国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

人工智能莫扎特:機(jī)器與藝術(shù)的火花

2017-10-13 17:34
英語學(xué)習(xí) 2017年9期
關(guān)鍵詞:機(jī)器人類創(chuàng)作

在科幻小說《詩云》(2003)中,劉慈欣虛構(gòu)了一個(gè)化身為李白的外星人,他試圖利用技術(shù)來實(shí)現(xiàn)詩歌的創(chuàng)作。盡管外星人的科技水平已經(jīng)發(fā)展到了不可思議的高度,然而用程序創(chuàng)作出超越李白的詩歌,似乎仍然是不可能完成的任務(wù)。2003年時(shí),人們似乎并不相信機(jī)器能創(chuàng)作藝術(shù)。14年過去了,人工智能發(fā)展飛速,機(jī)器算法創(chuàng)作出能夠以假亂真的藝術(shù)作品早已不僅存在于科幻作品之中。機(jī)器和藝術(shù)之間能擦出怎樣的火花呢?

Sometime in the coming decades, an external system that collects and analyzes endless streams of biometric data will probably be able to understand whats going on in my body and in my brain much better than me. Such a system will transform politics and economics by allowing governments and corporations to predict and manipulate human desires. What will it do to art? Will art remain humanitys last line of defense against the rise of the all-knowing algorithms?1

In the modern world art is usually associated with human emotions. We tend to think that artists are channeling internal psychological forces, and that the whole purpose of art is to connect us with our emotions or to inspire in us some new feeling. Consequently, when we come to evaluate art, we tend to judge it by its emotional impact and to believe that beauty is in the eye of the beholder2.

This view of art developed during the Romantic period in the 19th century, and came to maturity exactly a century ago, when in 1917 Marcel Duchamp purchased an ordinary mass-produced urinal, declared it a work of art, named it “Fountain,”3 signed it, and submitted it to an art exhibition. In countless classrooms across the world, first-year art students are shown an image of Duchamps“Fountain,” and at a sign from the teacher all hell breaks loose4. It is art! No it isnt! Yes it is! No way!

After letting the students release some steam, the teacher focuses the discussion by asking “What exactly is art? And how do we determine whether something is a work of art or not?” After a few more minutes of back and forth the teacher steers the class in the right direction: “Art is anything people think is art, and beauty is in the eye of the beholder.” If people think that a urinal is a beautiful work of art—then it is.

In 1952, the composer John Cage5 outdid Duchamp by creating “433”.” This piece, originally composed for a piano but today also played by full symphonic orchestras6, consists of 4 minutes and 33 seconds during which no instrument plays anything. The piece encourages the audience to observe their inner experiences in order to examine what music is, what we expect of it, and how music differs from the random noises of everyday life. The message is that it is our own expectations and emotions that define music and that separate art from noise.endprint

If art is defined by human emotions, what might happen once external algorithms are able to understand and manipulate human emotions better than Shakespeare, Picasso or Lennon?7 After all, emotions are not some mystical phenomenon—they are a biochemical process. Hence, given enough biometric data and enough computing power, it might be possible to hack love, hate, boredom and joy.

In the not-too-distant future, a machine-learning8 algorithm could analyze the biometric data streaming from sensors on and inside your body, determine your personality type and your changing moods, and calculate the emotional impact that a particular song—or even a particular musical key—is likely to have on you.

Of all forms of art, music is probably the most susceptible to Big Data9 analysis, because both inputs and outputs lend themselves to mathematical depiction. The inputs are the mathematical patterns of soundwaves, and the outputs are the electrochemical patterns of neural storms. Allow a learning machine to go over millions of musical experiences, and it will learn how particular inputs result in particular outputs.

The idea of computers composing music is hardly new. David Cope, a musicology professor at the University of California in Santa Cruz, created a computer program called EMI (Experiments in Musical Intelligence), which specialized in imitating the style of Johann Sebastian Bach.10 In a public showdown at the University of Oregon, an audience of university students and professors listened to three pieces—one a genuine Bach, another produced by EMI and a third composed by a local musicology professor, Steve Larson. The audience was then asked to vote on who composed which piece. The result? The audience thought that EMIs piece was genuine Bach, that Bachs piece was composed by Larson, and that Larsons piece was produced by a computer.

Hence in the long run, algorithms may learn how to compose entire tunes, playing on11 human emotions as if they were a piano keyboard. Using your personal biometric data the algorithms could even produce personalized melodies, which you alone in the entire world would appreciate.

It is often said that people connect with art because they find themselves in it. If art is really about inspiring(or manipulating) human emotions, few if any human musicians will have a chance of competing with such an algorithm, because they cannot match it in understanding the chief instrument they are playing on: the human biochemical system.endprint

Will this result in great art? That depends on the definition of art. If beauty is indeed in the ears of the listener, then biometric algorithms stand a chance of producing the best art in history. If art is about something deeper than human emotions, and should express a truth beyond our biochemical vibrations, biometric algorithms might not make very good artists. But nor would most humans. In order to enter the art market, algorithms wont have to begin by straight away surpassing Beethoven. It is enough if they outperform Justin Bieber12.

未來幾十年間,或許會出現(xiàn)一種外部智能系統(tǒng),能夠收集、分析源源不竭的生物數(shù)據(jù)流,能夠比我更了解我的身體和大腦是如何運(yùn)作的。有了這個(gè)系統(tǒng),政府和企業(yè)就能預(yù)測、操縱民眾的欲望,從而徹底改變政治、經(jīng)濟(jì)的面貌。那么,它會對藝術(shù)產(chǎn)生什么影響呢?面對全知算法的日益興起,藝術(shù)能否成為人性的最后一道防線?

在現(xiàn)代社會,藝術(shù)常常與人的情感密切相關(guān)。我們傾向于認(rèn)為,藝術(shù)家是在傳遞內(nèi)在的精神力量,藝術(shù)宗旨說到底在于打破自我與情感之間的隔閡,或在于激發(fā)我們產(chǎn)生新的情愫。于是乎,在評判藝術(shù)價(jià)值的時(shí)候,我們往往以感染力作為標(biāo)準(zhǔn),相信美因人而異,仁者見仁,智者見智。

這種藝術(shù)觀源起19世紀(jì)浪漫主義時(shí)期,于一個(gè)世紀(jì)前走向成熟——1917年,馬塞爾·杜尚購買了一個(gè)普普通通批量生產(chǎn)的小便斗,稱其為藝術(shù)品,以《泉》命名并署名,然后送交參展。從此以后,世界各地?zé)o數(shù)的藝術(shù)系課堂都會向其新生展示這個(gè)《泉》的圖片。只要教師稍加示意,整個(gè)教室便會喧鬧沸騰起來:這是藝術(shù)!不,這才不是藝術(shù)!是藝術(shù)!絕不是!

任由學(xué)生們激烈爭論一番之后,教師拋出問題讓他們重點(diǎn)討論——“藝術(shù)究竟是什么?我們?nèi)绾闻卸ㄒ粋€(gè)東西是不是藝術(shù)品?”持不同觀點(diǎn)的各方你來我往,又過了幾分鐘,教師才逐漸將討論引導(dǎo)到正確的方向上:“人們認(rèn)為什么東西是藝術(shù),它就是藝術(shù)。而且,美也是因人而異的。”若人們認(rèn)為小便斗是一件美麗的藝術(shù)品,那便是如此。

1952年,作曲家約翰·凱奇創(chuàng)作了樂曲《4分33秒》,藝術(shù)成就趕超杜尚。這一曲目總共持續(xù)4分33秒,雖然原本是為鋼琴演奏而作,但如今交響樂團(tuán)也會演奏。演奏期間,所有的樂器均不發(fā)聲。此曲鼓勵觀眾審視自我的內(nèi)在體驗(yàn),以思考何為音樂、對音樂我們有何期待以及音樂與日常生活中亂七八糟的噪音有何區(qū)別等問題。它想表達(dá)的是:界定何為音樂,將音樂和噪音區(qū)分開來的,正是我們自身的期望和情感。

如果說藝術(shù)依賴于人類情感進(jìn)行界定,那么一旦外部算法比莎士比亞、畢加索或列儂更能理解和操縱人類情感,未來等待我們的將會是怎樣的世界?說到底,人類情感并非某種神秘現(xiàn)象,只是生物化學(xué)過程罷了。因此,倘若有了足夠多的生物統(tǒng)計(jì)數(shù)據(jù)、足夠強(qiáng)大的計(jì)算能力,想要操控人的愛、恨、無聊以及快樂的情緒,也不是不可能的事。

在不遠(yuǎn)的未來,機(jī)器學(xué)習(xí)算法將能夠分析你身上或體內(nèi)的感應(yīng)器所傳導(dǎo)出來的生物統(tǒng)計(jì)數(shù)據(jù)流,判斷你的性格特征和你不斷變化的情緒,由此計(jì)算出某一特定的歌曲——甚或是某一特定的音調(diào)——可能會對你產(chǎn)生怎樣的情感觸動。

在所有的藝術(shù)形式當(dāng)中,音樂很可能是最容易受到大數(shù)據(jù)分析影響的一種,因?yàn)橐魳返妮斎牒洼敵鐾耆梢杂脭?shù)學(xué)進(jìn)行描述。輸入是聲波的數(shù)學(xué)模式;輸出是神經(jīng)風(fēng)暴的電化學(xué)模式。讓一臺機(jī)器研究上百萬次人類聽音樂時(shí)的體驗(yàn),它將會知道某一類特定的輸入如何導(dǎo)致某種特定的輸出。

計(jì)算機(jī)譜曲算不上什么新鮮的想法。加利福尼亞大學(xué)圣克魯斯分校的音樂學(xué)教授大衛(wèi)·科普就設(shè)計(jì)過一個(gè)名為“音樂智能實(shí)驗(yàn)(EMI)”的計(jì)算機(jī)程序,專門模仿約翰·塞巴斯蒂安·巴赫的音樂風(fēng)格。在俄勒岡大學(xué)進(jìn)行的一場公開比賽中,一群大學(xué)生和教授現(xiàn)場聆聽了三首曲目——其中,一首是真正的巴赫作品,一首是EMI創(chuàng)作的,第三首是當(dāng)?shù)匾魳穼W(xué)教授史蒂夫·拉森所譜。演奏結(jié)束后,聽眾投票選擇是誰創(chuàng)作了哪一首曲目。結(jié)果呢?聽眾認(rèn)為,EMI創(chuàng)作的曲目是真正的巴赫作品,巴赫的作品出自拉森之手,而拉森的譜曲則是計(jì)算機(jī)創(chuàng)作的。

因此,從長遠(yuǎn)來看,算法是有可能學(xué)會如何創(chuàng)作出完整音樂曲目的,正如敲擊鋼琴琴鍵一般,它也能“敲擊”人的情緒。借助你個(gè)人的生物統(tǒng)計(jì)數(shù)據(jù),這種算法甚至能創(chuàng)作出個(gè)性化的旋律,全世界獨(dú)你一人懂得欣賞。

常言道,人之所以與藝術(shù)相通,是因?yàn)槿嗽谒囆g(shù)中找到了自我。倘若藝術(shù)的關(guān)鍵切切實(shí)實(shí)在于激發(fā)(換句話說,操縱)人類的情感,那么,應(yīng)該沒有幾個(gè)人類音樂家能跟這種算法一較高下。因?yàn)樵诶斫馑麄兯扒脫簟钡闹饕獦菲鳌慈祟惖纳到y(tǒng)——方面,他們根本就不是算法的對手。

算法能否創(chuàng)作出偉大的藝術(shù)作品?這取決于藝術(shù)的定義。如果天籟之音真的只依賴于聽眾的耳朵,那么生物算法就有可能創(chuàng)作出歷史上最美妙的藝術(shù)作品。如果藝術(shù)的內(nèi)涵不止步于人類的情感,而應(yīng)該表達(dá)出一種超越人類生物化學(xué)反應(yīng)的真理,生物統(tǒng)計(jì)算法則可能算不上是杰出的藝術(shù)家。不過,大多數(shù)人類也無法達(dá)到此種境界。進(jìn)入藝術(shù)市場,算法不必非得一登場就超越貝多芬,如果能勝過賈斯汀·比伯也算不錯(cuò)了。endprint

1. all-knowing: 全知,此詞常用于宗教領(lǐng)域,指能夠了解一切事物知識的能力;algorithm: // 算法,在數(shù)學(xué)和計(jì)算機(jī)科學(xué)中,算法常用于計(jì)算、數(shù)據(jù)處理和自動推理。

2. beholder: 觀看者,觀眾。

3. Romantic period: 浪漫主義時(shí)期,浪漫主義是18世紀(jì)起源于德國的一個(gè)藝術(shù)、文學(xué)和文化運(yùn)動,注重以強(qiáng)烈的情感作為美學(xué)經(jīng)驗(yàn)的來源,強(qiáng)調(diào)直覺、想象力和感覺;Marcel Duchamp: 馬塞爾·杜尚(1887—1968),美籍法裔畫家、雕塑家與作家,20世紀(jì)實(shí)驗(yàn)藝術(shù)的先驅(qū),被譽(yù)為“現(xiàn)代藝術(shù)的守護(hù)神”,其作品對于二戰(zhàn)前的西方藝術(shù)有著重要的影響;“Fountain”:《泉》,它被歷史學(xué)者、理論家和藝術(shù)工作者視為達(dá)達(dá)主義最具有代表性的藝術(shù)品,同時(shí)也是現(xiàn)代藝術(shù)發(fā)展中標(biāo)志著重要轉(zhuǎn)變的作品,引起了許多爭論,其中包括對藝術(shù)定義的探討。

4. all hell breaks loose: 指情況突然變得混亂嘈雜,通常有很多人爭吵或打架。

5. John Cage: 約翰·凱奇(1912—1992),美國先鋒派古典音樂作曲家。他最有名的作品是1952年創(chuàng)作的《4分33秒》。任何樂器或樂器組合都可以演奏此曲,演奏者從頭至尾都不需要奏出一個(gè)音。一般來說,演奏者在樂章之間會做出開合琴蓋、擦汗等動作,這期間聽眾聽見的各種聲響都可被認(rèn)為是音樂的組成部分,因?yàn)槊看窝葑鄷画h(huán)境和觀眾行為影響,所以每次演奏所聽到的聲音都會不同。

6. symphonic orchestra: //交響樂團(tuán),大型管弦樂團(tuán)。

7. Shakespeare: 莎士比亞(1564—1616),英國文學(xué)史上最杰出的戲劇家,也是歐洲文藝復(fù)興時(shí)期最偉大的作家之一;Picasso:畢加索(1881—1973),西班牙著名畫家、雕塑家,20世紀(jì)現(xiàn)代藝術(shù)的主要代表人物之一;Lennon: 約翰·列儂(1940—1980),英國歌手和詞曲作者,作為披頭士樂隊(duì)的創(chuàng)始成員聞名全球。

8. machine-learning: 機(jī)器學(xué)習(xí),是人工智能的一個(gè)分支,機(jī)器學(xué)習(xí)算法是一類從數(shù)據(jù)中自動分析獲得規(guī)律,并利用規(guī)律對未知數(shù)據(jù)進(jìn)行預(yù)測的算法。

9. Big Data: 大數(shù)據(jù),是指超級龐大、復(fù)雜的數(shù)據(jù)集,通常用于預(yù)測分析、用戶行為分析或使用其他先進(jìn)的數(shù)據(jù)分析方法獲取價(jià)值,而非單純指數(shù)據(jù)的多少。

10. musicology: 音樂學(xué);Johann Sebastian Bach: 約翰·塞巴斯蒂安·巴赫(1685—1750),德國作曲家,杰出的管風(fēng)琴、小提琴、大鍵琴演奏家,是音樂史上最重要的作曲家之一。

11. play on: 此處巧用play on的兩個(gè)詞義。在play on a piano keyboard中,play on是“演奏”的意思,而在play on human emotions中,play on是“對……產(chǎn)生影響”的意思。

12. Justin Bieber: 賈斯汀·比伯,加拿大青年男歌手、詞曲創(chuàng)作者。endprint

猜你喜歡
機(jī)器人類創(chuàng)作
機(jī)器狗
機(jī)器狗
人類能否一覺到未來?
1100億個(gè)人類的清明
未來機(jī)器城
《一墻之隔》創(chuàng)作談
創(chuàng)作隨筆
創(chuàng)作心得
創(chuàng)作失敗