国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

二分之五次方拋物線形明渠設(shè)計(jì)及提高水力特性效果

2017-10-13 16:40韓延成徐征和高學(xué)平SaidEasa
關(guān)鍵詞:次方過(guò)流水深

韓延成,徐征和,高學(xué)平,Said M. Easa

?

二分之五次方拋物線形明渠設(shè)計(jì)及提高水力特性效果

韓延成1,徐征和1,高學(xué)平2,Said M. Easa3

(1. 濟(jì)南大學(xué)資源與環(huán)境學(xué)院,濟(jì)南 250022; 2. 天津大學(xué)水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300072;3. Dept. of Civil Engineering, Ryerson Univ., Toronto, ON, Canada, M5B 2K3)

為提高拋物線形斷面的水力特性,增加輸水能力,該文提出了一種二分之五次(以下簡(jiǎn)稱2.5次)方拋物線形渠道斷面,推導(dǎo)其水力斷面特性。將濕周用高斯超幾何函數(shù)表示后,將水力最優(yōu)斷面的最優(yōu)化模型轉(zhuǎn)換為關(guān)于寬深比的一元方程,得到2.5次方拋物線形渠道水力最優(yōu)斷面的解析解,其最優(yōu)寬深比為2.088 3。比較結(jié)果表明,2.5次方拋物線形斷面較常規(guī)拋物線形斷面具有更好的水力學(xué)特性。與平方、半立方拋物線形斷面比較,在相同水深條件下,2.5次方拋物線形水力最優(yōu)斷面的過(guò)流能力更大。相反,在相同流量下,2.5次方拋物線形水力最優(yōu)斷面的過(guò)流面積、濕周、水深更小。2.5次方拋物線形水力最優(yōu)斷面的建造成本與其他2種斷面相比是最小的。進(jìn)一步地,為便于工程應(yīng)用,基于高斯勒讓德算法,提出2.5次方拋物線形斷面的三點(diǎn)和四點(diǎn)格式近似濕周算法。結(jié)果表明,四點(diǎn)格式近似算法具有較高精度。研究可為明渠設(shè)計(jì)提供理論依據(jù)。

渠道;水力學(xué);設(shè)計(jì);明渠;二分之五次方拋物線形斷面;水力最優(yōu)斷面;濕周

0 引 言

渠道輸水?dāng)嗝鎸?duì)渠道過(guò)流能力、水深、建造成本等均有很大的影響。常見的渠道輸水?dāng)嗝鏋樘菪巍⒕匦螖嗝?。隨著渠道建造工藝的改進(jìn),大型襯砌機(jī)器的應(yīng)用,曲線形斷面的建造越來(lái)越容易,也越來(lái)越受到歡迎。例如巴基斯坦的High Level渠,西班牙Genil-Cabra渠等[1]均采用了平方拋物線形斷面。學(xué)者們普遍認(rèn)為曲線形斷面有以下優(yōu)點(diǎn)[2-4]:曲線形渠道斷面沒(méi)有或拐角點(diǎn)少、應(yīng)力集中點(diǎn)少,因而由應(yīng)力集中可能產(chǎn)生的裂縫少,滲漏量少;自然形成的河道或非襯砌渠道更多呈現(xiàn)曲線形斷面的形狀;曲線形渠道斷面從渠底到渠堤邊坡是漸變的,因而穩(wěn)定性更好;曲線形渠道具有更好的水力學(xué)特性。

常見的拋物線形渠道斷面主要包括平方拋物線形斷面和半立方拋物線形斷面。學(xué)者們對(duì)常規(guī)的拋物線形斷面已經(jīng)進(jìn)行了大量研究,不僅研究了平方拋物線形渠道的水力最優(yōu)斷面[2,5]、經(jīng)濟(jì)斷面[6],也研究了具有拋物線形底和三角形邊坡的復(fù)合斷面[7],平底的平方拋物線形斷面[3-4],以及平底的半立方拋物線形斷面[8]等。為方便工程應(yīng)用,張新燕等[9]進(jìn)行了拋物線形斷面渠道正常水深的顯式計(jì)算研究,文輝等[10]進(jìn)行了平底的馬蹄形斷面的水力計(jì)算,王正中等[11]進(jìn)行了收縮斷面的顯式計(jì)算研究,文輝等[12]進(jìn)一步開展了拋物線形渠道恒定漸變流水面線的計(jì)算方法的研究。然而,在寬度和深度相同的情況下,平方拋物線形和半立方拋物線形斷面的底部較尖,可能仍然會(huì)影響過(guò)流能力。為提高拋物線形斷面的水力學(xué)特性,提高輸水能力,本文提出了一種二分之五次(以下簡(jiǎn)稱2.5次)方拋物線形斷面,并對(duì)該拋物線形的水力斷面特性、最優(yōu)斷面的解析解、近似濕周算法等進(jìn)行研究,以便于工程應(yīng)用。

1 2.5次方拋物線形渠道斷面及其特性

1.1 斷面形狀

2.5次拋物線形斷面形狀如圖1所示。與平方拋物線和半立方拋物線相比較,2.5次拋物線形斷面具有更加平坦的底部,這有利于施工、底部壓實(shí)及增加過(guò)流能力。

以拋物線斷面底部中心為原點(diǎn)建立-坐標(biāo)系,2.5次拋物線形斷面可表示為

式中為形狀系數(shù)。

由圖1可知,當(dāng)為水面寬度的1/2(=/2)時(shí),存在=(為水深),可用和表示為

由式(2),可用和表示為

1.2 面積與濕周

2.5次方拋物線渠道過(guò)水?dāng)嗝娴拿娣e可用積分方法得到,為

2.5次方拋物線渠道的濕周可用弧長(zhǎng)法求得,為

式中為濕周,m。

1.3 濕周的顯式近似解

式(5)中的濕周為積分形式,需要用數(shù)值方法求得。為便于工程應(yīng)用,求解簡(jiǎn)單的顯式求解算法是必要的。本文經(jīng)過(guò)推導(dǎo),將式(5)用高斯勒讓德三點(diǎn)格式表示為[13]

利用式(2),也可用和表示為

用同樣的方法,得到基于高斯勒讓德四點(diǎn)格式的濕周表達(dá)式為

以為0.3為例,比較三點(diǎn)法和四點(diǎn)法計(jì)算2.5次方拋物線形渠道為1.0~3.5 m時(shí)濕周的精度。將=0.3和值代入式(3)得到,然后代入式(5),用數(shù)值積分法求得濕周理論值P。同樣,將和分別代入式(6)和式(8)得到基于三點(diǎn)和四點(diǎn)高斯勒讓德的濕周近似值3和4(表1)。表中絕對(duì)誤差為近似值與理論值差值的絕對(duì)值。由表1可知,三點(diǎn)法計(jì)算的濕周的最大絕對(duì)誤差為0.004 01 m,四點(diǎn)法濕周的最大絕對(duì)誤差0.000 97 m??梢钥闯觯狞c(diǎn)高斯勒讓德近似算法具有較高的精度,更接近理論值。

表1 基于高斯勒讓德近似算法的濕周值

2 2.5次方拋物線形水力最優(yōu)斷面的解析解

2.1 明渠均勻流

渠道設(shè)計(jì)流量可按謝才公式表示為[10,13-15]

式中為設(shè)計(jì)流量,m3/s;為渠底縱坡;為水力半徑,m;C為謝才系數(shù)。根據(jù)曼寧公式[13,16-19],(為糙率)。因此式(9)可以表示為

2.2 水力最優(yōu)斷面求解模型

水力最優(yōu)斷面是面積一定的情況下,使過(guò)流能力最大的斷面,或過(guò)流能力一定的情況下,使過(guò)流面積最小的斷面[17, 20-23]。兩者得到的最終結(jié)果是相同的。因此,求解水力最優(yōu)斷面的模型表示為

目標(biāo)函數(shù):

約束條件:

式中為等式約束函數(shù)。

上式用拉格朗日乘子法可表示為

式中為拉格朗日乘子。

將式(14)代入式(13),消去,并化簡(jiǎn)后可得到

式(15)即求解2.5次方拋物線形渠道最優(yōu)水力斷面的微分方程。

2.3 水力最優(yōu)斷面的解析解

由式(4)得到對(duì)和的偏導(dǎo)數(shù)

式(5)中濕周是一個(gè)積分形式,難以求導(dǎo)。式(6)或式(8)是近似算法,不適合求解水力最優(yōu)斷面的理論解。此處可以用高斯超幾何函數(shù)表示為[24-25]

其中S=Hypergeom([1,2],3,4) ,為高斯超幾何函數(shù),14為高斯超幾何函數(shù)的參數(shù)。

由式(10),可以求得對(duì)和的偏導(dǎo)數(shù)分別為

將式(16)、(17)、(20)、(21)代入式(15),簡(jiǎn)化后得到

(22)

設(shè)無(wú)量綱參數(shù)=/,并將其代入式(22),經(jīng)過(guò)進(jìn)一步簡(jiǎn)化可以得到

式(23)只有一個(gè)變量,用數(shù)值方法求解式(23),可以得到唯一的可行解

因此,2.5次方拋物線形最優(yōu)斷面的寬深比(水面寬與水深比)是一個(gè)常數(shù),/=2.088 3。由可以得到其他參數(shù),將代入式(2)可以得到最優(yōu)斷面的形狀系數(shù)

將/=2.088 3和式(25)代入式(4)可以得到水力最優(yōu)斷面的過(guò)流面積的直接計(jì)算公式為

=1.491 62(26)

將/=2.088 3和式(25)代入式(18)可以得到水力最優(yōu)斷面的濕周的直接計(jì)算公式為

=3.096 33(27)

2.4 水深、水面寬度、過(guò)流面積、濕周與流量的關(guān)系

將式(26)、(27)代入式(10),可以得到流量的顯式計(jì)算公式

對(duì)上述方程求解,可以得到依據(jù)流量直接計(jì)算的顯式公式

將式(29)代入式(24)~式(27),可以得到

2.5 正常水深和臨界水深的計(jì)算

正常水深和臨界水深是明渠水力學(xué)計(jì)算的重要參數(shù)[26-29]。顯然式(29)也是最優(yōu)斷面條件下正常水深的計(jì)算公式。

臨界水深的通用計(jì)算公式為

式中為能量修正系數(shù);為重力加速度,m/s2。

將/=2.088 3和式(26)代入式(35),可以得到臨界水深h的顯式表達(dá)式

2.6 案例分析

2.6.1案例描述

一個(gè)2.5次方拋物線形渠道,流量=25 m3/s,=0.014,=1/12 000,=1。要求:1)按2.5次方最優(yōu)拋物線形斷面設(shè)計(jì)渠道。2)驗(yàn)證最優(yōu)斷面寬深比為2.088 3。

2.6.2結(jié)果與分析

1)最優(yōu)斷面設(shè)計(jì)

將已知條件代入式(29)可得到水深4.055 5 m,代入式(25)得最優(yōu)形狀系數(shù)0.109 91。由/=2.088 3得到=8.469 1 m。代入式(36)得臨界水深h=2.092 2 m。代入式(26)~(27)或式(32)~(33)得24.533 m2、=12.557 m。

2)最優(yōu)斷面寬深比驗(yàn)證

取=24.533 m2,取0.5~10 m內(nèi)步長(zhǎng)0.000 5 m的不同值,根據(jù)式(4)計(jì)算得到,將和代入式(2)得到。利用式(5)得到,式(10)得到,繪制/與的關(guān)系曲線。如圖2所示,面積一定時(shí),=2.09時(shí)最大,其結(jié)果與式(24)(2.088 3)近似。

3 2.5次方和常規(guī)拋物線形最優(yōu)斷面的比較

3.1 過(guò)流能力的比較

與平方拋物線形的比較。對(duì)于平方拋物線形斷面的水力最優(yōu)斷面,、、和分別為

2.055 5,=1.370 32,=2.998,=0.946 7-1(37)

將式(37)代入式(10),可以得到平方拋物線形斷面流量的顯式計(jì)算公式為

求解上式,可以得到平方拋物線形斷面正常水深關(guān)于的表達(dá)式為

比較式(38)和式(28)可知,相同水深情況下,2.5次方拋物線形最優(yōu)水力斷面的流量大于平方拋物線形最優(yōu)斷面的流量;比較式(39)與式(34)也可以得到,相同流量情況下,2.5次方拋物線形最優(yōu)水力斷面的水深小于平方拋物線形最優(yōu)斷面的水深。

將式(39)的代入式(37),可以得到平方拋物線形斷面的,和的顯式計(jì)算公式

用同樣的方法,可以得到半立方拋物線形的特性參數(shù)如表2。2.5次方拋物線形最優(yōu)水力斷面的過(guò)流面積、濕周較半立方拋物線形、平方拋物線形斷面的小。

3.2 建設(shè)成本比較

渠道的主要建設(shè)成本包括土方、襯砌和征地費(fèi)用。忽略超高的影響后,通用的單位渠長(zhǎng)上建造成本可表示為

=W·+W·+W·(43)

式中為單位渠長(zhǎng)上建造成本,元;W為單位渠長(zhǎng)上,沿橫斷面上單位面積挖土方成本,元/m2;W為單位渠長(zhǎng)上,沿橫斷面單位長(zhǎng)度襯砌成本,元/m;W為單位渠長(zhǎng)上,單位渠寬的征地費(fèi),元/m。

表2 不同拋物線形渠道水力最優(yōu)斷面的水力特性

注:,為流量,為糙度,為渠底縱坡。

Note:,is discharge,is roughness,is slope of canal base。

對(duì)2.5次方拋物線形斷面,如果不考慮安全超高的影響,將式(31)~式(33)代入式(43),可以得到2.5次方拋物線形斷面單位長(zhǎng)度渠道造價(jià)為

式中2.5為2.5次方拋物線形最優(yōu)斷面單位渠長(zhǎng)建造成本,元;。

同樣,將式(40)~式(42)代入式(43),可以得到單位渠長(zhǎng)平方拋物線形最優(yōu)斷面的建造成本

式中2為平方拋物線形斷面單位渠長(zhǎng)建造成本,元。

根據(jù)表2和式(43),也可以得到半立方拋物線形斷面建造成本(單位渠長(zhǎng))

式中1.5為半立方拋物線形斷面單位渠長(zhǎng)建造成本,元。

比較式(44)~式(46),可以得到

因此,2.5次方拋物線形最優(yōu)斷面的造價(jià)是最低的。

實(shí)際上,考慮安全超高后,用類似的方法,可得到2.5次方拋物線形最優(yōu)斷面的建造成本小于平方拋物線和半立方拋物線形斷面。推導(dǎo)過(guò)程不再贅述。

4 結(jié)論與討論

斷面設(shè)計(jì)是輸水渠道設(shè)計(jì)的最重要內(nèi)容之一,其對(duì)渠道輸水效率、成本均有顯著影響。本文提出了一種二分之五次(以下簡(jiǎn)稱2.5次)方拋物線形明渠輸水?dāng)嗝妫?duì)其水力特性、水力最優(yōu)斷面等進(jìn)行了研究。

2.5次方拋物線形明渠輸水?dāng)嗝婢哂休^平坦的渠底,具有良好的水力特性。推導(dǎo)了2.5次方拋物線形渠道水力斷面特性。為便于工程應(yīng)用,提出了基于高斯勒讓德算法的三點(diǎn)和四點(diǎn)近似濕周算法,結(jié)果表明,四點(diǎn)近似算法具有很高的精度。

建立了2.5次方拋物線形斷面的水力最優(yōu)斷面模型,用拉格朗日法推導(dǎo)了最優(yōu)斷面的微分方程。將濕周用高斯超幾何函數(shù)表示后,將水力最優(yōu)斷面模型轉(zhuǎn)化成了關(guān)于寬深比的方程,并最終求得了2.5次方拋物線形斷面的水力最優(yōu)斷面。結(jié)果表明其最佳寬深比為2.088 3。

利用水力最佳寬深比,進(jìn)一步得到了水力最優(yōu)斷面條件下的正常水深、臨界水深、水面寬、過(guò)流面積、濕周的顯式計(jì)算公式。對(duì)比結(jié)果表明,水深相同的情況下,2.5次方拋物線形最優(yōu)水力斷面的流量較半立方拋物線形、常規(guī)(平方)拋物線形斷面的大;相反,在流量相同的情況下,2.5次方拋物線形最優(yōu)水力斷面的過(guò)流面積、濕周較半立方拋物線形、平方拋物線形斷面的小。建造成本對(duì)比結(jié)果表明,相同情況下,2.5次方拋物線形最優(yōu)水力斷面的建造成本較半立方拋物線形、平方拋物線形斷面的小。

到目前為止,包括梯形、矩形、拋物線形、半圓形、蛋形等在內(nèi)的多種斷面已被應(yīng)用于渠道或排水管道。這使設(shè)計(jì)者可以根據(jù)地質(zhì)條件、輸水規(guī)模、滲漏、經(jīng)濟(jì)條件等選擇最合適的斷面形式。本文提出的2.5次方拋物線形斷面為工程提供了一種新的選擇。但在實(shí)際工程中,仍然需要根據(jù)過(guò)流能力、水深、地質(zhì)條件、經(jīng)濟(jì)性等選擇平方拋物線形斷面還是2.5次方拋物線形斷面或其他拋物線形斷面。不同次方的拋物線形斷面均有不同的水力學(xué)特點(diǎn)和適宜條件。

本文選擇2.5次方拋物線形而不是更高次拋物線形,主要是其相對(duì)于平方拋物線形斷面,其水力條件有改善,但邊坡等方面變化不是很大,因此有較好的實(shí)用性,其更多性質(zhì)及與其他拋物線形斷面的比較需要進(jìn)一步研究。

[1] Anwar A A, de Vries T T. Hydraulically efficient power-law channels[J]. Journal of Irrigation and Drainage Engineering, 2003, 129(1): 18-26.

[2] Mironenko A P, Willardson L S, Jenab S A J. Parabolic canal design and analysis[J]. Journal of Irrigation and Drainage Engineering, 1984, 110(2): 241-246.

[3] Das J A. Optimal design of channel having horizontal bottom and parabolic sides[J]. Journal of Irrigation and Drainage Engineering, 2007; 133(2): 192-197.

[4] Easa S M. Improved channel cross section with two-segment parabolic sides and horizontal bottom[J]. Journal of Irrigation and Drainage Engineering, 2009, 135(3): 357-365.

[5] Loganathan G V. Optimal design of parabolic canals[J]. Journal of Irrigation and Drainage Engineering, 1991, 117(5): 716-735.

[6] Chahar J, Bhagu R. Optimal design of a special class of curvilinear bottomed channel section[J]. Journal of Hydraulic Engineering, 2007, 133(5): 571-576.

[7] Babaeyan-Koopaei K, Valentine E M, Swailes, D C J. Optimal design of parabolic-bottomed triangle canals[J]. Journal of Irrigation and Drainage Engineering, 2000,126 (6): 408-411.

[8] Han Yancheng. Horizontal bottomed semi-cubic parabolic channel and best hydraulic section[J]. Flow Measurement and Instrumentation, 2015, 45: 56-61.

[9] 張新燕,呂宏興. 拋物線形斷面渠道正常水深的顯式計(jì)算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(21):121-125. Zhang Xinyan, Lü Hongxing. Explicit solution for normal depth in parabolic-shape channel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 121-125. (in Chinese with English abstracts)

[10] 文輝,李風(fēng)玲. 平底馬蹄形斷面的水力計(jì)算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(10):130-135.Wen Hui, Li Fengling. Hydraulic calculation of horseshoe cross-section with flat-bottom[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 130-135. (in Chinese with English abstract)

[11] 王正中,王羿,趙延風(fēng),等. 拋物線形斷面河渠收縮水深的直接計(jì)算公式[J]. 武漢大學(xué)學(xué)報(bào):工學(xué)版,2011,44(2):175-177,191. Wang Zhengzhong, Wang Yi, Zhao Yanfeng, et al. Formula for direct calculation of contracted depth of parabola shaped canal[J]. Engineering Journal of Wuhan University, 2011, 44(2): 175-177, 191. (in Chinese with English abstracts)

[12] 文輝,李風(fēng)玲. 數(shù)值積分法計(jì)算拋物線形渠道恒定漸變流水面線[J],農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):82-86. Wen Hui, Li Fengling. Numerical integration method for calculating water surface profile of gradually varied steady flow in parabola shaped channel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 82-86. (in Chinese with English abstracts)

[13] Chow V T. Open Channel Hydraulics[M]. New York, N Y, United States: McGraw-Hill, 1959.

[14] Chanson H. The Hydraulics of Open Channel Flow: An Introduction[M]. London, UK: Edward Arnold, 1999.

[15] Easa S M. Versatile general elliptic open channel cross section[J]. KSCE Journal of Civil Engineering, 2016, 20(4): 1572-1581.

[16] Easa S M. New and improved channel cross section with piece-wise linear or smooth sides[J]. Canadian Journal of Civil Engineering, 2011, 38(6): 690-697.

[17] Flynn Lawrence E, Marino Miguel A. Canal design: Optimal

cross sections[J]. Journal of Irrigation and Drainage Engineering, 1987, 113(3): 335-355.

[18] Hussein A S. Simplified design of hydraulically efficient power-law channels with freeboard[J]. Journal of Irrigation and Drainage Engineering, 2008, 134(3): 380-386.

[19] Bhattacharjya R K, Satish M G. Optimal design of a stable trapezoidal cross section using hybrid optimization techniques[J]. Journal of Irrigation and Drainage Engineering, 2007, 133(4): 323-329.

[20] Aksoy B, Altan-Sakarya A. Optimal lined channel design[J]. Canadian Journal of Civil Engineering, 2006, 33(5): 535-545.

[21] Guo C, Hughes W. Optimal channel cross section with freeboard[J]. Journal of Irrigation and Drainage Engineering, 1984,110(3): 304-314.

[22] Han Yancheng, Said M Easa. Superior cubic channel section and analytical solution of best hydraulic properties[J]. Flow Measurement and Instrumentation, 2015, 50:169-177.

[23] Abdulrahman A. Best hydraulic section of a composite channel[J]. Journal of Hydraulic Engineering, 2007, 133(6): 695-697.

[24] Abramowitz M, Stegun I A. Handbook of Mathematical Functions[M]. New York: Dover Publications, 1964.

[25] 裘松良. Gauss超幾何函數(shù)的導(dǎo)數(shù)和廣義Legendre關(guān)系[J]. 杭州電子科技大學(xué)學(xué)報(bào),1998,18(2):1-8. Qiu Songliang. Derivatives and generalized Legend’s relation of the Gaussian hypergeometric function[J]. Journal of the Hanzhou Institute of Electronic Engineering, 1998, 18(2): 1-8. (in Chinese with English abstract)

[26] Vatankhaha Ali R, Said M Easa. Explicit solutions for critica and normal depths in channels with different shapes[J]. Flow Measurement and Instrumentation, 2011, 22: 43-49.

[27] 張寬地,呂宏興,趙延風(fēng). 明流條件下圓形隧洞正常水深與臨界水深的直接計(jì)算[J], 農(nóng)業(yè)工程學(xué)報(bào),2009,25(3):1-5. Zhang Kuandi, Lü Hongxing, Zhao Yanfeng. Direct calculation for normal depth and critical depth of circular section tunnel under free flow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 1-5. (in Chinese with English abstract)

[28] 張新燕,呂宏興,朱德蘭. U 形渠道正常水深的直接水力計(jì)算公式[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(14):115-119. Zhang Xinyan, Lü Hongxing, Zhu Delan. Direct calculation formula for normal depth of U-shaped channel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 115-119. (in Chinese with English abstract)

[29] Raikar R V, Reddy M S S, Vishwanadh G K. Normal and critical depth computations for egg-shaped conduit sections[J]. Flow Measurement and Instrumentation, 2010, 21(3): 367-372.

Design of two and a half parabola-shaped canal and its effect in improving hydraulic property

Han Yancheng1, Xu Zhenghe1, Gao Xueping2, Said M. Easa3

(1.250022,; 2.300072,; 3.)

Shapes of canal cross sections affect their discharge capacity, water depth and construction cost. Researches have shown that the curve-shaped canal such as quadratic parabolic and semi-cubic parabolic shape has good hydraulic property. However, the less smooth base of the quadratic parabolic and semi-cubic parabolic shape canal can affect the discharge capacity. To improve the hydraulic property and increase the discharge of the quadratic parabolic sections of canals, a section with two and a half parabola shape was proposed in this paper. Formulas for flow area, shape factor and water surface width for this new section were derived. The theoretical formula for the wetted perimeter was deduced using Gauss super-geometric functions. A model of the optimum hydraulic section that minimized the flow area for a given discharge was developed based on the Manning formula. The partial differential equation for the optimum hydraulic section was deduced using Lagrange’s multiplier method. After substituting the derivatives of wetted perimeter and flow area with respect to water depth and water surface width into this partial differential equation, the optimum model was successfully converted into an equation about the water surface width-depth ratio. Various explicit formulas to compute the characteristic’s parameters such as wetted perimeter, shape factor, flow area, normal water depth and critical water depth for the best hydraulic section were obtained. Using these formulas, the hydraulic design could be achieved easily. The results showed that the best ratio of water surface width-depth ratio for the optimum hydraulic section of the two and a half parabola-shaped canal was a constant (2.0 883). The two and a half parabola-shaped canal had better hydraulic properties than that with quadratic or semi-cubic parabolic sections. Comparisons with quadratic and semi-cubic parabolic sections showed that the flow discharge of the two and a half parabola-shaped section was the largest under the same water depth, which means it is an economical section. Under the same discharge, the water depth of the two and a half parabola-shaped section was smaller than the quadratic parabolic and semi-cubic parabolic sections. The flow area, wetted perimeter and water surface width of the two and a half parabola-shaped section was the least under the same discharge among the three sections. Minimum wetted perimeter and flow area implied that the cost of construction (excavation and lining cost) was minimized. In theory, the comparisons with quadratic and semi-cubic parabolic sections also showed that the construction cost of the proposed best hydraulic section was the lowest under the same discharge. To aid practical use, the 3- point and 4-point method of Gauss-Legendre approximate algorithm were presented for the wetted perimeter calculation. The application example with the water depth of 1.0-3.5 m showed that the approximate algorithm was highly accurate. The 3-point approximate format formula could meet the practical use and design with the maximum absolute error of 0.004 01 m. The results from the 4-point format formula almost equaled to those of the theoretical results with the maximum absolute error of 0.000 97 m. This research provides a theoretical basis for the design of the two and a half parabola-shaped canals with improved hydraulic properties.

canals; hydraulics; design; open canal; two and a half parabola-shaped section; optimum hydraulic section; wetted perimeter

10.11975/j.issn.1002-6819.2017.04.019

TV131.4

A

1002-6819(2017)-04-0131-06

2016-04-27

2016-09-10

國(guó)家“十二五”科技支撐計(jì)劃(2015BAB07B02-6);山東省重點(diǎn)研發(fā)計(jì)劃(2016GSF117038);南市科技發(fā)展計(jì)劃(201302052)。

韓延成,男,甘肅武威人,副教授,博士,碩士生導(dǎo)師,主要從事水力學(xué)及河流動(dòng)力學(xué)方面的研究。濟(jì)南 濟(jì)南大學(xué)資源與環(huán)境學(xué)院,250022。Email:stu_hanyc@ujn.edu.cn

韓延成,徐征和,高學(xué)平,Said M. Easa. 二分之五次方拋物線形明渠設(shè)計(jì)及提高水力特性效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):131-136. doi:10.11975/j.issn.1002-6819.2017.04.019 http://www.tcsae.org

Han Yancheng, Xu Zhenghe, Gao Xueping, Said M. Easa. Design of two and a half parabola-shaped canal and its effect in improving hydraulic property[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 131-136. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.019 http://www.tcsae.org

猜你喜歡
次方過(guò)流水深
書法靜水深流
基于水深分段選擇因子的多光譜影像反演水深
多波束海底地形水深注記抽稀軟件對(duì)比
主變壓器零序過(guò)流保護(hù)和間隙過(guò)流保護(hù)配合分析
不同來(lái)流條件對(duì)溢洪道過(guò)流能力的影響
核電站廠用電系統(tǒng)的保護(hù)定值校驗(yàn)
尋找1024的因數(shù)
變壓器相間過(guò)流保護(hù)不正確動(dòng)作原因的探討
手表+手鏈+戒指 N次方組合
一組計(jì)算題的啟示
宿松县| 元氏县| 哈尔滨市| 长垣县| 邵武市| 图片| 永城市| 宿迁市| 安龙县| 德惠市| 景德镇市| 上饶市| 泸州市| 博野县| 瑞安市| 岳阳市| 海口市| 平乐县| 红安县| 施秉县| 荣昌县| 日照市| 五河县| 和顺县| 五家渠市| 香河县| 三原县| 南靖县| 社会| 思南县| 长子县| 增城市| 阜新市| 大埔县| 墨江| 九台市| 台州市| 光山县| 寿宁县| 阳泉市| 昂仁县|