付剛,沈振西
(中國(guó)科學(xué)院地理科學(xué)與資源研究所,生態(tài)系統(tǒng)網(wǎng)絡(luò)觀(guān)測(cè)與模擬重點(diǎn)實(shí)驗(yàn)室,拉薩高原生態(tài)系統(tǒng)研究站,北京 100101)
放牧改變了藏北高原高寒草甸土壤微生物群落
付剛,沈振西*
(中國(guó)科學(xué)院地理科學(xué)與資源研究所,生態(tài)系統(tǒng)網(wǎng)絡(luò)觀(guān)測(cè)與模擬重點(diǎn)實(shí)驗(yàn)室,拉薩高原生態(tài)系統(tǒng)研究站,北京 100101)
本研究基于2008年7月布設(shè)的3個(gè)圍欄與自由放牧樣地(一個(gè)高寒草原化草甸,冬季牧場(chǎng);一個(gè)高寒草原化草甸,夏季牧場(chǎng);一個(gè)典型高寒草甸,夏季牧場(chǎng)),開(kāi)展了藏北高原高寒草甸土壤微生物群落組成對(duì)放牧的響應(yīng)研究。土壤微生物群落組成采用磷脂脂肪酸方法(phospholipid fatty-acid,PLFA)測(cè)定。結(jié)果表明,冬季放牧顯著降低了高寒草原化草甸的土壤真菌、革蘭氏陰性細(xì)菌、放線(xiàn)菌和原生動(dòng)物。夏季放牧顯著降低了典型高寒草甸的土壤總PLFA、真菌、細(xì)菌、革蘭氏陽(yáng)性細(xì)菌、革蘭氏陰性細(xì)菌、放線(xiàn)菌、叢枝菌根真菌和原生動(dòng)物?;谌哂喽确治?,3個(gè)放牧與圍欄條件下的土壤微生物群落組成都存在顯著差異。土壤無(wú)機(jī)氮和水溶性有機(jī)氮顯著影響著高寒草原化草甸冬季牧場(chǎng)的土壤微生物群落組成,而硝態(tài)氮和水溶性有機(jī)碳顯著影響著高寒草原化草甸夏季牧場(chǎng)和典型高寒草甸夏季牧場(chǎng)的土壤微生物群落組成。因此,放牧對(duì)高寒草甸土壤微生物群落的影響與放牧季節(jié)和草地類(lèi)型有關(guān)。
圍欄;磷脂脂肪酸;冗余度分析;放牧季節(jié)
土壤微生物是土壤生態(tài)系統(tǒng)的重要組成部分,是生物地球化學(xué)循環(huán)的主要驅(qū)動(dòng)者,它們?cè)谡{(diào)節(jié)有機(jī)質(zhì)分解和營(yíng)養(yǎng)物質(zhì)循環(huán)等生態(tài)系統(tǒng)功能方面發(fā)揮著重要作用[1-3]。草地不僅是陸地生態(tài)系統(tǒng)中最重要的生態(tài)系統(tǒng)類(lèi)型之一,而且是放牧等人類(lèi)活動(dòng)影響較為嚴(yán)重的區(qū)域之一[4]。作為生態(tài)系統(tǒng)功能與生態(tài)健康的敏感指標(biāo)[5-6],土壤微生物群落組成能夠較早地指示草原生態(tài)環(huán)境變化以及生態(tài)系統(tǒng)過(guò)程和功能的變化[7]。放牧是草地最重要的土地利用方式之一[8-10]。開(kāi)展土壤微生物群落組成對(duì)放牧的響應(yīng)及其機(jī)制的研究,在草原生態(tài)系統(tǒng)保護(hù)、恢復(fù)及重建中都具有重要理論和實(shí)踐意義[11-15]。
雖然很多研究已經(jīng)對(duì)比分析了圍欄與放牧條件下的土壤微生物群落,但是目前仍沒(méi)有一致的結(jié)論[11-15]。如張莉等[16]在海北矮嵩草(Kobresiahumilis)草甸的研究表明,放牧增加了土壤真菌與細(xì)菌的比值;王蓓等[17]在四川紅原縣高寒草甸的研究表明,模擬放牧(刈割+牦牛糞便)降低了土壤真菌與細(xì)菌的比值,增加了土壤總磷脂脂肪酸(phospholipid fatty-acid,PLFA);Zhang等[18]在美國(guó)高草草原的研究發(fā)現(xiàn),刈割沒(méi)有改變土壤真菌與細(xì)菌的比值;而鄒雨坤等[19]在呼倫貝爾羊草(Leymuschinensis)典型草原的研究則表明,放牧對(duì)土壤總PLFA無(wú)顯著影響。
雖然高寒草甸是青藏高原重要的草地類(lèi)型之一,但是有關(guān)放牧如何影響土壤微生物群落的研究還不多見(jiàn)[6,16-17,20]。這些前人的研究只是探討了冬季放牧或夏季放牧對(duì)土壤微生物群落的影響,而沒(méi)有對(duì)比分析不同季節(jié)放牧對(duì)土壤微生物群落的影響差異。前人的研究已經(jīng)表明不同季節(jié)放牧對(duì)青藏高原高寒草地植被(如生物量等)的影響不同[21],而植被的變化會(huì)引起土壤微生物群落組成的變化[22-23]。這些前人的研究只是在一種類(lèi)型的高寒草地上開(kāi)展,而缺少有關(guān)對(duì)比不同類(lèi)型的高寒草地土壤微生物群落對(duì)放牧的響應(yīng)差異。不同類(lèi)型高寒草地間的土壤微生物群落組成、土壤理化性質(zhì)指標(biāo)(如土壤濕度、有機(jī)碳和全氮等)和植被群落結(jié)構(gòu)都可能存在顯著差異[24-25],而不同類(lèi)型的高寒草地的土壤理化性質(zhì)和植被特征對(duì)人類(lèi)放牧活動(dòng)干擾的響應(yīng)都可能不同[26-27]。因此,本研究在念青唐古拉山的南坡通過(guò)布設(shè)3個(gè)圍欄與自由放牧配對(duì)樣地,對(duì)比分析不同季節(jié)放牧(冬季放牧和夏季放牧)對(duì)高寒草地土壤微生物群落的影響差異;對(duì)比分析高寒草原化草甸和典型高寒草甸土壤微生物群落對(duì)夏季放牧的響應(yīng)差異。
1.1研究地概況和實(shí)驗(yàn)設(shè)計(jì)
研究區(qū)域(30°30′-30°32′ N,91°03′-91°04′ E)位于西藏自治區(qū)當(dāng)雄縣草原站。年均溫為1.87 ℃,年降水量為474.9 mm。本研究選擇了兩個(gè)草原化草甸(一個(gè)冬季牧場(chǎng),一個(gè)夏季牧場(chǎng))和一個(gè)典型高寒草甸(夏季牧場(chǎng))。在3個(gè)高寒草甸區(qū)域,2008年7月分別布設(shè)了1個(gè)約20 m×20 m的圍欄樣地。兩個(gè)高寒草原化草甸的建群種有小嵩草(Kobresiapygmaean)、絲穎針茅(Stipacapillacea)和窄葉苔草(Carexmontis-everestii)等,而典型高寒草甸的建群種是小嵩草。草原化草甸冬季牧場(chǎng)區(qū)域0~30 cm的土壤有機(jī)碳和全氮分別為19.83 g/kg和2.12 g/kg;草原化草甸夏季牧場(chǎng)區(qū)域0~30 cm的土壤有機(jī)碳和全氮分別為24.04 g/kg和2.18 g/kg;典型高寒草甸0~30 cm的土壤有機(jī)碳和全氮分別為43.74 g/kg和3.32 g/kg[28]。
1.2土壤采樣及分析
2013年8月,在3個(gè)配對(duì)的圍欄樣地內(nèi)外,利用直徑3.7 cm的土鉆采集了0~10 cm的土壤樣品,4個(gè)重復(fù)樣方(1 m×1 m),兩個(gè)重復(fù)樣方間的距離約為3 m。在每個(gè)重復(fù)樣方內(nèi),隨機(jī)選擇3個(gè)點(diǎn)取土后混合作為一個(gè)重復(fù)樣方的土樣。取得的土壤樣品立即放入裝有冰的泡沫箱子,帶回實(shí)驗(yàn)室后在-20 ℃下冷凍保存。部分土壤樣品風(fēng)干用于土壤有機(jī)碳(soil organic carbon,SOC)和全氮(total nitrogen,TN)的測(cè)定。部分土壤用于硝態(tài)氮(nitrogen nitrogen,NO3--N)、銨態(tài)氮(ammonium nitrogen,NH4+-N)、水溶性有機(jī)碳(dissolved organic carbon,DOC)、水溶性有機(jī)氮(dissolved organic nitrogen,DON)和微生物群落組成的測(cè)定。土壤有機(jī)碳采用重鉻酸鉀法測(cè)定。土壤全氮采用碳氮分析儀(Elementar Variomax CN)測(cè)定。土壤無(wú)機(jī)氮采用流動(dòng)分析儀(LACHAT Quickchem Automated Ion Analyzer)測(cè)定。水溶性有機(jī)碳和有機(jī)氮的測(cè)定參照[29]。土壤微生物群落組成采用磷脂脂肪酸方法(phospholipid fatty-acid,PLFA)測(cè)定[30]。土壤微生物脂肪酸分離和提取步驟如下: 用6 mL 氯仿、3 mL磷酸緩沖液和12 mL甲醇混合液溶解相當(dāng)于8 g 干重的土壤鮮土后避光震蕩2 h;將震蕩后的土壤浸提液在自動(dòng)離心機(jī)上以3000 r/min 速度離心10 min;將離心后的上清液轉(zhuǎn)移到裝有12 mL 磷酸緩沖液和12 mL三氯甲烷的分液漏斗中;再次用6 mL 氯仿、3 mL磷酸緩沖液和12 mL甲醇混合液溶解已經(jīng)浸提、震蕩和離心過(guò)一次的土壤,手工搖動(dòng)并震蕩30 min;再次離心、轉(zhuǎn)移上清液到分液漏斗中,最后將分液漏斗中的上清液搖動(dòng)2 min,靜置過(guò)夜,避光保存;第2 天,將分液漏斗中的中下層土壤溶液轉(zhuǎn)移至50 mL的大試管中;30~32 ℃水浴50 mL大試管中的土壤溶液,并用氮吹儀吹干;用2 份500 mL 三氯甲烷將大試管內(nèi)濃縮后的磷脂轉(zhuǎn)移到萃取小柱(硅膠柱),依次采用5 mL三氯甲烷,10 mL丙酮,5 mL甲醇洗脫液淋洗,并收集甲醇相,吹干;用1 mL 0.2 mol/L 氫氧化鉀和1 mL 1∶1 甲醇甲苯溶液溶解吹干的樣品,搖勻,37 ℃水浴加熱15 min,用正己烷萃取,收集正己烷相并吹干,最后用氣相色譜質(zhì)譜儀測(cè)定。
脂肪酸a11:0,i13:0,a13:0,14:0,i14:0,a14:0,15:0,i15:0,a15:0,i16:0,a16:0,10Me16:0,16:1ω7c, 17:0,10Me17:0,i17:0,a17:0,cy17:0ω7c,17:1ω8c,10Me18:0,i18:0,18:1ω5c,18:1ω7c,a19:0,cy19:0ω7c, 10Me20:0和i22:0是土壤細(xì)菌標(biāo)記物。脂肪酸16:1ω5c,18:1ω9c,18:2ω6c和18:3ω6c是土壤真菌標(biāo)記物。 脂肪酸20:0是土壤原生動(dòng)物標(biāo)記物。脂肪酸16:1ω5c是土壤叢枝菌根真菌(arbuscular mycorrhizal fungi,AMF)標(biāo)記物[31]。脂肪酸10Me16:0,10Me17:0,10Me18:0和10Me20:0是土壤放線(xiàn)菌標(biāo)記物。脂肪酸a11:0,i13:0,a13:0,i14:0,a14:0,i15:0,a15:0,i16:0,a16:0,i17:0,a17:0,i18:0,a19:0和 i22:0是土壤革蘭氏陽(yáng)性細(xì)菌(gram-positive bacteria,G+)。脂肪酸16:1ω7c,cy17:0ω7c,17:1ω8c,18:1ω5c,18:1ω7c和cy19:0ω7c是土壤革蘭氏陰性細(xì)菌(gram-negative bacteria,G-)。本研究中還包括了脂肪酸16:0,18:0,22:0和24:0。
1.3統(tǒng)計(jì)分析
本研究計(jì)算了兩個(gè)能夠反映土壤微生物群落組成變化的比值,即土壤真菌與細(xì)菌的比值(F/B)和革蘭氏陽(yáng)性細(xì)菌與革蘭氏陰性細(xì)菌的比值(G+/G-);還計(jì)算了兩個(gè)能夠反映脅迫的比值,即(cy17:0ω7c+cy19:0ω7c)/(16:1ω7c+18:1ω7c)和(i17:0+i15:0)/(a17:0+a15:0)[32]。在每一個(gè)圍欄與放牧配對(duì)樣地,利用CANOCO for windows 4.5(Microcomputer Power, Ithaca, USA)軟件進(jìn)行了冗余度分析(redundancy analysis,RDA)。T-檢驗(yàn)被用來(lái)對(duì)比分析圍欄與自由放牧對(duì)第一主軸和第二主軸的RDA得分,PLFA總量,真菌含量,細(xì)菌含量,原生動(dòng)物含量,叢枝菌根真菌含量,放線(xiàn)菌含量,革蘭氏陽(yáng)性細(xì)菌含量,革蘭氏陰性細(xì)菌含量,F(xiàn)/B,G+/G-,(cy17:0ω7c+cy19:0ω7c)/(16:1ω7c+18:1ω7c)和(i17:0+i15:0)/(a17:0+a15:0)。所有的統(tǒng)計(jì)顯著性檢驗(yàn)P<0.05。
冬季放牧顯著降低了高寒草原化草甸的水溶性有機(jī)氮,而對(duì)土壤有機(jī)碳、全氮、碳氮比、水溶性有機(jī)碳、硝態(tài)氮和銨態(tài)氮都無(wú)顯著影響(圖1)。夏季放牧顯著降低了高寒草原化草甸的硝態(tài)氮,而對(duì)土壤有機(jī)碳、全氮、碳氮比、水溶性有機(jī)碳、水溶性有機(jī)氮和銨態(tài)氮都無(wú)顯著影響(圖1)。夏季放牧對(duì)典型高寒草甸的土壤有機(jī)碳、全氮、碳氮比、水溶性有機(jī)碳、水溶性有機(jī)氮、硝態(tài)氮和銨態(tài)氮都無(wú)顯著影響。
冬季放牧顯著降低了高寒草原化草甸的土壤真菌含量、革蘭氏陰性細(xì)菌含量、放線(xiàn)菌含量和原生動(dòng)物含量,趨于(P<0.10)減少了土壤PLFA總量和細(xì)菌含量,而對(duì)革蘭氏陽(yáng)性細(xì)菌含量和叢枝菌根真菌含量無(wú)顯著影響(圖2)。夏季放牧趨于(P<0.10)減少了高寒草原化草甸的放線(xiàn)菌含量,而對(duì)高寒草原化草甸的土壤PLFA總量、真菌含量、細(xì)菌含量、革蘭氏陽(yáng)性細(xì)菌含量、革蘭氏陰性細(xì)菌含量、叢枝菌根真菌含量和原生動(dòng)物含量都無(wú)顯著影響(圖2)。相反,夏季放牧顯著降低了典型高寒草甸的土壤PLFA總量、真菌含量、細(xì)菌含量、革蘭氏陽(yáng)性細(xì)菌含量、革蘭氏陰性細(xì)菌含量、放線(xiàn)菌含量、叢枝菌根真菌含量和原生動(dòng)物含量(圖2)。
夏季放牧顯著增加了高寒草原化草甸和典型高寒草甸的土壤(cy17:0ω7c+cy19:0ω7c)/(16:1ω7c+18:1ω7c),而冬季放牧則對(duì)高寒草原化草甸的土壤(cy17:0ω7c+cy19:0ω7c)/(16:1ω7c+18:1ω7c)無(wú)顯著影響(圖3)。冬季放牧對(duì)高寒草原化草甸的土壤F/B、G+/G-和(i17:0+i15:0)/(a17:0+a15:0)都無(wú)顯著影響,夏季放牧對(duì)高寒草原化草甸和高寒典型草甸的土壤F/B、G+/G-和(i17:0+i15:0)/(a17:0+a15:0)也都無(wú)顯著影響(圖3)。
圖1 藏北高原圍欄與放牧條件下的高寒草原化草甸冬季牧場(chǎng)(ASMWP)、高寒草原化草甸夏季牧場(chǎng)(ASMSP)和典型高寒草甸 夏季牧場(chǎng)(AMSP)的(a)土壤有機(jī)碳、(b)全氮、 (c)碳氮比、(d)水溶性有機(jī)碳、(e)水溶性有機(jī)氮、 (f)無(wú)機(jī)氮、(g)硝態(tài)氮和(h)銨態(tài)氮的對(duì)比Fig.1 Comparison of (a) soil organic carbon, (b) total nitrogen, (c) ratio of soil organic carbon to total nitrogen, (d) dissolved organic carbon, (e) dissolved organic nitrogen, (f) inorganic nitrogen, (g) nitrate nitrogen and (h) ammonium nitrogen between ungrazed and grazed soils for an alpine steppe meadow for winter pasture (ASMWP), an alpine steppe meadow for summer pasture (ASMSP) and an alpine meadow for summer pasture (AMSP) in the Northern Tibet 不同字母代表顯著差異(P<0.05)。下同。The different letters mean significant difference at P<0.05 level. The same below.
冗余度分析表明,圍欄樣方和放牧樣方在排序圖上可以明顯的分開(kāi)(圖4)。具體而言,在高寒草原化草甸,冬季放牧的樣方分布在RDA圖的下部,而圍欄的樣方分布在RDA圖的上部(圖4a);在高寒草原化草甸,夏季放牧的樣方分布在RDA圖的右側(cè),而圍欄的樣方分布在RDA圖的左側(cè)(圖4b);在典型高寒草甸,夏季放牧的樣方分布在RDA圖的左側(cè),而圍欄的樣方分布在RDA圖的右側(cè)(圖4c)。第一主軸分別解釋了65.8%、45.5%和79.3%的高寒草原化草甸冬季牧場(chǎng)、高寒草原化草甸夏季牧場(chǎng)和典型高寒草甸夏季牧場(chǎng)的土壤PLFA(圖4)。第二主軸分別解釋了25.7%、25.9%和19.0%的高寒草原化草甸冬季牧場(chǎng)、高寒草原化草甸夏季牧場(chǎng)和典型高寒草甸夏季牧場(chǎng)的土壤PLFA(圖4)。無(wú)機(jī)氮與水溶性有機(jī)氮分別顯著解釋了62%和16%的高寒草原化草甸冬季牧場(chǎng)的土壤PLFA;硝態(tài)氮和水溶性有機(jī)碳分別解釋了36%和23%的高寒草原化草甸夏季牧場(chǎng)的土壤PLFA;硝態(tài)氮和水溶性有機(jī)碳分別解釋了54%和14%的典型高寒草甸夏季牧場(chǎng)的土壤PLFA。圍欄與冬季放牧處理間的高寒草原化草甸的第二主軸得分有顯著差異;圍欄與夏季放牧處理間的高寒草原化草甸和典型高寒草甸的第一主軸得分有顯著差異;與圍欄處理相比,夏季放牧趨于(P<0.10)增加了高寒草原化草甸的第二主軸得分(圖5)。
圖2 藏北高原圍欄與放牧條件下的高寒草原化草甸冬季牧場(chǎng)(ASMWP)、高寒草原化草甸夏季牧場(chǎng)(ASMSP)和典型高寒草甸 夏季牧場(chǎng)(AMSP)的(a)土壤總磷脂脂肪酸、(b)真菌、 (c)細(xì)菌、(d)革蘭氏陽(yáng)性細(xì)菌、(e)革蘭氏陰性 細(xì)菌、(f)放線(xiàn)菌、(g)叢枝菌根真菌和(h)原生動(dòng)物的對(duì)比Fig.2 Comparison of soil (a) total PLFA, (b) fungi, (c) bacteria, (d) gram-positive bacteria, (e) gram-negative bacteria, (f) actinomycetes, (g) arbuscular mycorrhizal fungi and (h) protozoa between ungrazed and grazed soils for an alpine steppe meadow for winter pasture (ASMWP), an alpine steppe meadow for summer pasture (ASMSP) and an alpine meadow for summer pasture (AMSP) in the Northern Tibet
圖3 藏北高原圍欄與放牧條件下的高寒草原化草甸冬季牧場(chǎng)(ASMWP)、高寒草原化草甸夏季牧場(chǎng)(ASMSP)和典型高寒草甸 夏季牧場(chǎng)(AMSP)的(a)真菌與細(xì)菌的比、(b)革蘭氏陽(yáng)性細(xì)菌與革蘭氏陰性細(xì)菌的比、 (c)(cy17:0ω7c+cy19:0ω7c)/ (16:1ω7c+18:1ω7c)和(d)(i17:0+i15:0)/(a17:0+a15:0)的對(duì)比Fig.3 Comparison of soil (a) ratio of fungi to bacteria, (b) ratio of gram-positive bacteria to gram-negative bacteria, (c) (cy17:0ω7c+cy19:0ω7c)/(16:1ω7c+18:1ω7c) and (d) (i17:0+i15:0)/(a17:0+a15:0) ungrazed and grazed soils for an alpine steppe meadow for winter pasture (ASMWP), an alpine steppe meadow for summer pasture (ASMSP) and an alpine meadow for summer pasture (AMSP) in the Northern Tibet
圖4 藏北高原(a)高寒草原化草甸冬季牧場(chǎng)、(b)高寒草原化草甸夏季牧場(chǎng)和(c)典型高寒草甸夏季牧場(chǎng)的冗余度分析Fig.4 Redundancy analysis (RDA) of the phospholipid fatty acid (PLFA) profile as explained by soil organic carbon (SOC), total nitrogen (TN), ratio of SOC to TN (C∶N ratio), dissolved organic carbon (DOC) and nitrogen (DON), inorganic nitrogen (IN), nitrogen nitrogen (NO3--N) and ammonium nitrogen (NH4+-N) in (a) an alpine steppe meadow for winter pasture, (b) alpine steppe meadow for summer pasture and (c) alpine meadow for summer pasture in the Northern Tibet The solid and hollow circle symbols indicate the grazed and ungrazed soils.
圖5 藏北高原(a)高寒草原化草甸冬季牧場(chǎng)、(b)高寒草原化草甸夏季牧場(chǎng)和(c)典型高寒草甸 夏季牧場(chǎng)的冗余度分析第一主軸(RDA1)和第二主軸(RDA2)得分Fig.5 Redundancy analysis (RDA) scores in (a) an alpine steppe meadow for winter pasture, (b) alpine steppe meadow for summer pasture and (c) alpine meadow for summer pasture in the Northern Tibet
土壤無(wú)機(jī)氮與土壤PLFA組成顯著相關(guān),這與前人的研究一致。如趙帥等[33]在內(nèi)蒙古針茅(Stipa)草原的研究發(fā)現(xiàn),土壤總PLFA、真菌、細(xì)菌和革蘭氏陰性細(xì)菌含量隨著土壤硝態(tài)氮含量的增加顯著增加。土壤細(xì)菌主導(dǎo)著土壤微生物群落組成,這與前人在青藏高原高寒草地的研究結(jié)果一致[16-17]。
放牧降低了土壤微生物量,這與前人的很多研究結(jié)果一致。譚紅妍等[34]在呼倫貝爾草原的研究表明,放牧降低了土壤總PLFA、細(xì)菌、革蘭氏陰性細(xì)菌、腐生真菌和叢枝菌根真菌含量。趙帥等[33]在內(nèi)蒙古3種類(lèi)型的(克氏針茅Stipakrylovii、貝加爾針茅Stipabaicalensis和大針茅Stipagrandis)針茅草原的研究發(fā)現(xiàn),放牧顯著降低了土壤總PLFA、細(xì)菌和革蘭氏陽(yáng)性細(xì)菌含量。王蓓等[17]在四川紅原縣高寒草甸的研究表明,模擬放牧(刈割+牦牛糞便)減少了土壤真菌含量。鄒雨坤等[19]在呼倫貝爾羊草典型草原的研究發(fā)現(xiàn),放牧降低了土壤放線(xiàn)菌含量。Francini等[35]在斯堪的納維亞半島北部的極地草原的研究表明,放牧降低了土壤總PLFA和細(xì)菌含量。Ford等[36]在英國(guó)沙丘草原的研究發(fā)現(xiàn),放牧降低了土壤革蘭氏陽(yáng)性細(xì)菌的相對(duì)豐度。
放牧雖然沒(méi)有影響土壤真菌與細(xì)菌比值以及土壤革蘭氏陽(yáng)性細(xì)菌與陰性細(xì)菌的比值,但是顯著改變了高寒草原化草甸和典型高寒草甸的土壤微生物群落,這與前人的研究結(jié)果一致。Jirout等[37]在捷克共和國(guó)草原的研究表明,雖然放牧沒(méi)有顯著改變土壤真菌與細(xì)菌的比值,但是顯著改變了土壤真菌的群落組成。Ford等[36]在英國(guó)沙丘草原和鹽沼的研究發(fā)現(xiàn),與圍欄處理相比,放牧雖然顯著改變了土壤微生物群落組成,但是對(duì)土壤真菌與細(xì)菌的比值無(wú)顯著影響。因此,即使土壤真菌與細(xì)菌的比值不發(fā)生變化,土壤微生物群落組成也很可能發(fā)生變化。即在今后的研究中,不能僅僅通過(guò)土壤真菌與細(xì)菌比值的變化反映土壤微生物群落組成的變化。
放牧對(duì)土壤微生物量的影響與高寒草地類(lèi)型有關(guān),這與前人的研究一致。趙帥等[33]在內(nèi)蒙古針茅草原的研究表明,雖然放牧增加了克氏針茅草原的土壤真菌與細(xì)菌的比值,但是降低了貝加爾針茅和大針茅草原的土壤真菌與細(xì)菌的比值;放牧顯著降低了貝加爾針茅和大針茅草原的土壤真菌含量,而對(duì)克氏針茅草原的土壤真菌含量無(wú)顯著影響;放牧顯著增加了克氏針茅草原的革蘭氏陰性細(xì)菌含量,而對(duì)貝加爾針茅和大針茅草原的革蘭氏陰性細(xì)菌含量無(wú)顯著影響。
在高寒草原化草甸,冬季放牧與圍欄處理間在第二主軸上有顯著差異;與無(wú)機(jī)氮相比,水溶性有機(jī)氮與第二主軸的相關(guān)性更強(qiáng),放牧對(duì)水溶性有機(jī)氮的負(fù)效應(yīng)越大,因此冬季放牧可能主要是通過(guò)干擾土壤水溶性有機(jī)氮進(jìn)而導(dǎo)致了高寒草原化草甸的土壤微生物群落組成的變化。在高寒草原化草甸,夏季放牧與圍欄處理間在第一主軸上有顯著差異,在第二主軸上也存在一定差異;硝態(tài)氮與第一主軸的相關(guān)性較強(qiáng),而水溶性有機(jī)碳與第二主軸的相關(guān)性更強(qiáng);夏季放牧顯著影響了硝態(tài)氮而對(duì)水溶性有機(jī)碳無(wú)顯著影響,因此夏季放牧可能主要是通過(guò)干擾土壤硝態(tài)氮進(jìn)而導(dǎo)致了高寒草原化草甸的土壤微生物群落組成的變化。在典型高寒草甸,夏季放牧與圍欄處理間在第一主軸上有顯著差異;水溶性有機(jī)碳與第一主軸為正相關(guān),而硝態(tài)氮與第一主軸為負(fù)相關(guān);圍欄處理的土壤PLFA與第一主軸為正相關(guān),而夏季放牧處理的土壤PLFA與第一主軸為負(fù)相關(guān);夏季放牧趨于減少了土壤硝態(tài)氮和水溶性有機(jī)碳,因此夏季放牧可能主要是通過(guò)干擾土壤水溶性有機(jī)碳進(jìn)而導(dǎo)致了典型高寒草甸的土壤微生物群落組成的變化。
綜上,放牧減少了土壤微生物量,改變了土壤微生物群落組成。與夏季放牧相比,冬季放牧對(duì)土壤微生物群落的影響更大。與高寒草原化草甸相比,夏季放牧對(duì)典型高寒草甸的土壤微生物群落影響更大。
References:
[1] Chu H Y. Microbial communities in high latitudes and high altitudes ecosystems. Microbiology China, 2013, 40(1): 123-136.
褚海燕. 高寒生態(tài)系統(tǒng)微生物群落研究進(jìn)展. 微生物學(xué)通報(bào), 2013, 40(1): 123-136.
[2] Wang Q L, Cao G M, Wang C T. Quantitative characters of soil microbes and microbial biomass under different vegetations in alpine meadow. Chinese Journal of Ecology, 2007, 26(7): 1002-1008.
王啟蘭, 曹廣民, 王長(zhǎng)庭. 高寒草甸不同植被土壤微生物數(shù)量及微生物生物量的特征. 生態(tài)學(xué)雜志, 2007, 26(7): 1002-1008.
[3] Peng Y L, Cai X B, Xue H Y. Study on the variation characteristics of soil microbial biomass in the degraded alpine steppes. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16(4): 112-115
彭岳林, 蔡曉布, 薛會(huì)英. 退化高寒草原土壤微生物變化特性研究. 西北農(nóng)業(yè)學(xué)報(bào), 2007, 16(4): 112-115.
[4] Fu G, Shen Z X, Zhang X Z,etal. Respondence of grassland soil respiration to global change. Progress in Geography, 2010, 29(11): 1391-1399.
付剛, 沈振西, 張憲洲, 等. 草地土壤呼吸對(duì)全球變化的響應(yīng). 地理科學(xué)進(jìn)展, 2010, 29(11): 1391-1399.
[5] Schindlbacher A, Rodler A, Kuffner M,etal. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology & Biochemistry, 2011, 43(7): 1417-1425.
[6] Niu L, Liu Y H, Li Y,etal. Microbial community structure of the alpine meadow under different grazing styles in Naqu prefecture of Tibet. Chinese Journal of Applied Ecology, 2015, 26(8): 2298-2306.
牛磊, 劉穎慧, 李?lèi)? 等. 西藏那曲地區(qū)高寒草甸不同放牧方式下土壤微生物群落結(jié)構(gòu)特征. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(8): 2298-2306.
[7] Royer-Tardif S, Bradley R L, Parsons W F J. Evidence that plant diversity and site productivity confer stability to forest floor microbial biomass. Soil Biology & Biochemistry, 2010, 42(5): 813-821.
[8] Li W, Cao W X, Shi S L,etal. Changes in organic carbon and nitrogen storage in alpine meadows under different grazing management regimes. Acta Prataculturae Sinica, 2016, 25(11): 25-33.
李文, 曹文俠, 師尚禮, 等. 放牧管理模式對(duì)高寒草甸生態(tài)系統(tǒng)有機(jī)碳、氮儲(chǔ)量特征的影響. 草業(yè)學(xué)報(bào), 2016, 25(11): 25-33.
[9] Fu G, Shen Z, Zhang X,etal. Response of microbial biomass to grazing in an alpine meadow along an elevation gradient on the Tibetan Plateau. European Journal of Soil Biology, 2012, 52: 27-29.
[10] Si G C, Yuan Y L, Wang J,etal. Effects of fencing on microbial communities and soil enzyme activities in Damxung alpine grassland. Pratacultural Science, 2015, 32(1): 1-10.
斯貴才, 袁艷麗, 王建, 等. 圍封對(duì)當(dāng)雄縣高寒草原土壤微生物和酶活性的影響. 草業(yè)科學(xué), 2015, 32(1): 1-10.
[11] Hiltbrunner D, Schulze S, Hagedorn F,etal. Cattle trampling alters soil properties and changes soil microbial communities in a Swiss sub-alpine pasture. Geoderma, 2012, 170: 369-377.
[12] Oates L G, Balser T C, Jackson R D. Subhumid pasture soil microbial communities affected by presence of grazing, but not grazing management. Applied Soil Ecology, 2012, 59: 20-28.
[13] Sun X, Wang S P, Lin Q Y,etal. Molecular ecological network analyses revealing the effects of livestock grazing on soil microbial. Microbiology China, 2015, 42(9): 1818-1831.
[14] Bardgett R D, Jones A C, Jones D L,etal. Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biology & Biochemistry, 2001, 33(12-13): 1653-1664.
[15] Patra A K, Abbadie L, Clays-Josserand A,etal. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecological Monographs, 2005, 75(1): 65-80.
[16] Zhang L, Dang J, Liu W,etal. Effects of continuous enclosure and fertilization on soil microbial community structure in alpine meadow. Chinese Journal of Applied Ecology, 2012, 23(11): 3072-3078.
張莉, 黨軍, 劉偉, 等. 高寒草甸連續(xù)圍封與施肥對(duì)土壤微生物群落結(jié)構(gòu)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(11): 3072-3078.
[17] Wang B, Sun G, Luo P,etal. Microbial communities of alpine meadow soil in the Eastern Qinghai-Tibetan Plateau subjected to experimental warming and grazing. Chinese Journal of Applied and Environmental Biology, 2011, 17(2): 151-157.
王蓓, 孫庚, 羅鵬, 等. 模擬升溫和放牧對(duì)高寒草甸土壤微生物群落的影響. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2011, 17(2): 151-157.
[18] Zhang W, Parker K M, Luo Y,etal. Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology, 2005, 11(2): 266-277.
[19] Zou Y K, Zhang J N, Yang D L,etal. Phospholipid fatty acid analysis of microbial community structure under different land use patterns in soil ecosystems ofLeymuschinensissteppes. Acta Prataculturae Sinica, 2011, 20(4): 27-33.
鄒雨坤, 張靜妮, 楊殿林, 等. 不同利用方式下羊草草原土壤生態(tài)系統(tǒng)微生物群落結(jié)構(gòu)的PLFA分析. 草業(yè)學(xué)報(bào), 2011, 20(4): 27-33.
[20] Yang Y F, Wu L W, Lin Q Y,etal. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology, 2013, 19(2): 637-648.
[21] Cui S J, Bu R B Y, Zhu X X,etal. Effects of seasonal moderate grazing on plant community of alpine meadow. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(2): 349-357.
崔樹(shù)娟, 布仁巴音, 朱小雪, 等. 不同季節(jié)適度放牧對(duì)高寒草甸植物群落特征的影響. 西北植物學(xué)報(bào), 2014, 34(2): 349-357.
[22] Lange M, Habekost M, Eisenhauer N,etal. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLoS ONE, 2014, 9(5): e96182. doi: 96110.91371/journal.pone.0096182.
[23] Huang X M, Liu S R, Wang H,etal. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species withEucalyptusurophyllain subtropical China. Soil Biology & Biochemistry, 2014, 73: 42-48.
[24] Zhang B, Chen S, He X,etal. Responses of soil microbial communities to experimental warming in alpine grasslands on the Qinghai-Tibet Plateau. PLoS ONE, 2014, 9(8): e103859. doi:103810.101371/journal.pone.0103859.
[25] Li N, Wang G X, Yang Y,etal. Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau. Soil Biology & Biochemistry, 2011, 43(5): 942-953.
[26] Rui Y C, Wang S P, Xu Z H,etal. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China. Journal of Soils and Sediments, 2011, 11(6): 903-914.
[27] Sun J, Wang X D, Cheng G W,etal. Effects of grazing regimes on plant traits and soil nutrients in an alpine steppe, Northern Tibetan Plateau. PLoS ONE, 2014, 9(9): 1-9.
[28] Fu G, Zhang Y J, Zhang X Z,etal. Response of ecosystem respiration to experimental warming and clipping in Tibetan alpine meadow at three elevations. Biogeosciences Discussion, 2013, 10(8): 13015-13047.
[29] Jones D L, Willett V B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry, 2006, 38(5): 991-999.
[30] Baath E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology & Biochemistry, 2003, 35(7): 955-963.
[31] Olsson P A, Baath E, Jacobsen I,etal. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycological Research, 1995, 99(9): 623-629.
[32] Kieft T L, Ringelberg D B, White D C. Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium. Applied and Environmental Microbiology, 1994, 60(9): 3292-3299.
[33] Zhao S, Zhang J N, Lai X,etal. Analysis of microbial biomass C, N and soil microbial community structure ofStipaSteppes using PLFA at grazing and fenced in Inner Mongolia, China. Journal of Agro-Environment Science, 2011, 30(6): 1126-1134.
趙帥, 張靜妮, 賴(lài)欣, 等. 放牧與圍欄內(nèi)蒙古針茅草原土壤微生物生物量碳氮變化及微生物群落結(jié)構(gòu)PLFA分析. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2011, 30(6): 1126-1134.
[34] Tan H Y, Yan R R, Yan Y C,etal. Phospholipid fatty acid analysis of soil microbial communities under different grazing intensities in meadow steppe. Acta Prataculturae Sinica, 2015, 24(3): 115-121.
譚紅妍, 閆瑞瑞, 閆玉春, 等. 不同放牧強(qiáng)度下溫性草甸草原土壤微生物群落結(jié)構(gòu)PLFAs分析. 草業(yè)學(xué)報(bào), 2015, 24(3): 115-121.
[35] Francini G, Liiri M, Mannisto M,etal. Response to reindeer grazing removal depends on soil characteristics in low Arctic meadows. Applied Soil Ecology, 2014, 76: 14-25.
[36] Ford H, Rousk J, Garbutt A,etal. Grazing effects on microbial community composition, growth and nutrient cycling in salt marsh and sand dune grasslands. Biology and Fertility of Soils, 2013, 49(1): 89-98.
[37] Jirout J, Simek M, Elhottova D. Inputs of nitrogen and organic matter govern the composition of fungal communities in soil disturbed by overwintering cattle. Soil Biology & Biochemistry, 2011, 43(3): 647-656.
GrazingalterssoilmicrobialcommunityinalpinegrasslandsofNorthernTibet
FU Gang, SHEN Zhen-Xi*
LhasaPlateauEcosystemResearchStation,KeyLaboratoryofEcosystemNetworkObservationandModeling,InstituteofGeographicSciencesandNaturalResourcesResearch,ChineseAcademyofSciences,Beijing100101,China
A grazing experiment was conducted in two alpine steppe meadows (winter pasture and summer pasture) and one alpine meadow (summer pasture) in Northern Tibet in July 2008. The phospholipid fatty-acid (PLFA) method was used to characterise the soil microbial community. Fungi, gram-negative bacteria, actinomycetes and protozoa in ungrazed soils were significantly higher than grazed soils in winter pasture on the alpine steppe meadow. Total PLFA, fungi, bacteria, gram-positive bacteria, gram-negative bacteria, actinomycetes, arbuscular mycorrhizal fungi and protozoa in the ungrazed soils were also significantly higher than those of grazed soils in the summer alpine meadow. There were significant differences in soil microbial community structure between ungrazed and grazed soils for all three alpine grasslands based on redundancy analysis. Soil inorganic nitrogen and dissolved organic nitrogen significantly affected the variation in the soil PLFA profile in the alpine steppe meadow for the winter pasture, whereas nitrate nitrogen and dissolved organic carbon significantly affected the variation of soil PLFA profile for the summer pastures. Our findings suggested that clarifying the effect of grazing on alpine soil microbial communities needs to consider grazing season and grassland types in Northern Tibet.
fencing; phospholipid fatty-acid; redundancy analysis; grazing season
10.11686/cyxb2017011http//cyxb.lzu.edu.cn
付剛, 沈振西. 放牧改變了藏北高原高寒草甸土壤微生物群落. 草業(yè)學(xué)報(bào), 2017, 26(10): 170-178.
FU Gang, SHEN Zhen-Xi. Grazing alters soil microbial community in alpine grasslands of Northern Tibet. Acta Prataculturae Sinica, 2017, 26(10): 170-178.
2017-01-09;改回日期:2017-05-04
國(guó)家自然基金項(xiàng)目(31600432,41171084)和國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC0502005,2016YFC0502006)資助。
付剛(1984-),男,河北保定人,副研究員,博士。E-mail: fugang@igsnrr.ac.cn
*通信作者Corresponding author. E-mail: shenzx@igsnrr.ac.cn