樓狄明,孫瑜澤,于華洋,譚丕強,胡志遠
?
基于煙度限值的柴油機怠速瞬態(tài)過程性能評價方法與試驗
樓狄明1,孫瑜澤1,于華洋2,譚丕強1,胡志遠1
(1. 同濟大學汽車學院,上海 201804; 2. 上汽大眾汽車有限公司,上海 201805)
以一臺增壓中冷高壓共軌柴油機為研究對象,對怠速瞬態(tài)過程進行臺架試驗研究。首先采用了滯后系數(shù)、劣變系數(shù)和瞬態(tài)均值3個指標來定量評價怠速瞬態(tài)過程性能,然后從時間、峰值和均值3個維度上研究了怠速瞬態(tài)過程過渡時間和煙度限值對最大缸壓、燃油流量和排放性的影響規(guī)律。試驗結(jié)果表明:通過采用滯后系數(shù)、劣變系數(shù)和瞬態(tài)均值能較準確地評價柴油機怠速瞬態(tài)過程中性能的變化情況,為進一步的優(yōu)化提供參考。柴油機在怠速瞬態(tài)過程中缸壓,油耗及排放性能較穩(wěn)態(tài)有所惡化。通過調(diào)整過渡時間和煙度限值,可以降低柴油機在怠速瞬態(tài)過程中的惡化程度。
柴油機;試驗;排放控制;怠速瞬態(tài)過程;煙度限值;性能評價
在正常工作狀態(tài)下,發(fā)動機工作工況經(jīng)常發(fā)生改變,即經(jīng)常處于瞬態(tài)工況[1-3]。根據(jù)調(diào)查統(tǒng)計[4],在怠速、加速、減速和勻速4種行駛過程中,瞬態(tài)工況行駛時間占54.8%,而勻速行駛時間的比例不超過30%。因此解決瞬態(tài)工況性能劣化問題日益成為實現(xiàn)發(fā)動機節(jié)能減排的關(guān)鍵。瞬態(tài)工況下柴油機的循環(huán)進氣量和噴油量不斷變化[5],由于增壓器遲滯效應(yīng)[6-11],引起進氣量不足,空燃比下降,燃油燃燒不完全,導致柴油機瞬態(tài)工況特性偏離其穩(wěn)態(tài)工況,某些尾氣有害成分及工作噪聲均高于穩(wěn)態(tài)工況,燃油經(jīng)濟性也出現(xiàn)明顯惡化。重型柴油機在起動時有毒氣體(CO、苯、萘等)的排放比穩(wěn)態(tài)工況高15倍,此外冷起動時的黑煙和白煙排放也比穩(wěn)態(tài)工況高[12];車用發(fā)動機在歐洲駕駛循環(huán)中50%的NOx排放來自于加速工況期間[13];而加載工況期間的瞬時PM和NOx的排放則高出與之對應(yīng)的準穩(wěn)態(tài)工況1到2個數(shù)量級[14]。隨著排放法規(guī)日益嚴格,歐洲及美國相應(yīng)采用歐洲瞬態(tài)循環(huán)及美國瞬態(tài)循環(huán)測試[15]。柴油機瞬態(tài)工況的研究逐漸受到國內(nèi)外眾多研究人員重視[16-22]。
本文所用試驗樣機為一臺串聯(lián)式混合動力工程機械用柴油機,考慮怠速瞬態(tài)過程為典型瞬態(tài)過程[23],本文選取怠速點到1 500 r/min、85%負荷工況點的變轉(zhuǎn)速變轉(zhuǎn)矩這一典型瞬態(tài)過程進行試驗研究。采用了“滯后系數(shù)”、“劣變系數(shù)”、“瞬態(tài)均值”3個指標[24]。對柴油機怠速瞬態(tài)過程中煙度限值與過渡時間對柴油機經(jīng)濟性與排放性能進行了分析,以期為怠速瞬態(tài)過程的優(yōu)化提供參考。
對發(fā)動機瞬態(tài)研究大多是進行定性分析,難以對瞬態(tài)過程性能進行清晰的量化。本文采用滯后系數(shù)、劣變系數(shù)以及瞬態(tài)均值3個指標,對發(fā)動機怠速瞬態(tài)過程性能做出定量的評價及分析。
1.1 滯后系數(shù)
滯后系數(shù)是某性能參數(shù)的響應(yīng)時間與供油響應(yīng)時間的比值
式中為某性能參數(shù)的滯后系數(shù),為某性能參數(shù)的響應(yīng)時間,s;0為供油的響應(yīng)時間,s。以該性能參數(shù)瞬態(tài)取值與終點穩(wěn)態(tài)值偏差在10%以內(nèi)作為瞬態(tài)過程的結(jié)束。
當滯后系數(shù)小于1時,表示該性能參數(shù)的響應(yīng)速度比供油響應(yīng)速度快;當滯后系數(shù)為1時,表示該性能參數(shù)與供油的響應(yīng)速率一致;當滯后系數(shù)大于1時,表示該性能參數(shù)的響應(yīng)速度慢于供油響應(yīng)速率,且值越大,表示該性能參數(shù)的響應(yīng)越慢。
1.2 劣變系數(shù)
劣變系數(shù)是某性能參數(shù)的瞬態(tài)峰值與瞬態(tài)終點穩(wěn)態(tài)值的比值
式中為某性能參數(shù)的劣變系數(shù);為該性能參數(shù)在瞬態(tài)工況下的峰值,0為該性能參數(shù)瞬態(tài)終點在穩(wěn)態(tài)工況下的值。
當劣變系數(shù)小于1時,表示該性能參數(shù)在瞬變過程中有所改善;當劣變系數(shù)等于1時,表示該性能參數(shù)在瞬變過程中沒有發(fā)生劣變;當劣變系數(shù)大于1時,表示該性能參數(shù)在瞬變過程中發(fā)生劣變,且值越大,表示發(fā)動機瞬變性能惡化越嚴重。
1.3 瞬態(tài)均值
瞬態(tài)均值是某性能參數(shù)在整個瞬變過程的積分值與過渡時間的比值
式中為某性能參數(shù)的瞬態(tài)均值;1為瞬態(tài)過程起始時刻,2為瞬態(tài)過程終了時刻。同樣,以該性能參數(shù)瞬態(tài)取值與終點穩(wěn)態(tài)值偏差在10%以內(nèi)作為瞬態(tài)過程的結(jié)束。
2.1 試驗發(fā)動機
本文選用了一臺濰柴動力股份有限公司的WP10工程機械用柴油機作為試驗柴油機,其主要參數(shù)如表1。
表1 試驗柴油機主要參數(shù)
2.2 試驗系統(tǒng)及試驗設(shè)備
發(fā)動機臺架測控系統(tǒng)測點的總體布置如圖1所示,試驗采用的主要儀器和設(shè)備見表2。
表2 試驗用儀器和設(shè)備
2.3 煙度限值控制策略
發(fā)動機煙度需要根據(jù)相關(guān)法規(guī)進行限制[25],冒煙限制噴油量是排放法規(guī)允許的煙度限值下獲得的最大噴油量,通過(過量空氣系數(shù))的MAP圖的2個輸入?yún)?shù)發(fā)動機轉(zhuǎn)速和進氣量決定。
圖2所示為冒煙限制噴油量的控制策略。從圖2可知熱膜傳感器輸入信號經(jīng)“熱膜傳感器處理模塊”處理后,獲得冒煙限制的每缸進氣量;再與“冒煙限制的最小進氣量參數(shù)”比較取最大值,得到冒煙限制的每缸實際進氣量。然后疊加3個修正MAP:1)關(guān)于發(fā)動機進氣量與轉(zhuǎn)速的煙度限值修正MAP;2)關(guān)于發(fā)動機溫度和轉(zhuǎn)速的全負荷修正MAP;3)關(guān)于大氣壓力與發(fā)動機轉(zhuǎn)速的不同海拔下修正MAP。最后按式(4)的過量空氣系數(shù)轉(zhuǎn)換公式得到冒煙限制噴油量[26]。
2.4 試驗方案
研究發(fā)動機從怠速點到1 500 r/min、85%負荷工況點的變轉(zhuǎn)速變轉(zhuǎn)矩瞬態(tài)過程,臺架轉(zhuǎn)速-轉(zhuǎn)矩控制模式下,從怠速點以不同過渡時間和不同煙度限值加速至目標工況點,分別選取過渡時間為3、5、10 s,煙度限值變化為減小10%、不變、增大10%。
3.1 對缸內(nèi)壓力的影響
圖3所示為煙度限值不變時,不同過渡時間對怠速瞬態(tài)過程最大缸壓的影響規(guī)律。由圖3可知,怠速瞬態(tài)過程中最大缸壓短暫波動后急劇上升,達到峰值稍稍下降,再緩慢上升達到穩(wěn)態(tài)。隨著過渡時間的增加,最大缸壓上升時刻延后,峰值增高,過渡時間為3、5、10 s時的峰值分別為9.07、9.87和10.88 MPa。
表3所示分別為不同煙度限值下,怠速瞬態(tài)過程最大缸壓的滯后系數(shù)、劣變系數(shù)和瞬態(tài)均值的變化情況。由表2可見,隨著過渡時間的增加,最大缸壓的滯后系數(shù)減小,過渡時間為10 s時滯后系數(shù)已小于1,說明此時最大缸壓先于油門接近穩(wěn)態(tài)。過渡時間的增加為進氣系統(tǒng)和缸壁熱力狀態(tài)的改變提供了更充裕的時間,瞬態(tài)滯后現(xiàn)象有所緩解[27-28]。隨著過渡時間的增加,最大缸壓的劣變系數(shù)小幅增大;而隨著煙度限值的增加,最大缸壓的劣變系數(shù)小幅減小。另外,最大缸壓的劣變系數(shù)始終小于1,說明怠速瞬態(tài)過程最大缸壓的峰值未達到穩(wěn)態(tài)水平。隨著過渡時間的增加,最大缸壓的瞬態(tài)均值減?。粺煻认拗挡蛔?、過渡時間為3、5、10 s時,最大缸壓的瞬態(tài)均值分別為8.23、7.74和6.32 MPa。此外,隨著煙度限值的增加,最大缸壓的瞬態(tài)均值減小。過渡時間為3 s、煙度限值減小10%時,最大缸壓瞬態(tài)均值達到最大值9.52 MPa;過渡時間為10 s、煙度限值增大10%時,最大缸壓瞬態(tài)均值取最小值5.79 MPa。
表3 最大缸壓滯后系數(shù)、劣變系數(shù)和瞬態(tài)均值變化情況
3.2 對燃油流量的影響
圖4所示為煙度限值不變時不同過渡時間對怠速瞬態(tài)過程中燃油流量的影響規(guī)律。由圖4可知,怠速瞬態(tài)過程燃油流量勻速上升,達到峰值稍稍下降達到穩(wěn)態(tài);隨著過渡時間的增加,燃油量增速放緩,達到穩(wěn)態(tài)的時間延后。過渡時間為3、5、10 s時的峰值分別為33.3、34.2和31.3 kg/h。
表4所示為不同過渡時間和煙度限值下,怠速瞬態(tài)過程燃油流量的滯后系數(shù)、劣變系數(shù)和瞬態(tài)均值。由表4可見,隨著過渡時間的增加,燃油流量的滯后系數(shù)先增大后減小,但均大于1,說明燃油流量總是晚于油門接近穩(wěn)態(tài)。且隨著煙度限值的增加,燃油流量的滯后系數(shù)有所增大。隨著過渡時間的增加,燃油流量的劣變系數(shù)先增大后減小,但均大于1,說明燃油流量瞬態(tài)過程峰值大于終點穩(wěn)態(tài)值。此外,隨著煙度限值的增加,燃油流量的劣變系數(shù)有所減小。隨著過渡時間的增加,燃油流量的瞬態(tài)均值先增大后減小;而隨著煙度限值的增加,燃油流量的瞬態(tài)均值則稍稍減小。煙度限值增大,限值了瞬態(tài)允許噴油量,導致燃油流量有所減小。過渡時間為10 s、煙度限值增大10%時,燃油流量瞬態(tài)均值取最小值12.5 kg/h,此時怠速瞬態(tài)過程經(jīng)濟性較好。
表4 燃油流量滯后系數(shù)、劣變系數(shù)和瞬態(tài)均值變化情況
3.3 對NOx排放的影響
圖5所示為煙度限值不變時,不同過渡時間對怠速瞬態(tài)過程NOX排放的影響規(guī)律。由圖5可知,怠速瞬態(tài)過程NOX排放先穩(wěn)定不變再急劇上升,波峰后有所下降,再緩慢上升達到穩(wěn)態(tài)。隨著過渡時間增加,上升期延后,峰值有所升高;加速初期,噴油量突然增加造成過量空氣系數(shù)急劇下降,此時缺少氧氣占主要地位,NOx有減小趨勢。放熱量的相對增加使得缸內(nèi)溫度和壓力升高,增壓壓力上升,氧氣缺乏狀況有所改善,致使加速中期 NOX濃度急劇上升。加速過程末期,增壓壓力持續(xù)上升,氧氣量相對提高;缸內(nèi)最高溫度減小,同時發(fā)動機已達到較高轉(zhuǎn)速,氣體在缸內(nèi)的滯留時間縮短:三方面因素的綜合效果使NOX排放體積分數(shù)有所下降。過渡時間為3、5、10 s時的峰值分別為1.23×10-3、1.22×10-3和1.32×10-3。
表5所示為不同過渡時間和煙度限值下,怠速瞬態(tài)過程NOX排放的滯后系數(shù)、劣變系數(shù)和瞬態(tài)均值。由表5可見,過渡時間較短時,NOX排放滯后嚴重。因為NOX排放需要在缸壁熱力狀態(tài)響應(yīng)接近完成才能達到穩(wěn)定[29]。隨著過渡時間的增加,NOX排放的滯后系數(shù)大幅減小,過渡時間為10 s時基本與噴油同步達到穩(wěn)態(tài)。過渡時間的增加為噴油系統(tǒng)和缸壁熱力狀態(tài)的改變提供了更充裕的時間,NOX瞬態(tài)排放滯后現(xiàn)象有所緩解。此外,隨著煙度限值的增加,NOX排放的滯后系數(shù)有所增大。隨著過渡時間的增加,NOX排放的劣變系數(shù)小幅減小后增大;而隨著煙度限值的增加,NOX排放的劣變系數(shù)小幅增大。此外,NOX排放的劣變系數(shù)始終大于1,說明NOX排放瞬態(tài)過程峰值始終大于終點穩(wěn)態(tài)值。隨著過渡時間的增加,NOX排放的瞬態(tài)均值逐漸減小。而隨著煙度限值的增加,NOX排放的瞬態(tài)均值稍稍增大;但與過渡時間的作用相比,影響較小。煙度限值增大,限值了瞬態(tài)允許噴油量,缸內(nèi)溫度和壓力降低,導致NOX排放有所減少。過渡時間為10 s、煙度限值不變時,NOX排放體積分數(shù)瞬態(tài)均值取最小值7.23×10-4。
表5 NOx 排放滯后系數(shù)、劣變系數(shù)和瞬態(tài)均值變化情況
3.4 對煙度的影響
圖6所示為煙度限值不變時,不同過渡時間對怠速瞬態(tài)過程煙度的影響規(guī)律。由圖6可見,怠速瞬態(tài)過程煙度急劇增加,大大超過穩(wěn)態(tài)值,達到峰值后逐漸下降回歸穩(wěn)態(tài)。隨著過渡時間的增加,波峰時間延后,峰值不斷提高。這是因為剛加速時單個循環(huán)的工作時間較長,柴油和空氣在缸內(nèi)混合均勻,燃燒情況良好,且排氣時間較長也促進了碳煙氧化[30],整體煙度較低;中高轉(zhuǎn)速時單個循環(huán)時間較短,突然噴入較多燃油,導致局部混合氣過濃,缺氧情況加劇,缸內(nèi)瞬時燃燒惡劣,煙度急劇增加,而后又逐漸趨于穩(wěn)定。過渡時間為3、5、10 s時的峰值分別為0.063、0.085和0.106 m-1。
表6所示為不同過渡時間和煙度限值下,怠速瞬態(tài)過程煙度的滯后系數(shù)、劣變系數(shù)和瞬態(tài)均值。由表6可見,隨著過渡時間的增加,煙度的滯后系數(shù)先增后減;而隨著煙度限值的增加,煙度的滯后系數(shù)則不斷增大。過渡時間為10 s、煙度限值不變和減小10%時,滯后系數(shù)小于1,說明此時煙度先于噴油接近穩(wěn)態(tài)。
表6 煙度排放滯后系數(shù)、劣變系數(shù)和瞬態(tài)均值變化情況
隨著過渡時間的增加,煙度的劣變系數(shù)增大;而隨著煙度限值的增加,煙度的劣變系數(shù)有所減小;且均超過5,說明怠速瞬態(tài)過程中煙度惡化嚴重。隨著過渡時間的增加,煙度的瞬態(tài)均值增大;而隨著煙度限值的增大,煙度的瞬態(tài)均值減小。煙度限值增大,限制了瞬態(tài)允許噴油量,提高了空燃比,導致煙度有所降低。過渡時間為3 s、煙度限值增大10%時,煙度瞬態(tài)均值取最小值2.50×10-2m-1。
1)通過采用滯后系數(shù)、劣變系數(shù)和瞬態(tài)均值3個指標,可以對柴油機在怠速瞬態(tài)過程中性能的滯后程度、惡化程度進行定量的評價,為怠速瞬態(tài)性能的優(yōu)化提供參考。
2)隨著過渡時間的增加,最大缸壓的滯后系數(shù)和瞬態(tài)均值減小,劣變系數(shù)增大;隨著煙度限值的增加,最大缸壓的滯后系數(shù)增大,劣變系數(shù)和瞬態(tài)均值減小。最大缸壓滯后系數(shù)、劣化系數(shù)、瞬態(tài)均值最小值分別為0.70、0.69、5.79 MPa。
3)隨著過渡時間的增加,燃油流量的滯后系數(shù)、劣變系數(shù)和瞬態(tài)均值均先增大后減?。浑S著煙度限值的增加,燃油流量的滯后系數(shù)和劣變系數(shù)增大,瞬態(tài)均值減小。燃油流量滯后系數(shù)、劣化系數(shù)、瞬態(tài)均值最小值分別為1.10、1.01、12.5 kg/h。
4)隨著過渡時間的增加,NOX排放的滯后系數(shù)和瞬態(tài)均值減小,劣變系數(shù)增大;隨著煙度限值的增加,NOX排放的滯后系數(shù)和劣變系數(shù)增大,瞬態(tài)均值減小。NOX排放體積分數(shù)滯后系數(shù)、劣化系數(shù)、瞬態(tài)均值最小值分別為1.1、1.05、7.23×10-4。
5)隨著過渡時間的增加,煙度的滯后系數(shù)先增大后減小,劣變系數(shù)和瞬態(tài)均值增大;隨著煙度限值的增加,煙度的滯后系數(shù)增大,劣變系數(shù)和瞬態(tài)均值減小。最大缸壓滯后系數(shù)、劣化系數(shù)、瞬態(tài)均值最小值分別為0.70、5.20、0.025 m-1。
[1] Rakopoulos C D. Exhaust emissions estimation during transient turbocharged diesel engine operation using a two-zone combustion model[J]. International Journal of Vehicle Design, 2009, 49(1): 125-149.
[2] Nilsson T, Fr?berg A, ?slund J. Optimal operation of a turbocharged diesel engine during transients[J]. SAE International Journal of Engines, 2012, 5(5): 571-578.
[3] Rakopoulos C D, Dimaratos A M, Giakoumis E G. Experimental assessment of turbocharged diesel engine transient emissions during acceleration, load change and starting[J]. SAE Paper 2010-01-1287, 2010.
[4] 田徑,劉忠長,許允,等. 柴油機瞬變過程煙度排放的劣變分析[J]. 內(nèi)燃機學報,2016, 34(2):125-134.
Tian Jing, Liu Zhongchang, Xu Yun, et al. Analysis of soot deterioration in diesel transient process[J]. Transactions of CSICE, 2016,34(2): 125-134. (in Chinese with English abstract)
[5] 楊蓉,樓狄明,譚丕強,等. 重型增壓柴油機瞬變工況的燃燒階段特性研究[J]. 內(nèi)燃機工程,2015,36(4):41-45.
Yang Rong, Lou Diming, Tan Peiqiang, et al. Research on combustion phase characteristics of a turbocharged heavy duty diesel engine during transient process[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(4): 41-45. (in Chinese with English abstract)
[6] Darlington A, Glover K, Collings N. A simple diesel engine air-path model to predict the cylinder charge during transients: Strategies for reducing transient emissions spikes[J]. SAE Technical Papers, 2006-01-3373, 2006.
[7] Rakopoulos C D, Dimaratos A M, Giakoumis E G, et al. Evaluation of the effect of engine, load and turbocharger parameters on transient emissions of diesel engine[J]. Energy Conversion & Management, 2009, 50(9): 2381-2393.
[8] Sabau A. transient regimes analysis for a diesel engine[J]. Advanced Materials Research, 2013, 837: 471-476.
[9] Giakoumis E G, Alafouzos A I. Study of diesel engine performance and emissions during a transient cycle applying an engine mapping-based methodology[J]. Applied Energy, 2010, 87(4): 1358-1365.
[10] 隋菱歌. 增壓柴油機瞬態(tài)工況性能仿真及優(yōu)化[D]. 長春:吉林大學,2012:93-109.
Sui Lingge. Simulation and Optimization of Turbo-Charged Diesel Engine Performance under Transient Operations[D]. Changchun: Jilin University, 2012: 93-109. (in Chinese with English abstract)
[11] 張龍平,劉忠長,田徑,等. 車用柴油機瞬態(tài)工況試驗及性能評價方法[J]. 哈爾濱工程大學學報,2014, 35(4):463-468.
Zhang Longping, Liu Zhongchang, Tian Jing, et al. Experiment and performance evaluation methods for automotive diesel engines under transient operation conditions[J]. Journal of Harbin Engineering University, 2014,35(4): 463-468. (in Chinese with English abstract)
[12] Gullett B K, Touati A, Oudejans L, et al. Real-time emission characterization of organic air toxic pollutants during steady state and transient operation of a medium duty diesel engine[J]. Atmospheric Environment, 2006, 40(22): 4037-4047.
[13] Hagena J R, Filipi Z S, Assanis D N. Transient diesel emissions: Analysis of engine operation during a tip-in[J]. SAE Technical Paper 2006-01-1151, 2006.
[14] Rakopoulos C D, Giakoumis E G. Review of thermodynamic diesel engine simulations under transient operating conditions [J]. SAE Technical Paper 2006-01-0884, 2006.
[15] 王忠恕,吳楠,許允,等. 增壓直噴柴油機瞬態(tài)工況燃燒參數(shù)的變化規(guī)律[J]. 內(nèi)燃機學報,2007,25(5):5-9.
Wang Zhongshu, Wu Nan, Xu Yun, et al. Study on combustion parameter from a turbocharged DI diesel engine under transient operating conditions[J]. Transactions of CSICE, 2007, 25(5): 5-9. (in Chinese with English abstract)
[16] 黃粉蓮,紀威,周煒,等. 車用渦輪增壓柴油機加速工況瞬態(tài)特性仿真[J]. 農(nóng)業(yè)工程學報,2014,30(3):63-69.
Huang Fenlian, Ji Wei, Zhou Wei, et al. Simulation of transient performance of vehicle turbocharged diesel engine during acceleration process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 63-69. (in Chinese with English abstract)
[17] Tan P Q, Ruan S S, Hu Z Y, et al. Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions[J]. Applied Energy, 2014, 113(113): 22-31.
[18] 譚丕強,馮謙,胡志遠,等. 車用柴油機瞬變工況的排放特性[J]. 工程熱物理學報,2012,33(10):1819-1822.
Tan Piqiang, Feng Qian, Hu Zhiyuan et al .Emissions from a vehicle diesel engine during transient operating conditions[J]. Journal of Engineering Thermophysics, 2012, 33(10): 1819-1822. (in Chinese with English abstract)
[19] Kang H, Farrell P V. Experimental investigation of transient emissions (HC and NOx) in a high speed direct injection (HSDI) diesel engine[J]. SAE Technical Paper 2005-01-3883, 2005.
[20] Winkler N, ?ngstr?m H E. Simulations and measurements of a two-stage turbocharged heavy-duty diesel engine including egr in transient operation [J]. SAE Technical Paper 2008-01-0539, 2008.
[21] Glewen W, Heuwetter D, Foster D E, et al. Analysis of deviations from steady state performance during transient operation of a light duty diesel engine[J]. Cryogenics, 2012, 5(3): 909-922.
[22] 譚丕強,鄒樂華,胡志遠,等. 重型柴油機起動工況的顆粒數(shù)量排放特性[J]. 內(nèi)燃機學報,2016, 34(5):431-437.
Tan Piqiang, Zou Lehua, Hu Zhiyuan, et al. Particle number emissions from a heavy-duty diesel engine during start-up operating conditions[J]. Transactions of CSICE, 2016, 34(5): 431-437. (in Chinese with English abstract)
[23] 于華洋. 基于噴油參數(shù)的串聯(lián)式混合動力柴油機瞬態(tài)過程的優(yōu)化[D]. 上海:同濟大學,2015:20-28.
Yu Huayang. Optimization of Transient Operating Conditions for Series Hybrid Diesel Engine Based on Fuel Injection Parameters[D]. Shanghai: Tongji University, 2015: 20-28. (in Chinese with English abstract)
[24] 劉忠長,張龍平,田徑,等. 一種內(nèi)燃機瞬態(tài)工況性能評價方法:CN103528825A[P]. 2014-01-22.
[25] 王海寧,牛彥雷,范青海. 柴油車自由加速煙度控制方法研究[J]. 內(nèi)燃機與動力裝置,2015,32(5):5-7.
Wang Haining, Niu Yanlei, Fan Qinghai, et al. Study on the exhaust control to diesel vehicles under free acceleration[J]. Internal Combustion Engine & Power Plant, 2015, 32(5): 5-7. (in Chinese with English abstract)
[26] 劉俊明,徐勁松,張學文,等. 高壓共軌柴油機的保護策略研究[J]. 內(nèi)燃機工程,2009,30(5):36-40.
Liu Junming, Xu Jinsong, Zhang Xuewen, et al. Research on protection strategy of high pressure common rail diesel engine[J]. Chinese Internal Combustion Engine Engineering, 2009, 30(5): 36-40. (in Chinese with English abstract)
[27] 丁云龍,劉忠長,張龍平,等. 加載停滯時間對柴油機瞬態(tài)性能的影響[J]. 車用發(fā)動機,2015(3):22-26.
Ding Yunlong, Liu Zhongchang, Zhang Longping, et al. Effects of loading stagnation time on diesel engine performance under transient operations[J]. Vehicle Engine, 2015(3): 22-26. (in Chinese with English abstract)
[28] 劉忠長,丁云龍,田徑,等. 多段加載策略對柴油機瞬態(tài)性能影響的試驗[J]. 內(nèi)燃機學報,2015, 33(3):193-200.
Liu Zhongchang, Ding Yunlong, Tian Jing, et al. Experiment of multistage loading strategies on diesel engine under transient operations[J]. Transactions of CSICE, 2015,33(3): 193-200. (in Chinese with English abstract)
[29] 張龍平,劉忠長,田徑,等. 柴油機瞬變工況的動態(tài)響應(yīng)及燃燒劣變分析[J]. 內(nèi)燃機學報,2014,32(2):104-110.
Zhang Longping, Liu Zhongchang, Tian Jing, et al. Dynamic response and combustion deterioration analysis of a diesel engine under transient operations[J]. Transactions of CSICE, 2014, 32(2): 104-110. (in Chinese with English abstract)
[30] 王忠,孫波,趙洋,等. 小型非道路柴油機排氣管內(nèi)顆粒的粒徑分布與氧化特性[J]. 農(nóng)業(yè)工程學報,2016,32(10):41-46.
Wang Zhong, Sun Bo, Zhao Yang, et al. Characteristics of particle coagulation and oxidation in exhaust pipe of diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016. 32(10): 41-46. (in Chinese with English abstract)
Performance evaluation method and experiment for diesel engine under idle transient operation condition based on smoke emission limit
Lou Diming1, Sun Yuze1, Yu Huayang2, Tan Piqiang1, Hu Zhiyuan1
(1.,,201804,; 2.,, 201805,)
Nowadays, the performances of diesel engines under transient conditions become the research focus. Because of the frequent start and stop of the series hybrid diesel engine, the diesel engine is always in the steady state or idle speed switching state. In order to study the transient performance of diesel engine during the idle transient conditions, 3 indices are firstly adopted: The lag coefficient, which is an evaluation index for performance of diesel engine transient lag, the deterioration coefficient, which is an evaluation index for performance of diesel engine transient deterioration, and the transient mean, which is an evaluation index for comprehensive performance of diesel engine transient process. And then an analysis is carried out from the 3 dimensions of time, peak and mean value, and the influences of idle transient transition time and injection parameters on the maximum cylinder pressure, fuel flow and emissions are investigated. The test results show that the cylinder pressure, fuel consumption and emission performance of the diesel engine are worse than the steady state during the transient conditions. The deterioration of the engine can be reduced in the idle speed transient process by adjusting the transition time and smoke emission limit. With the increase of the transition time, the transient mean and lag coefficient of the maximum cylinder pressure decrease, and the deterioration coefficient increases; with the smoke limit increasing, the lag coefficient of the maximum cylinder pressure increases, and the deterioration coefficient and transient mean decrease. When the transition time is 10 s and the smoke emission limit is reduced by 10%, the lag coefficient of the maximum cylinder pressure gets the minimum value of 0.7. When the transition time is 3 s, and the smoke emission limit increases by 10%, the deterioration coefficient obtains the minimum value of 0.69. When the transition time is 10 s, and the smoke emission limit increases by 10%, the transient mean of the maximum cylinder pressure takes the minimum value of 5.79 MPa. With the increase of the transition time, the lag coefficient, deterioration coefficient and transient mean of fuel flow first increase and then decrease; with the increase of smoke emission limit, the lag coefficient and deterioration coefficient of fuel flow increase, and the transient mean decreases. When the transition time is 10 s, and the smoke emission limit is reduced by 10%, the lag coefficient of fuel flow gets the minimum value of 1.1. When the transition time is 3 s, and the smoke emission limit increases by 10%, the deterioration coefficient obtains the minimum value of 1.01. When the transition time is 10 s, and the smoke emission limit is increased by 10%, the fuel flow gets the minimum value of 12.49 kg/h. With the increase of the transition time, the lag coefficient and the transient mean of NOx emission decrease, and the deterioration coefficient increases; with the smoke emission limit increasing, the lag coefficient and the deterioration coefficient of NOx emission increase, and the transient mean decreases. When the transition time is 10 s, and the smoke emission limit is reduced by 10%, the lag coefficient of NOx emission gets the minimum value of 1.1. When the transition time is 5 s, and the smoke emission limit is reduced by 10%, the deterioration coefficient obtains the minimum value of 1.046. When the transition time is 10 s, and the smoke emission limit is invariable, the transient mean of NOx emission takes the minimum value of 7.23×10-4. With the increase of the transition time, the lag coefficient of smoke emission first increases and then decreases, and the deterioration coefficient and transient mean increase; with the smoke emission limit increasing, the lag coefficient of smoke emission increases, and the deterioration coefficient and transient mean decrease. When the transit time is 10 s, and the smoke emission limit is reduced by 10%, the lag factor of smoke emission obtains the minimum value of 0.7. When the transition time is 3 s, and the smoke emission limit increases by 10%, the deterioration coefficient obtains the minimum value of 5.2. When the transition time is 3 s, and the smoke emission limit is increased by 10%, the transient mean of smoke emission takes the minimum value of 0.025 m-1. These 3 indices can be used to evaluate the performance of the diesel engine in the transient process, which can provide the basis for further optimization.
diesel engine; experiments; emission control; idle transient process; smoke emission limit; performance evaluation
10.11975/j.issn.1002-6819.2017.04.016
TK421+.5
A
1002-6819(2017)-04-0111-06
2016-05-19
2017-02-05
“十二五”國家科技支撐計劃項目(2011BAG04B02)
樓狄明,男,教授,主要研究方向為汽車發(fā)動機替代燃料應(yīng)用技術(shù)和發(fā)動機排放控制后處理技術(shù)。上海 同濟大學汽車學院,201804。 Email:loudiming@#edu.cn
樓狄明,孫瑜澤,于華洋,譚丕強,胡志遠. 基于煙度限值的柴油機怠速瞬態(tài)過程性能評價方法與試驗[J]. 農(nóng)業(yè)工程學報,2017,33(4):111-116. doi:10.11975/j.issn.1002-6819.2017.04.016 http://www.tcsae.org
Lou Diming, Sun Yuze, Yu Huayang, Tan Piqiang, Hu Zhiyuan. Performance evaluation method and experiment for diesel engine under idle transient operation condition based on smoke emission limit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 111-116. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.016 http://www.tcsae.org