曾皓月, 王之, 方美娟, 王立強(qiáng)
(1. 華僑大學(xué) 生物醫(yī)學(xué)學(xué)院, 福建 泉州 362021;2. 蘭州軍區(qū)總醫(yī)院 臨床藥學(xué)科, 甘肅 蘭州 730000;3. 廈門大學(xué) 藥學(xué)院, 福建 廈門 361000)
pDNA-巰基殼聚糖納米粒的制備及Box-Behnken效應(yīng)面法工藝優(yōu)化
曾皓月1, 王之2, 方美娟3, 王立強(qiáng)1
(1. 華僑大學(xué) 生物醫(yī)學(xué)學(xué)院, 福建 泉州 362021;2. 蘭州軍區(qū)總醫(yī)院 臨床藥學(xué)科, 甘肅 蘭州 730000;3. 廈門大學(xué) 藥學(xué)院, 福建 廈門 361000)
以巰基殼聚糖(TCS)為基因載體,采用離子交聯(lián)法制備能用于基因口服研究的質(zhì)粒DNA-巰基殼聚糖納米粒(pDNA-TCS-NPs).分別以TCS質(zhì)量濃度、三聚磷酸鈉(TPP)質(zhì)量濃度、pH值和轉(zhuǎn)速為考察對(duì)象,以pDNA-TCS-NPs粒徑和Zeta電位為評(píng)價(jià)指標(biāo),采用4因素3水平Box-Behnken 效應(yīng)面法篩選最佳制備工藝,并對(duì)其外觀形態(tài),包封率等體外性質(zhì)進(jìn)行考察.結(jié)果表明:TCS質(zhì)量濃度為0.80 mg·mL-1,TPP質(zhì)量濃度為0.65 mg·mL-1,pH=5.3,轉(zhuǎn)速為2 000 r·min-1是最優(yōu)制備工藝,可制得粒徑為(134.21±1.34) nm,Zeta電位為(24.36±0.29) mV,包封率在(80.26±0.56)%,形狀規(guī)則且分散良好的pDNA-巰基殼聚糖納米粒;Box-Behnken 實(shí)驗(yàn)設(shè)計(jì)可用于預(yù)測(cè)和優(yōu)化pDNA-TCS-NP制備工藝優(yōu)化篩選.
巰基殼聚糖; 質(zhì)粒DNA; 納米粒; Box-Behnken效應(yīng)面法; 離子交聯(lián)法; 工藝優(yōu)化
Abstract: Preliminary exploration to prepare plasmid DNA-loaded thiolated chitosan nanoparticles (pDNA-TCS-NPs) which can be used for gene oral administration was investigated. Using TCS as gene carriers, the pDNA-TCS-NPs were prepared by the ionic cross-linking method. The effects of the concentrations of TCS and TPP, pH value and stirring speed were investigated on the particle diameter and zeta potential of the pDNA-TCS-NPs. In addition, the formula was optimized by Box-Behnken design and response surface method with four factors and three levels, and the physic-chemical properties such as the shape and encapsulation efficiency were also studied. The results showed that the optimal formula was as follows: TCS concentration 0.80 mg·mL-1, TPP concentration 0.65 mg·mL-1, pH 5.3, and stirring speed 2 000 r·min-1. Particle diameter was (134.21±1.34) nm, zeta potential was (24.36±0.29) mV, and efficiency was (80.26±0.56)%.under the optimal conditions. The pDNA-TCS-NPs showed uniform spherical solid particles with regular shape and ideal uniformly dispersion. It′s also confirmed that the Box-Behnken experimental design and response surface method could be used to predict and optimize the pDNA-loaded TCS nanoparticles.
Keywords: thiolated chitosan; plasmid DNA; nanoparticle; Box-Behnken design and response surface method; ionic cross-linking method; formula optimization
如何用藥學(xué)技術(shù)手段提高口服基因藥物在體內(nèi)外的穩(wěn)定性,從而提高口服基因轉(zhuǎn)染效率,是當(dāng)前口服基因治療的首要問(wèn)題[1-2].通過(guò)采用高分子材料制備出直徑1 000 nm以內(nèi)的納米粒.以此構(gòu)建出非病毒口服基因藥物遞送系統(tǒng),因其具有提高基因藥物穩(wěn)定性,促進(jìn)生物膜的轉(zhuǎn)運(yùn)和吸收,且靶向性、順應(yīng)性好等諸多優(yōu)點(diǎn)已成為一大研究熱點(diǎn)[3].與使用其他非病毒納米粒制備的載體相比,以巰基殼聚糖為基礎(chǔ)的口服納米遞送系統(tǒng),具有以下3個(gè)主要特點(diǎn):1) 巰基殼聚糖中游離的巰基經(jīng)氧化可形成二硫鍵,其結(jié)合力遠(yuǎn)強(qiáng)于靜電效應(yīng)可提高載體的胞外穩(wěn)定性[4];2) 巰基殼聚糖上的巰基通過(guò)與腸黏膜和腸上皮細(xì)胞表面富含半胱氨酸殘基的粘蛋白形成二硫鍵,發(fā)揮黏附作用延長(zhǎng)所載藥物滯留時(shí)間,促進(jìn)藥物吸收;3) 當(dāng)其入胞后,在細(xì)胞內(nèi)谷胱甘肽的參與下,破壞其二硫鍵,將基因藥物與載體解離令目的基因得以釋放[5-6].響應(yīng)曲面法(RSM)是通過(guò)對(duì)實(shí)驗(yàn)設(shè)計(jì)的因素進(jìn)行考察,對(duì)其相關(guān)關(guān)系進(jìn)行分析,從而確定出最佳實(shí)驗(yàn)方案,并利用計(jì)算機(jī)技術(shù)進(jìn)行數(shù)據(jù)分析的優(yōu)化方法.目前,最常用有星點(diǎn)設(shè)計(jì)法(CCD),Box-Behnken Design(BBD)法等[7].本文通過(guò)采用 Box-Behnken效應(yīng)面法,對(duì)質(zhì)粒DNA-巰基殼聚糖納米粒(pDNA-TCS-NPs)的制備工藝進(jìn)行優(yōu)化.
1.1儀器與試劑
微量紫外分光光度計(jì)(美國(guó)Thermo公司);集熱式磁力攪拌器(河南省鞏義市華儀儀器有限公司);臺(tái)式高速離心機(jī)(美國(guó)Thermo公司);Malvern ZEN-3600型粒徑測(cè)試儀(英國(guó)馬爾文公司);LGJ-18S型冷凍干燥機(jī)(北京松源華興科技有限公司);透射電鏡(日本Nikon公司).
巰基殼聚糖(華僑大學(xué)實(shí)驗(yàn)室提供);三聚磷酸鈉(分析純,上海國(guó)藥集團(tuán)化學(xué)試劑有限公司);增強(qiáng)型綠色熒光蛋白質(zhì)?;?pDNA,5.3 kb,華僑大學(xué)實(shí)驗(yàn)室擴(kuò)增和提純);其余常規(guī)試劑(上海國(guó)藥集團(tuán)化學(xué)試劑有限公司).
1.2pDNA-TCS-NPs的制備
采用離子交聯(lián)法制備質(zhì)粒DNA-巰基殼聚糖納米粒(pDNA-TCS-NPs).取適量巰基殼聚糖,緩慢加入0.1 mol·L-1的醋酸溶液,在37 ℃下攪拌溶解,并調(diào)節(jié)其pH值,制備出巰基殼聚糖溶液;然后,向溶液中緩慢加入1 μg的pDNA,另取適量的TPP溶于去離子水中,將TPP溶液以15 滴·min-1的速度緩慢加入到巰基殼聚糖溶液中,攪拌30 min,于超純水中透析36 h(截留相對(duì)分子質(zhì)量為3.5 u),凍干可得pDNA-TCS-NPs.
1.3pDNA-TCS-NPs體外性質(zhì)初步評(píng)價(jià)
1.3.1 形態(tài)測(cè)定 采用復(fù)染法對(duì)其形態(tài)進(jìn)行測(cè)定,吸取適量濃縮pDNA-TCS-NPs溶液置于銅網(wǎng)中,使用磷鉬酸銨溶液進(jìn)行負(fù)染,待其風(fēng)干后,采用透射電鏡拍攝納米粒的形態(tài).
1.3.2 粒徑與Zeta電位的測(cè)定 使用去離子水對(duì)經(jīng)過(guò)透析濃縮的pDNA-TCS-NPs懸液進(jìn)行稀釋,采用馬爾文粒徑測(cè)試儀測(cè)量其粒徑(d)和Zeta電位(E).
1.4Box-Behnken效應(yīng)面法優(yōu)化
選取對(duì)pDNA-TCS-NPs粒徑和電位影響較為顯著的4個(gè)因素,即TCS質(zhì)量濃度(A),TPP質(zhì)量濃度(B),pH值(C),轉(zhuǎn)速(D),在3個(gè)水平上進(jìn)行優(yōu)化研究.效應(yīng)面因素水平,如表1所示.
表1 效應(yīng)面因素水平表Tab.1 Factors and levels of response surface method
2.1Box-Behnken效應(yīng)面法設(shè)計(jì)結(jié)果
2.1.1 擬合方程 以Y1(粒徑,d)和Y2(電位,E)為相應(yīng)指標(biāo),進(jìn)行29個(gè)實(shí)驗(yàn)點(diǎn)的優(yōu)化實(shí)驗(yàn),結(jié)果如表2所示.
表2 Box-Behnken 實(shí)驗(yàn)設(shè)計(jì)及響應(yīng)值Tab.2 Box-Behnken experimental design and response values
利用Design-Expert 8.0軟件,對(duì)設(shè)計(jì)實(shí)驗(yàn)結(jié)果(表2)進(jìn)行分析.以粒徑Y(jié)1作為因變量,通過(guò)擬合,得出的方程為
以電位Y2作為因變量,通過(guò)擬合,得出的方程為
2.1.2 效應(yīng)面優(yōu)化與預(yù)測(cè) 根據(jù)擬合方程的相關(guān)系數(shù)可知,該模型擬合度良好,可以用來(lái)作為TCS-NP的分析和預(yù)測(cè),結(jié)果如表3所示.
表3 檢測(cè)回歸方程中系數(shù)的顯著性Tab.3 Significance test of coefficient in regressionequation
根據(jù)擬合方程(1),(2),運(yùn)用Design-Expert 8.0軟件,繪制因素A(ρ(TCS)),B(ρ(TPP)),C(pH),D(n)對(duì)Y1(d),Y2(E)的響應(yīng)面圖[7],如圖1所示.
(a) A-B-Y1 (b) A-B-Y2
(c) A-C-Y1 (d) A-C-Y2
(e) A-D-Y1 (f) A-D-Y2
(g) B-C-Y1 (h) B-C-Y2
(i) B-D-Y1 (j) B-D-Y2
(k) C-D-Y1 (l) C-D-Y2圖1 各因素與響應(yīng)值的三維圖Fig.1 Three-dimensional plot of independent factors and response values
根據(jù)實(shí)驗(yàn)結(jié)果選定適當(dāng)?shù)脑u(píng)價(jià)指標(biāo)范圍,可以得到最優(yōu)制備工藝,即TCS質(zhì)量濃度為0.82 mg·mL-1,TPP質(zhì)量濃度為0.67 mg·mL-1,pH值為5.27,轉(zhuǎn)速為1 992.23 r·min-1,則由此可預(yù)測(cè)粒徑為130.215 nm,電位為25 mV.
圖2 pDNA-TCS-NPs納米粒透射電鏡照片F(xiàn)ig.2 SEM photograph of plasmid DNA-loaded thiolated chitosan nanoparticles
2.1.3 優(yōu)化工藝驗(yàn)證 為驗(yàn)證最優(yōu)制備工藝及模型的準(zhǔn)確性,并考慮實(shí)際操作的可行性,將各個(gè)處方因素進(jìn)行細(xì)微調(diào)整,即TCS質(zhì)量濃度為0.80 mg·mL-1,TPP質(zhì)量濃度為0.65 mg·mL-1,pH值為5.3,轉(zhuǎn)速為2 000 r·min-1.按照上述工藝制備出3批pDNA-TCS-NPs,并對(duì)其粒徑、電位、包封率進(jìn)行測(cè)試,可得粒徑為(134.21±1.34) nm,電位為(24.36±0.29) mV,包封率為(80.26±0.56)%.通過(guò)透射電鏡觀察pDNA-TCS-NPs,發(fā)現(xiàn)其外觀為較規(guī)則的圓形,如圖2所示.
對(duì)殼聚糖進(jìn)行化學(xué)修飾,能夠進(jìn)一步改善殼聚糖基因藥物運(yùn)輸載體的穩(wěn)定性、運(yùn)輸效率及轉(zhuǎn)染效率等性能.Jiang等[8]通過(guò)對(duì)聚乙二醇?xì)ぞ厶墙又垡蚁﹣啺罚苽涑隹捎糜诟渭?xì)胞的基因藥物運(yùn)輸載體.Kwon等[9]采用葉酸修飾殼聚糖,制備出能夠在葉酸陽(yáng)性受體細(xì)胞表達(dá)的基因藥物載體.研究采用經(jīng)巰基修飾的殼聚糖,制備出可用于口服的納米藥物運(yùn)輸載體.
在進(jìn)行多變量多水平的實(shí)驗(yàn)設(shè)計(jì)時(shí),采用Box-Behnken 效應(yīng)面法,可以考察各變量間交互作用.該方法與中心復(fù)合設(shè)計(jì)法相比,具有試驗(yàn)次數(shù)少、節(jié)約成本的特點(diǎn),還避免了由于正交設(shè)計(jì)和均勻設(shè)計(jì)試驗(yàn)所引起的無(wú)法精確得到最佳點(diǎn)的問(wèn)題[10].
選擇pDNA-TCS-NPs粒徑和Zeta電位作為評(píng)價(jià)標(biāo)準(zhǔn),對(duì)其制備工藝進(jìn)行改善.結(jié)果表明:在一定范圍內(nèi),pDNA-TCS-NPs粒粒徑大小與巰基殼聚糖質(zhì)量濃度關(guān)系呈正相關(guān),TCS質(zhì)量濃度高,高分子數(shù)目增多,增強(qiáng)了分子間凝聚作用,所以pDNA-TCS-NPs粒粒徑變大.在低質(zhì)量濃度TCS下,TPP質(zhì)量濃度變化對(duì)粒徑的影響不大;但在高質(zhì)量濃度下,納米粒粒徑隨著TPP質(zhì)量濃度呈現(xiàn)出正相關(guān)關(guān)系.因?yàn)樵诤线m的質(zhì)量濃度下,微粒間的接觸增加利于發(fā)生交聯(lián),從而可通過(guò)調(diào)節(jié)TCS與TPP的質(zhì)量濃度來(lái)改變納米粒的粒徑.
TCS納米粒的電位則主要與溶液pH值有關(guān).納米粒電位隨著pH值的降低而增大,pH值較低時(shí),聚合物電離程度高,便于其與TPP反應(yīng),形成小粒徑納米粒.文中所制備的納米粒呈較為規(guī)則的球形,包封率良好,用于細(xì)胞和動(dòng)物模型均得到理想的實(shí)驗(yàn)預(yù)期,保證了體內(nèi)外的穩(wěn)定性.說(shuō)明該納米粒在口服基因領(lǐng)域的獨(dú)特優(yōu)勢(shì),后期可研究其胞內(nèi)轉(zhuǎn)運(yùn)的相關(guān)機(jī)制.
[1] MENZEL C,BONENGEL S,De SOUSA I P,etal.Preactivated thiolated nanoparticles: A novel mucoadhesive dosage form[J].International Journal of Pharmaceutics,2015,497(1/2):123-128.DOI:10.1016/j.ijpharm.2015.11.037.
[2] HE Chunbai,YIN Lichen,TANG Cui,etal.Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages[J].Biomaterials,2013,34(11):2843-2854.DOI:10.1016/j.biomaterials.2013.01.033.
[3] HAMIDI M,AZADI A,RAFIEI P.Hydrogel nanoparticles in drug delivery[J].Advanced Drug Delivery Reviews,2008,60(15):1638-1649.DOI:10.1016/j.addr.2008.08.002.
[4] Jr DUBENSK T W,LIU M A,ULMER J B.Delivery systems for gene-based vaccines[J].Molecular Medicine,2000,6(9):723-732.
[5] BERNKOP-SCHNüRCH A,GUGGI D,PINTER Y.Thiolated chitosans: Development andinvitroevaluation of a mucoadhesive, permeation enhancing oral drug delivery system[J].Journal of Controlled Release,2004,94(1):177-186.DOI:10.1016/j.jconrel.2003.10.005.
[6] F?GER F,SCHMITZ T,BERNKOPSCHNüRCH A.Invivoevaluation of an oral delivery system for P-gp substrates based on thiolated chitosan[J].Biomaterials,2006,27(23):4250-4255.DOI:10.1016/j.biomaterials.2006.03.033.
[7] 張南生,孫衛(wèi)軍,郭虹,等.Box-Behnken Design效應(yīng)面法在制劑處方優(yōu)化中的應(yīng)用[J].中國(guó)醫(yī)藥導(dǎo)報(bào),2015,12(23):34-37.
[8] JIANG H L,KWON J T,KIM E M,etal.Galactosylated poly (ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting[J].Journal of the Controlled Release Society,2008,131(2):150-157.DOI:10.1016/j.jconrel.2008.07.029.
[9] KWON O J,KANG E,CHOI J W,etal.Therapeutic targeting of chitosan-PEG-folate-complexed oncolytic adenovirus for active and systemic cancer gene therapy[J]. Journal of the Controlled Release Society,2013,169(3):257-265.DOI:10.1016/j.jconrel.2013.03.030.
[10] 王芳,翟文婷,李艷麗,等.Box-Behnken效應(yīng)面法優(yōu)化穿心蓮內(nèi)酯-PLGA微球處方研究[J].中草藥,2013,44(13):1743-1747.DOI:10.7501/j.issn.0253-2670.2013.13.009.
(責(zé)任編輯: 陳志賢英文審校: 劉源崗)
PreparationofpDNA-LoadedThiolatedChitosanNanoparticlesandOptimizationbyUsingBox-BehnkenDesignandResponseSurfaceMethod
ZENG Haoyue1, WANG Zhi2, FANG Meijuan3, WANG Liqiang1
(1. School of Biomedical Sciences, Huaqiao University, Quanzhou 362021, China; 2. Department of Clinical Pharmacy, General Hospital of Lanzhou Military Command, Lanzhou 730000, China;3. School of Pharmaceutical Sciences, Xiamen University, Xianmen 361000, China)
10.11830/ISSN.1000-5013.201703054
2017-03-17
王立強(qiáng)(1970-),男,教授,博士,主要從事藥劑學(xué)和藥物開發(fā)的研究.E-mail:wlq1599@163.com.
國(guó)家自然科學(xué)基金資助項(xiàng)目(81302652); 福建省自然科學(xué)基金資助項(xiàng)目(2015J01342)
R 944
A
1000-5013(2017)05-0676-06