS滲透到宇宙、環(huán)境、物理、化學(xué)、生物、醫(yī)藥、醫(yī)學(xué)、食品、材料、核科學(xué)與技術(shù)等諸多領(lǐng)域,很多成熟的方法已經(jīng)發(fā)展成為標(biāo)準(zhǔn)化的方法。可以認(rèn)為,ICP-MS仍是目前多元素微量分析及同位素分析綜合分析性能最優(yōu)秀的技術(shù)之一,對此,已經(jīng)有很多綜述文獻(xiàn)報(bào)道。然而,從讀者角度來看,還缺少從全局角度反映過去十幾年間ICP-MS取得重要進(jìn)展的中文文獻(xiàn)。為此,根據(jù)筆者多年的應(yīng)用實(shí)踐,結(jié)合國內(nèi)外同行已經(jīng)發(fā)表的代表性文獻(xiàn),回顧2005~2016年間ICP-MS在儀器性能與國產(chǎn)化,高精密度非傳統(tǒng)同位素分析,貴金屬、類金屬和非金屬元素分析,聯(lián)用技術(shù)與形態(tài)分析,單顆粒和單細(xì)胞分析等方面取得的重要進(jìn)展,并展望未來ICP-MS的發(fā)展方向。
從進(jìn)樣系統(tǒng)到離子檢測系統(tǒng)ICP-MS儀器性能在過去十幾年間得到了顯著改善。最為顯著的是碰撞反應(yīng)池(CRC)、三重四極桿(TQ)、飛行時(shí)間(TOF)、新型互補(bǔ)金屬氧化物半導(dǎo)體電路離子檢測器(CMOS)、微電子和微流控、數(shù)據(jù)處理算法及軟件技術(shù)的發(fā)展,使得現(xiàn)代ICP-MS性能和性價(jià)比得到大幅提高。
四極桿類ICP-MS儀器(Qn-ICP-MS,n=1~3)普遍采用直角(90°)轉(zhuǎn)彎提取ICP中的離子,避免了ICP中的光子和中性原子等對檢測器的干擾;而碰撞反應(yīng)池或動(dòng)態(tài)反應(yīng)池(DRC)技術(shù)則普遍用于消除多原子離子干擾。此外,安捷倫公司出品的Agilent 8800四極桿電感耦合等離子體質(zhì)譜儀在碰撞反應(yīng)池之前增加了一個(gè)四極桿用于選擇離子分離,整機(jī)形成了三重四極桿系統(tǒng),這有助于消除基質(zhì)干擾[1]。例如,75As+可能受到40Ar35Cl+、40Ca35Cl+、150Nd2+、150Sm2+、91Zr+干擾,如果只有1個(gè)碰撞池并使用惰性氣體He為碰撞氣體,只能消除多原子分子離子40Ar35Cl+、40Ca35Cl+的干擾,而150Nd2+、150Sm2+干擾仍然存在;如果只有1個(gè)反應(yīng)池并使用活性氣體O2為反應(yīng)氣,使75As+變成75As16O+,可消除多原子分子離子40Ar35Cl+、40Ca35Cl+、150Nd2+和150Sm2+的干擾,但仍存在91Zr+的干擾;如果有3個(gè)四極桿,第1個(gè)四極桿先將75As+和91Zr+分開,第2個(gè)四極桿用O2為反應(yīng)氣,使75As+變成75As16O+,第3個(gè)四極桿將150Nd2+和150Sm2+除去,這樣就可以徹底地消除這些離子對75As+的質(zhì)譜干擾。很明顯,Q3-ICP-MS是過去十年間四極桿類ICP-MS儀器發(fā)展中取得的重要進(jìn)展之一。此外,耶拿公司出品的Plasma Quant MS[2]在氬氣消耗上有所改進(jìn),冷卻氣用量可低至7 L/min,對節(jié)能環(huán)保做出了貢獻(xiàn)。最近,島津公司出品的ICP-MS-2030 采用Mini炬管,其耗氣量約是標(biāo)準(zhǔn)炬管的2/3(10 L/min),待機(jī)狀態(tài)時(shí),高頻輸出被切換到Eco模式(等離子氣5 L/min),啟動(dòng)樣品分析后可立即切換到分析模式,并支持實(shí)驗(yàn)室網(wǎng)絡(luò)化管理。珀金埃爾默公司出品的NexION 350 ICP-MS則強(qiáng)調(diào)在納米顆粒分析(SP-ICP-MS)[3]方面的功能。采用SP-ICP-MS 方法可以測定地表和飲用水中Ti、Ag和 Au顆粒,檢出限可達(dá): Ti為 0.75 μg/L,相當(dāng)于67~70 nm(TiO2納米顆粒形式);Ag為0.10 μg/L,相當(dāng)于21~23 nm;Au為0.10 μg/L,相當(dāng)于27~30 nm。
扇形磁質(zhì)量分析器類高分辨ICP-MS儀器(HR-ICP-MS)仍然以賽默飛公司的ELEMENT XR和英國Nu公司的Attom ES 為主。HR-ICP-MS采用靜電分析器進(jìn)行能量聚焦、層狀磁鐵分析器進(jìn)行質(zhì)量分辨,通過狹縫寬度控制分辨率。目前,此類儀器的最高分辨率可達(dá)10 000,靈敏度最高可達(dá)106cps/(1 μg/L, In),噪聲僅為0.2 cps,離子流強(qiáng)度短期和長期穩(wěn)定性分別可達(dá)1%和2%,質(zhì)量穩(wěn)定性不大于0.002 5%/8 h,206Pb+/208Pb+比值精密度不大于0.02%。最值得一提的是,ELEMENT XR 通過增加法拉第杯檢測器配置[4],可使ICP-MS的動(dòng)態(tài)線性范圍得到大幅擴(kuò)展,此類儀器不僅可以測定痕量元素,也使常量元素的測定成為可能。該儀器使用1個(gè)雙模式二次電子倍增檢測器(SEM)和1個(gè)法拉第杯檢測器(FC)。SEM模擬電路計(jì)數(shù)范圍為5×104~>1×109cps,F(xiàn)C的計(jì)數(shù)范圍為5×107~>1×1012cps,SEM 和FC間自動(dòng)切換時(shí)間小于1 ms。通過智能軟件和硬件組合,可同時(shí)測定幾fg/g~1 000 μg/g多元素濃度范圍。此類儀器的商品化改變了過去ICP-MS僅能進(jìn)行痕量和微量元素分析的狀態(tài),對于常量元素分析,也能提供可靠的分析結(jié)果。
多接收ICP-MS儀器(MC-ICP-MS)主要包括賽默飛(德國)公司的NEPTUNE Plus、英國Nu公司的Nu PlasmaⅡ、早期英國GV Instrument公司的六極桿碰撞池單聚焦IsoProbe和英國熱電元素公司的AXIOM。MC-ICP-MS的復(fù)雜性在于離子光學(xué)系統(tǒng)和多接收器的設(shè)計(jì)。目前,MC-ICP-MS儀器普遍采用多種離子透鏡和靜電分析器,將ICP源的離子進(jìn)行形狀和能量調(diào)制,然后通過不同寬度的狹縫進(jìn)入磁質(zhì)量分析器,之后再次進(jìn)行離子束流調(diào)制,分別進(jìn)入以法拉第杯和離子計(jì)數(shù)器組合的多接收檢測器進(jìn)行檢測。此類儀器可獲得平頂峰,有利于提高測量精密度,這對自然界同位素分餾較小的情況尤為有利。Nu PlasmaⅡ測定低濃鈾參考物質(zhì)50 μg/L U NBS U-010中234U/238U和236U/238U的典型結(jié)果分別達(dá)到0.000 054 65±0.035%和0.000 068 66±0.037%[5]。NEPTUNE Plus測定低濃鈾參考物質(zhì)NBS U-010中234U、235U、236U的豐度相對標(biāo)準(zhǔn)偏差分別為0.07%、0.02%和0.16%[6]。
飛行時(shí)間ICP-MS儀器(ICP-TOF-MS)的典型代表是GBC公司的Optimass 9500[7],它具有快速全譜的特點(diǎn),其分析速度大約是普通四極桿ICP-MS的5倍,可在1 s內(nèi)完成1~260 amu的全質(zhì)量掃描,使得這一技術(shù)在3D激光燒蝕ICP-TOF-MS成像分析方面大有可為[8]。例如,使用193 nm ArF準(zhǔn)分子激光器,在激光束直徑5~10 μm,激光能量密度12~15 J/cm2,重復(fù)頻率20 Hz條件下,以200 μm/s速度掃描3D尺寸為200 μm×400 μm×20層的NIST 610玻璃標(biāo)準(zhǔn)參考物質(zhì),以100 μm/s速度掃描3D尺寸為500 μm×500 μm×20層NIST 612玻璃標(biāo)準(zhǔn)參考物質(zhì),3 h內(nèi)可得到3D質(zhì)譜成像結(jié)果,成像同位素包括23Na、133Cs、139La、140Ce、208Pb和238U等。值得注意的是,3D LA-ICP-TOF-MS對數(shù)據(jù)采集、處理和評價(jià)均有較高要求。
全譜型ICP-MS的代表性產(chǎn)品是斯派克(德國)公司的SPECTRO MS[9]。這是一種基于Mattauch-Herzog設(shè)計(jì)的雙聚焦扇形場質(zhì)譜儀,它擁有全新的離子光學(xué)和獨(dú)特的新型互補(bǔ)金屬氧化物半導(dǎo)體電路離子檢測器,能從6Li~238U全質(zhì)譜范圍內(nèi)同時(shí)測量永久保存全譜,可較好地補(bǔ)償信號的漂移和波動(dòng),測量時(shí)間與所測定的元素?cái)?shù)目無關(guān)。基于此,可節(jié)省樣品進(jìn)樣量、減少試劑消耗,對瞬態(tài)信號的采集不受測量同位素?cái)?shù)目的影響,特別適合與流動(dòng)注射、激光燒蝕、液相色譜等技術(shù)聯(lián)用。對107Ag/109Ag同位素比值測定,僅用50 s就能完成,耗費(fèi)0.5 mL樣品,精密度可達(dá)到0.07%。
隨著電子信息技術(shù)進(jìn)步,各類ICP-MS數(shù)據(jù)處理能力大幅增強(qiáng),軟件使用更加方便靈活,用戶體驗(yàn)得到改進(jìn)。大部分ICP-MS軟件能在WindowsN(N=7~10)軟件平臺上集成儀器調(diào)試、數(shù)據(jù)采集和處理、網(wǎng)絡(luò)遠(yuǎn)程控制和故障診斷、數(shù)據(jù)分享等功能;能兼容第三方設(shè)備(如激光、LC/GC/IC);內(nèi)置色譜圖解析軟件便于形態(tài)分析應(yīng)用;內(nèi)置激光數(shù)據(jù)處理軟件模塊;儀器相關(guān)參數(shù)可自動(dòng)調(diào)諧;具備完整的數(shù)據(jù)存儲(chǔ)、解析和報(bào)告軟件。同一公司的軟件能與其元素分析產(chǎn)品(AA/ICP/ICPMS)共享同一控制軟件平臺。對于LA-ICP-MS 3D成像分析和單顆粒分析等需要復(fù)雜數(shù)據(jù)處理[10]的應(yīng)用,還會(huì)配置專用數(shù)據(jù)處理軟件[11-12]。
2012年9月,第一臺國產(chǎn)商用ICP-MS(江蘇天瑞儀器公司生產(chǎn)的ICP-MS-2000)上市。到2015年,除江蘇天瑞儀器公司的ICP-MS-2000E外,聚光科技公司、鋼研納克公司、普析通用公司、復(fù)旦大學(xué)等均在BCEIA 2015展會(huì)期間展出了其ICP-MS產(chǎn)品。國產(chǎn)ICP-MS的商業(yè)化,對于打破國外主流ICP-MS的壟斷起著重要作用。相比國外主流儀器,國產(chǎn)ICP-MS主要采用四極桿作為質(zhì)量分析器,也有的應(yīng)用動(dòng)態(tài)反應(yīng)池技術(shù),但由于國產(chǎn)ICP-MS儀器商品化較晚,推廣普及程度遠(yuǎn)不如國外主流ICP-MS。到目前為止,還沒有其他類型的國產(chǎn)ICP-MS出現(xiàn)。不過,隨著我國國家重大科學(xué)儀器設(shè)備開發(fā)專項(xiàng)相關(guān)任務(wù)的完成和成果落地,基本突破了Q-ICP-MS的關(guān)鍵技術(shù)、整機(jī)制造和四極桿制造技術(shù)。此外,用于ICP-MS的輔助進(jìn)樣系統(tǒng)也在國內(nèi)得到了發(fā)展。國產(chǎn)ICP-MS儀器及其應(yīng)用[13]將會(huì)迎來新的發(fā)展機(jī)遇。
如1.3節(jié)所述,MC-ICP-MS固有的高精密度同位素測定能力為非傳統(tǒng)同位素分析提供了可能。由于MC-ICP-MS采用磁質(zhì)量分析器,并具有平頂峰,可獲得高達(dá)0.001%的精密度。到目前,化學(xué)元素周期表中Li、B、Mg、Si、S、Cl、Ca、Ti、Cr、Fe、Ni、Cu、Zn、Ge、Se、Br、 Rb、Sr、Zr、Mo、Ru、Ag、Cd、Sn、Sb、Te、I、Xe、Hf、W、Re、Os、Pt、Nd、Sm、Eu、 Gd、Dy、Yb、Hg、Tl、Pb、Th、Ra、U和Pu等元素均可采用MC-ICP-MS進(jìn)行同位素比值測定[14]。要獲得高精密度同位素測定結(jié)果,對樣品進(jìn)行基體分離和純化、正確使用標(biāo)準(zhǔn)物質(zhì)及采用合適的質(zhì)量校正模型是技術(shù)的關(guān)鍵。采用MC-ICP-MS技術(shù)測定部分非傳統(tǒng)同位素所用的樣品分解、分離和純化方法、標(biāo)準(zhǔn)物質(zhì)、精密度及參考文獻(xiàn)等信息列于表1[15-23]。很明顯,在過去的十幾年間,MC-ICP-MS在地質(zhì)學(xué)研究中比較活躍,國內(nèi)外實(shí)驗(yàn)室使用的MC-ICP-MS儀器基本相同,大部分同位素的測定精密度達(dá)到了較高水平。此外,為支持非傳統(tǒng)同位素研究工作,國內(nèi)開展了非傳統(tǒng)同位素標(biāo)準(zhǔn)物質(zhì)研究[24],并取得了一定成效。總體而言,非傳統(tǒng)同位素標(biāo)準(zhǔn)物質(zhì)數(shù)量不多,這制約了MC-ICP-MS高精密度測定非傳統(tǒng)同位素的發(fā)展。因此,研究開發(fā)此類標(biāo)準(zhǔn)物質(zhì)是今后的發(fā)展方向之一。
表1 MC-ICP-MS測定部分非傳統(tǒng)同位素信息Table 1 Informations of the determination of non-conventional isotopes by MC-ICP-MS
貴金屬元素(Au、Ag、Os、Ir、Pt、Ru、Rh、Pd),類金屬元素(B、Si、Ge、Se、Te、Sb、As、Hg)和非金屬元素(P、S、Cl、Br、I)的第一電離能都較高,其中,Cl的第一電離能為12.968 eV,是這些元素中最高的。采用ICP-MS測定這些元素的靈敏度遠(yuǎn)低于測定鑭系和錒系元素的靈敏度,但由于這些元素的測定在眾多領(lǐng)域具有重要的科學(xué)和實(shí)踐意義,使用ICP-MS測定這些元素的研究和應(yīng)用在過去的十幾年中格外受到重視。值得注意的是,Hg雖然不屬于類金屬元素,但在很多情況下,Hg與類金屬元素能形成化合物,并且形態(tài)較多,因此也列入此類討論??傮w來看,ICP-MS測定此類元素的技術(shù)進(jìn)步主要體現(xiàn)在樣品前處理、進(jìn)樣和干擾控制等方面[25-33],詳細(xì)信息列于表2。
表2 ICP-MS測定不同基體中貴金屬、類金屬和非金屬元素含量信息Table 2 Informations of determination of precious metal, metalloid and non metal elements in different matrixes by ICP-MS
最近十幾年,在美國分析化學(xué)類主要期刊上發(fā)表的有關(guān)ICP-MS的文獻(xiàn)大多涉及各種具有一定功能(進(jìn)樣或進(jìn)樣分離)的聯(lián)用技術(shù)。可以認(rèn)為,所有能將樣品形成氣溶膠的技術(shù)都在ICP-MS中得到了應(yīng)用。只具有進(jìn)樣技術(shù)的主要有激光燒蝕(laser ablation, LA)、電熱蒸發(fā)(electric theromal vapor, ETV)、化學(xué)氣體發(fā)生(chemical vapor generation, CVG)等技術(shù);具有進(jìn)樣和分離功能的技術(shù)主要有氣相色譜(gas chromatography, GC)、離子色譜(ion chromatography, IC)、高效液相色譜(high performance liquid chromatography, HPLC)和親水性相互作用色譜(hydrophilic interaction chromatography, HILIC)、毛細(xì)管電泳(capillary electrophoresis, CE)。進(jìn)樣分離技術(shù)的快速發(fā)展使得ICP-MS從傳統(tǒng)的無機(jī)元素分析發(fā)展到有機(jī)生物及形態(tài)分析,從傳統(tǒng)的樣品消解后溶液進(jìn)樣分析發(fā)展到固體樣品在線進(jìn)樣分析,從傳統(tǒng)的元素含量分析發(fā)展到3D成像分析和高精度同位素分析。代表性聯(lián)用新技術(shù)及形態(tài)分析情況列于表3[35-53]。
表3 ICP-MS代表性聯(lián)用技術(shù)及形態(tài)分析情況Table 3 Hyphenated techniques and speciation analysis of ICP-MS
ICP-MS用于單顆粒(single particle,SP)分析是近十年來該技術(shù)的重要進(jìn)展。單顆粒分析是將單顆粒分散在溶液中,通過毛細(xì)管進(jìn)樣將溶液中的顆粒逐個(gè)送入ICP-MS進(jìn)行測定,獲得特定質(zhì)量數(shù)條件下離子信號強(qiáng)度與時(shí)間的關(guān)系曲線,利用專門的校準(zhǔn)方法和信號處理與評價(jià)方法獲得溶液中單顆粒的粒徑分布。需要說明的是,利用顯微鏡觀測-激光燒蝕ICP-MS分析以及通過掃描電鏡(SEM)識別單顆粒,然后通過微粒轉(zhuǎn)移方法將單顆粒樣品通過ICP-MS進(jìn)行分析也能得到顆粒的組成信息,但不屬于此處所述的單顆粒-ICP-MS檢測。
2011年,Bendall等[54]采用金屬元素標(biāo)記物標(biāo)記或識別細(xì)胞表面和內(nèi)部的信號分子,然后用流式細(xì)胞原理分離單個(gè)細(xì)胞(single cell, SC),再用ICP-TOF-MS觀察單個(gè)細(xì)胞的原子質(zhì)量譜,最后將原子質(zhì)量譜的數(shù)據(jù)轉(zhuǎn)換為細(xì)胞表面和內(nèi)部的信號分子數(shù)據(jù),并通過專業(yè)分析軟件對獲得的數(shù)據(jù)進(jìn)行分析,從而實(shí)現(xiàn)對細(xì)胞表型和信號網(wǎng)絡(luò)的精細(xì)觀察。采用同位素標(biāo)記抗體,結(jié)合質(zhì)譜分析的方法實(shí)現(xiàn)了對細(xì)胞表面多達(dá)一百種標(biāo)記物的同時(shí)檢測?;赟C-ICP-MS原理,產(chǎn)生了專門的質(zhì)譜流式細(xì)胞儀,并用于細(xì)胞循環(huán)測量。 單顆粒ICP-MS分析應(yīng)用實(shí)例最多的為Au和Ag納米顆粒的檢測[55-60],而單細(xì)胞分析實(shí)例包括真核細(xì)胞中單顆粒Au和Ag成像分析[61]和使用時(shí)間分辨Q-ICP-MS測定小球藻和幽門螺桿菌中的17種金屬元素[62]。
近十年來,基于ICP-MS技術(shù)的各種標(biāo)準(zhǔn)方法相繼頒布實(shí)施,檢測對象涉及核材料、石油、煤炭、鋼鐵、有色金屬、巖石礦物、地球化學(xué)、建筑材料、半導(dǎo)體工業(yè)、動(dòng)植物、化工產(chǎn)品、農(nóng)業(yè)、電子電器、環(huán)境空氣、尿樣、糞便、顆粒物、土壤、水、化妝品、煙草、食品等多個(gè)領(lǐng)域。目前,包括中國藥典在內(nèi)的ICP-MS標(biāo)準(zhǔn)方法已超過116個(gè)。
近十年來,主流ICP-MS在儀器靈敏度、穩(wěn)定性、精密度、干擾控制、采集速度、數(shù)據(jù)處理和軟件等方面的性能都得到大幅改善,性價(jià)比不斷提高。我國相繼研發(fā)并實(shí)現(xiàn)了ICP-MS儀器商品化,與國外主流ICP-MS形成了一定的競爭態(tài)勢,使ICP-MS從早期的科研推廣普及到基層日常應(yīng)用。展望未來,ICP-MS相關(guān)技術(shù)將在以下幾方面大有可為:1) 提高ICP-MS儀器對基體的耐受性、對分子離子的抗干擾性能、靈敏度和穩(wěn)定性是ICP-MS儀器性能發(fā)展的核心要素。此外,提高儀器的采集速度、改善數(shù)據(jù)處理能力和軟件的操控性、實(shí)現(xiàn)智能化管理也是重要的發(fā)展方向;2)面向應(yīng)用對象并以功能定義的專用聯(lián)用ICP-MS儀器和方法一體化技術(shù)研發(fā),如以LA-TOF-ICP-MS為代表的3D成像分析技術(shù);3)研發(fā)在線或離線自動(dòng)化學(xué)分離技術(shù)與裝置對涉及核材料和核廢物的ICP-MS測定,如燃耗、钚同位素、反應(yīng)堆混凝土、核燃料氙氣包裹體、核固體材料、核法證鈾同位素、鈾釷钚同位素、核電廠廢物等分析。
[1] BALCAEN L, BOLEAFERNANDEZ E, RESANO M, et al. Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS): a powerful and universal tool for the interference-free determination of (ultra) trace elements-a tutorial review[J]. Analytica Chimica Acta, 2015, 894: 7-19.
[2] LIM F J. PlasmaQuant?MS-Eco plasma sets a new benchmark in ICP-MS[J]. International Labmate, 2015, 40(3): 25.
[3] DONOVAN A R, ADAMS C D, MA Y, et al. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment[J]. Chemosphere, 2016, 144: 148-153.
[4] Thermo Scientific ELEMENT XR: Extended dynamic range high resolution ICP-MS[R]. Application note 30064, Thermo Fisher Scientific, Bremen, Germany.
[5] Precise and accurate determination of uranium isotopes[EB/OL]. http:∥nu-ins.com/wp-content/uploads/ 2016/02/AN35-NPII-Uranium.pdf.
[6] LLOYD N S, SCIENTIFIC T F, BREMEN, et al. Uranium isotopic analysis for the nuclear industry using the thermo scientific NEPTUNE plus MC-ICP-MS[R]. Application note 30238, Thermo Fisher Scientific, Bremen, Germany.
[7] OptiMass 9500 ICP-TOF MS[EB/OL]. http:∥www.gbcsci.com/products/icp_tof/optimass.asp.
[8] BURGER M, GUNDLACH-GRAHAM A, ALLNER S, et al. High-speed, high-resolution, multielemental LA-ICP-TOF MS imaging: part II. critical evaluation of quantitative three-dimensional imaging of major, minor, and trace elements in geological samples[J]. Analytical Chemistry, 2015, 87(16): 8 259-8 267.
[9] 符廷發(fā). 新一代電感耦合等離子體質(zhì)譜(ICP-MS)全譜同時(shí)測定技術(shù)[J]. 中國無機(jī)分析化學(xué),2011,1(2):70-73.
FU Tingfa. A newly developed inductively coupled plasma mass spectrometry technology for simultaneous measurement of a complete mass spectrum[J]. Chinese Journal of Inorganic Analytical Chemistry, 2011, 1(2): 70-73 (in Chinese).
[10] TUORINIEMI J, CORNELIS G, HASSELL?V M. New Peak recognition algorithm for detection of ultra small nano particles with single particle ICP-MS using rapid time resolved data acquisition on a sector-field mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(8): 1 723-1 729.
[11] HELLSTROM J C, PATON C, WOODHEAD J D, et al. Iolite: software for spatially resolved LA-(quad and MC) ICP-MS analysis[J]. 2008, 40(40): 343-348.
[12] DUNKL I, MIKES T. Data handling, outlier rejection and calculation of isotope concentrations from laser ICP-MS analyses by PEPITA software[J]. Geochimica et Cosmochimica Acta, 2007, 71(15): A243.
[13] 謝勝凱,郭冬發(fā),譚靖,等. 國產(chǎn)電感耦合等離子體質(zhì)譜儀測定地球化學(xué)樣品中稀土和鈾釷元素的含量[J]. 分析儀器,2013,(5):27-31.
XIE Shengkai, GUO Dongfa, TAN Jing, et al. Determination of rare earth elements, U and Th in geological samples by inductively coupled plasma[J]. Analytical Instrumentation, 2013, (5): 27-31(in Chinese).
[14] LU Y. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review[J]. Mass Spectrometry Reviews, 2009, 28(6): 990-1 011.
[15] 何學(xué)賢,朱祥坤,李世珍,等. 多接收器等離子體質(zhì)譜(MC-ICP-MS)測定Mg同位素方法研究[J]. 巖石礦物學(xué)雜志,2008,27(5):441-448.
HE Xuexian, ZHU Xiangkun, LI Shizhen, et al. High-precision measurement of magnesium isotopes using MC-ICP-MS[J]. Acta Petrologica et Mineralogica, 2008, 27(5): 441-448(in Chinese).
[16] 張安余,張經(jīng),張瑞峰,等. 多接收電感耦合等離子體質(zhì)譜儀測定穩(wěn)定硅同位素[J]. 分析化學(xué),2015,43(9):1 353-1 359.
ZHANG Anyu, ZHANG Jing, ZHANG Rui-feng, et al. Determination of stable silicon isotopes using multi-collector inductive coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(9): 1 353-1 359(in Chinese).
[17] FIETZKE J, EISENHAUER A, GUSSONE N, et al. Direct measurement of44Ca/40Ca ratios by MC-ICP-MS using the cool plasma technique[J]. Chemical Geology, 2009, 10(6): 22 143-22 175.
[18] SCHOENBERG R, ZINK S, STAUBWASSER M, et al. The stable Cr isotope inventory of solid earth reservoirs determined by double spike MC-ICP-MS[J]. Chemical Geology, 2008, 249(3/4): 294-306.
[19] 朱祥坤,李志紅,趙新苗,等. 鐵同位素的MC-ICP-MS測定方法與地質(zhì)標(biāo)準(zhǔn)物質(zhì)的鐵同位素組成[J]. 巖石礦物學(xué)雜志,2008,27(4):263-272.
ZHU Xiangkun, LI Zhihong, ZHAO Xinmiao, et al. High-precision measurements of Fe isotopes using MC-ICP-MS and Fe isotope compositions of geological reference materials[J]. Acta Petrologica et Mineralogica, 2008, 27(4): 263-272(in Chinese).
[20] 朱建明,朱祥坤,黃方. 鉬的穩(wěn)定同位素體系及其地質(zhì)應(yīng)用[J]. 巖石礦物學(xué)雜志,2008,27(4):353-360.
ZHU Jianming, ZHU Xiangkun, HUANG Fang. The systematics of molybdenum stable isotope and its application to earth science[J]. Acta Petrologica et Mineralogica, 2008, 27(4): 353-360(in Chinese).
[21] 侯可軍,李延河,鄒天人, 等. LA-MC-ICP-MS鋯石Hf同位素的分析方法及地質(zhì)應(yīng)用[J]. 巖石學(xué)報(bào),2007,23(10):2 595-2 604.
HOU Kejun, LI Yanhe, ZOU Tianren, et al. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of ziron and its geological applications[J]. Acta Petrologica Sinica, 2007, 23(10): 2 595-2 604(in Chinese).
[22] 杜安道,屈文俊,李超,等. 錸-鋨同位素定年方法及分析測試技術(shù)的進(jìn)展[J]. 巖礦測試,2009,28(3):288-304.
DU Andao, QU Wenjun, LI Chao, et al. A review on the development of Re-Os isotopic dating methods and techniques[J]. Rock and Mineral Analysis, 2009, 28(3): 288-304(in Chinese).
[23] 尹潤生,馮新斌,DELPHINE F,等. 多接收電感耦合等離子體質(zhì)譜法高精密度測定汞同位素組成[J]. 分析化學(xué),2010,38(7):929-934.
YIN Runsheng, FENG Xinbin, DELPHINE F, et al. High precision determination of mercury isotope ratios using on line mercury vapor generation system coupled with multi-collector inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2010, 38(7): 929-934(in Chinese).
[24] 王軍,逯海,周濤,等. 非傳統(tǒng)同位素體系標(biāo)準(zhǔn)物質(zhì)研發(fā)進(jìn)展[J]. 質(zhì)譜學(xué)報(bào),2010,31(4):193-201.
WANG Jun, LU Hai, ZHOU Tao, et al. Advance in development of non-traditional isotope certified reference materials[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(4): 193-201(in Chinese).
[25] GUO W, XIE W, JIN L, et al. Determination of sub-ng·g-1Au in geological samples by ion molecule reaction ICP-MS and CH4plasma modifier[J]. Rsc Advances, 2015, 5(125): 103 189-103 194.
[26] 陸海川,黃艷波,楊旭. GFAAS和ICP-MS測定化探樣品中的痕量金[J]. 黃金,2016,37(6):83-86.
LU Haichuan, HUANG Yanbo, YANG Xu. Determination of trace gold in geochemical samples by GFAAS and ICP-MS[J]. Gold, 2016, 37(6): 83-86(in Chinese).
[27] 孫朝陽,戴雪峰,代小呂,等. 氨水分離-電感耦合等離子體質(zhì)譜法測定化探樣品中的銀[J]. 巖礦測試,2015,34(3):292-296.
SUN Chaoyang, DAI Xuefeng, DAI Xiaolv. Determination of silver in samples for geochemical exploration by inductively coupled plasma-mass spectrometry after ammonia complexation[J]. Rock and Mineral Analysis, 2015, 34(3): 292-296(in Chinese).
[28] 王君玉,孫自軍,袁潤蕾,等. 錫試金富集-電感耦合等離子體質(zhì)譜法測定黑色頁巖中的鉑族元素[J]. 理化檢驗(yàn):化學(xué)分冊,2013,49(8):972-975.
WANG Junyu, SUN Zijun, YUAN Runlei, et al. ICP-MS determination of platinum metals in black shale enriched by tin fire assy[J]. PTCA (Part B Chem Anal), 2013, 49(8): 972-975(in Chinese).
[29] MENARD G, VLASTéLIC I, IONOV D A, et al. Precise and accurate determination of boron concentration in silicate rocks by direct isotope dilution ICP-MS: insights into the B budget of the mantle and B behavior in magmatic systems[J]. Chemical Geology, 2013, 354(5): 139-149.
[30] 張萍,符靚,聶西度. ICP-MS法測定MnZn鐵氧體中Si和P[J]. 光譜學(xué)與光譜分析,2014,34(3):808-811.
ZHANG Ping, FU Liang, NIE Xidu. Determination of Si and P in MnZn ferrites by inductively coupled mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2014, 34(3): 808-811(in Chinese).
[31] 陳波,劉洪青,邢應(yīng)香. 電感耦合等離子體質(zhì)譜法同時(shí)測定地質(zhì)樣品中鍺硒碲[J]. 巖礦測試,2014,33(2):192-196.
CHEN Bo, LIU Hongqing, XING Yingxiang. Simultaneous determination of Ge, Se and Te in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 192-196(in Chinese).
[32] 王文青,張麗媛,魏宇鋒,等. 微波消解/ICP-MS法測定食品級潤滑油(脂)中的銻、砷、鎘、鉛、汞、硒[J]. 分析試驗(yàn)室,2014,33(12):1 430-1 433.
WANG Wenqing, ZHANG Liyuan, WEI Yu-feng, et al. ICP-MS determination of harmful elements of As, Se, Cd, Sb, Hg, Pb in food-grade lubricating oils and greases with microwave digestion[J]. Chinese Journal of Analysis Laboratory, 2014, 33(12): 1 430-1 433(in Chinese).
[33] BANDURA D R, BARANOV V I, TANNER S D. Detection of ultratrace phosphorus and sulfur by quadrupole ICP-MS with dynamic reaction cell[J]. Analytical Chemistry, 2002, 74(7): 1 497-1 502.
[34] BARBOSA J T P, SANTOS C M M. Bromine, chlorine, and iodine determination in soybean and its products by ICP-MS after digestion using microwave-induced combustion[J]. Food Analytical Methods, 2013, 6(4): 1 065-1 070.
[35] ZONG K Q, CHEN J Y, HU Z C, et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. Science China Earth Sciences, 2015, 58(10): 1-10.
[36] DRESCHER D, GIESEN C, TRAUB H, et al. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS[J]. Analytical Chemistry, 2012, 84(22): 9 684-9 688.
[37] 汪偉,李志明,徐江,等. 激光燒蝕-多接收電感耦合等離子體質(zhì)譜法測定鈾顆粒物中鉛雜質(zhì)的同位素比值[J]. 分析化學(xué),2016,44(7):1 053-1 058.
WANG Wei, LI Zhiming, XU Jiang, et al. Isotopic abundance analysis of lead in uranium particles by laser ablation multiple collector inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(7): 1 053-1 058(in Chinese).
[38] KIM J Y, KIM W I, KUNHIKRISHNAN A, et al. Determination of arsenic species in rice grains using HPLC-ICP-MS[J]. Food Science and Biotechnology, 2013, 22(6): 1 509-1 513.
[39] SéBY F, GLEYZES C, GROSSO O, et al. Speciation of antimony in injectable drugs used for leishmaniasis treatment (Glucantime?) by HPLC-ICP-MS and DPP[J]. Analytical & Bioanalytical Chemistry, 2012, 404(10): 2 939-2 948.
[40] INFANTE H G, BORREGO A A, PEACHEY E, et al. Study of the effect of sample preparation and cooking on the selenium speciation of selenized potatoes by HPLC with ICP-MS and electrospray ionization MS/MS[J]. Journal of Agricultural & Food Chemistry, 2009, 57(1): 38-45.
[41] ONG K, LIM L, GHANTHIMATHI S, et al. Speciation: determination of methylmercury in fish samples with HPLC-ICP-MS[J]. From Sources to Solution, 2014, 32(3): 375-378.
[42] CUYCKENS F, BALCAEN L I, DE W K, et al. Use of the bromine isotope ratio in HPLC-ICP-MS and HPLC-ESI-MS analysis of a new drug in development[J]. Analytical and Bioanalytical Chemistry, 2008, 390(7): 1 717-1 729.
[43] SPOLAOR A, VALLELONGA P, GABRIELI J, et al. Speciation analysis of iodine and bromine at picogram-per-gram levels in polar ice[J]. Analytical & Bioanalytical Chemistry, 2012, 405(2/3): 647-654.
[44] SOMMER Y L, VERDON C P, FRESQUEZ M R, et al. Measurement of mercury species in human blood using triple spike isotope dilution with SPME-GC-ICP-DRC-MS[J]. Analytical & Bioanalytical Chemistry, 2014, 406(20): 5 039-5 047.
[45] NELSON J, HOPFER H, SILVA F, et al. Evaluation of GC-ICP-MS/MS as a new strategy for specific heteroatom detection of phosphorus, sulfur, and chlorine determination in foods[J]. Journal of Agricultural & Food Chemistry, 2015, 63(18): 4 478-4 483.
[46] YOSHIDA S, MURAMATSU Y, KATOU S. Determination of the chemical forms of iodine with IC-ICP-MS and its application to environmental samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 273(1): 211-214.
[47] LENZ M, FLOOR G H, WINKEL L H, et al. Online preconcentration-IC-ICP-MS for selenium quantification and speciation at ultratraces[J]. Environmental Science & Technology, 2014, 46(21): 11 988-11 994.
[48] NGUYEN T T, ?STERGAARD J, GAMMELGAARD B. A method for studies on interactions between a gold-based drug and plasma proteins based on capillary electrophoresis with inductively coupled plasma mass spectrometry detection[J]. Analytical & Bioanalytical Chemistry, 2015, 407(28): 1-7.
[49] NGUYEN T T, ?STERGAARD J, STüRUP S, et al. Investigation of a liposomal oxaliplatin drug formulation by capillary electrophoresis hyphenated to inductively coupled plasma mass spectrometry (CE-ICP-MS)[J]. Analytical & Bioanalytical Chemistry, 2012, 402(6): 2 131-2 139.
[50] MELLO P A, PEDROTTI M F, CRUZ S M, et al. Determination of rare earth elements in graphite by solid sampling electrothermal vaporization-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(10): 2 048-2 055.
[51] TSENG Y J, TSAI Y D, JIANG S J. Electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples[J]. Analytical & Bioanalytical Chemistry, 2007, 387(8): 2 849-2 855.
[52] VIEIRA M A, RIBEIRO A S, DIAS L F, et al. Determination of Cd, Hg, Pb and Se in sediments slurries by isotopic dilution calibration ICP-MS after chemical vapor generation using an on-line system or retention in an electrothermal vaporizer treated with iridium[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2005, 60(5): 643-652.
[53] STURGEON R E. Detection of bromine by ICP-OA-TOF-MS following photochemical vapor generation[J]. Analytical Chemistry, 2015, 87(5): 3 072-3 079.
[54] BENDALL S C, SIMONDS E F, PENG Q, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum[J]. Science, 2011, 332(6 030): 687-696.
[55] PETERS R, HERRERARIVERA Z, UNDAS A, et al. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(6): 275-297.
[56] MEERMANN B, LABORDA F. Analysis of nanomaterials by field-flow fractionation and single particle ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(6): 1 226-1 228.
[57] FRANZE B, ENGELHARD C. Fast separation, characterization, and speciation of gold and silver nanoparticles and their ionic counterparts with micellar electrokinetic chromatography coupled to ICP-MS[J]. Analytical Chemistry, 2014, 86(12): 5 713-5 720.
[58] LEE S, BI X Y, REED R B, et al. Nanoparticle size detection limits by single particle ICP-MS for 40 elements[J]. Environmental Science & Technology, 2014, 48(17): 10 291-10 300.
[59] VERLEYSEN E, DOREN E V, WAEGENEERS N, et al. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry[J]. Journal of Agricultural & Food Chemistry, 2015, 63(13): 3 570-3 578.
[60] MUDALIGE T K, QU H, LINDER S W. Asymmetric flow field flow fractionation hyphenated ICP-MS as an alternative to cloud point extraction for quantification of silver nanoparticles and silver speciation: application for nanoparticles with protein corona[J]. Analytical Chemistry, 2015, 87(14): 7 395-7 401.
[61] DRESCHER D, GIESEN C, TRAUB H, et al. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS[J]. Analytical Chemistry, 2012, 84(22): 9 684-9 688.
[62] HO K S. Single-cell analysis using inductively coupled plasma mass spectrometry[D]. Hong Kong: The University of Hong Kong (Pokfulam, Hong Kong), 2012.
Major Advances in Inductively Coupled Plasma Mass Spectrometry (2005—2016)
GUO Dong-fa1, LI Jin-ying2, LI Bo-ping1, XIE Sheng-kai1, TAN Jing1, ZHANG Yan-hui1, LIU Rui-ping1
(1.AnalyticalLaboratory,BeijingResearchInstituteofUraniumGeology,Beijing100029,China;2.ChinaNuclearEngineeringConstructionCorporation,Beijing100037,China)
O657.63
A
1004-2997(2017)05-0599-12
10.7538/zpxb.2016.0095
2016-06-29;
2017-04-23
中核集團(tuán)集中研發(fā)項(xiàng)目(LC1605)資助
郭冬發(fā)(1965—),男(漢族),江西寧都人,研究員級高級工程師,從事核質(zhì)譜分析技術(shù)研究。E-mail: guodongfa@263.net