李鵬程,鄭蒼松,孫 淼,劉紹東,張思平,王國平,
李亞兵,陳 靜,趙新華*,董合林*
(中國農(nóng)業(yè)科學院棉花研究所/棉花生物學國家重點實驗室,河南安陽 455000)
利用15N 示蹤研究不同肥力土壤棉花氮肥減施的產(chǎn)量與環(huán)境效應(yīng)
李鵬程,鄭蒼松,孫 淼,劉紹東,張思平,王國平,
李亞兵,陳 靜,趙新華*,董合林*
(中國農(nóng)業(yè)科學院棉花研究所/棉花生物學國家重點實驗室,河南安陽 455000)
【目的】華北平原棉區(qū)中等肥力棉田經(jīng)濟最佳施氮量為300 kg/hm2左右,這一結(jié)果僅從產(chǎn)量效應(yīng)得出,未充分考慮棉花對氮肥的回收利用和土壤中氮肥的殘留。探討低肥力土壤施氮量及施氮比例對棉花產(chǎn)量及氮肥利用率的影響,以及低、中、高肥力土壤條件下等量施氮效應(yīng),旨在為棉花減氮增效提供理論依據(jù)?!痉椒ā刻镩g試驗選擇了高 (S1)、中 (S2)、低 (S3) 三個肥力水平的地塊,其全氮含量分別為0.83、0.74、0.60 g/kg。低肥力地塊設(shè)置低氮 (N1 113 kg/hm2)、中氮 (N2 225 kg/hm2)、高氮 (N3 338 kg/hm2) 3個氮肥用量;中肥力和高肥力地塊設(shè)低氮量處理,氮肥兩次追施在苗期與初花期進行,氮肥比例為1∶2;此外,設(shè)置低肥力土壤低氮量,氮肥追施在苗期與初花期進行,氮肥分配比例為1∶1。在吐絮70%時采集棉株和土壤樣品,用15N技術(shù)分析了棉株氮素吸收來源、籽棉產(chǎn)量、棉株氮肥回收率和土壤氮肥殘留率?!窘Y(jié)果】低氮處理,土壤肥力對棉花籽棉產(chǎn)量無顯著影響,隨土壤肥力提升,棉株吸收氮素來源于肥料的比例下降,相對增加了對土壤氮素的吸收。棉花植株15N回收率隨施氮量增加顯著下降,隨土壤肥力提高呈下降趨勢,低肥力土壤與中肥力土壤間棉花植株15N回收率差異不顯著,但顯著高于高肥力土壤。高肥力土壤15N殘留率高于低肥力土壤和中肥力土壤。15N損失率隨施氮量和土壤肥力提高顯著增加。低土壤肥力低氮量條件下氮肥分配比例1∶2處理籽棉產(chǎn)量高于1∶1處理。低肥力土壤條件下,中氮處理籽棉15N積累量相對高于高氮和低氮處理,籽棉產(chǎn)量較優(yōu)?!窘Y(jié)論】在較低土壤肥力條件下,施氮225 kg/hm2籽棉產(chǎn)量和氮回收率均優(yōu)于施氮338 kg/hm2,氮肥損失率較低,減氮增效是可行的。高肥力土壤條件下減少氮肥投入可減少肥料的浪費。
土壤肥力;棉花;施氮量;15N回收率;產(chǎn)量
氮肥利用率一般用作物吸收肥料氮量與施氮量的比值來計算,氮肥利用率的高低可反映氮肥管理者施氮的經(jīng)濟效應(yīng)和環(huán)境效應(yīng)的優(yōu)劣。棉花的氮肥利用率較低[1],我國為30%~35%左右[2],美國為30%~38%[3],澳大利亞為30%[4]。傳統(tǒng)的氮肥利用率計算采用的是差減法,用施氮小區(qū)的氮吸收量與對照不施氮小區(qū)的氮吸收量的差值與施氮量的比值來表示,這種計算方法只考慮了當季作物對氮肥的吸收利用,未能反映氮肥對土壤氮消耗的補償效應(yīng)[5]。氮肥的真實利用率是指氮肥施入土壤后直至被消耗完之前,被作物吸收利用的氮肥養(yǎng)分量占被消耗的肥料養(yǎng)分量的比率[6],但在大田試驗中很難將這一理論應(yīng)用到實踐中。同位素示蹤技術(shù)能區(qū)分作物吸收的土壤氮與肥料氮,真實地反映作物對當季甚至上季氮肥的吸收利用情況[7]。
有關(guān)施氮量對棉花產(chǎn)量及氮肥利用率的影響研究報道較多[8–11]。但不同土壤肥力條件下在棉花上施氮效應(yīng)的研究報道較少,Dong等[12]研究了兩處不同地力棉田氮肥和鉀肥施用效果,提出了低地力條件下 (土壤堿解氮含量49.4 mg/kg) 可通過增加種植密度實現(xiàn)增產(chǎn),而高地力條件下 (土壤堿解氮含量68.5 mg/kg) 可適當減少氮肥投入、降低種植密度獲得高產(chǎn)。羅新寧等[13]比較了新疆砂壤土 (土壤堿解氮含量80.2 mg/kg)、重壤土 (土壤堿解氮含量98.4 mg/kg) 條件下氮肥施用效果,在相同施氮量條件下,砂壤土棉花的氮磷鉀積累量高于重壤土,砂壤土、重壤土試點上分別以施氮量315 kg/hm2、210 kg/hm2棉株氮、磷、鉀積累量最大。侯振安等[14]提出了北疆砂壤土棉田最佳經(jīng)濟施氮量為207~286 kg/hm2;壤土棉田最佳經(jīng)濟施氮量為257~311 kg/hm2;粘土棉田最佳經(jīng)濟施氮量為232~312 kg/hm2。上述研究側(cè)重于產(chǎn)量及大量元素養(yǎng)分的積累比較,沒有進行棉株氮肥回收率及土壤氮肥殘留率的深入分析,而且土壤肥力梯度設(shè)置較少。
華北平原棉區(qū)中等肥力棉田經(jīng)濟最佳施氮量為300 kg/hm2左右[9–10],這一結(jié)果從多年試驗得出的氮肥產(chǎn)量效應(yīng)方程得出,并未充分考慮棉花對氮肥的回收利用和土壤中氮肥的殘留,在此施肥量基礎(chǔ)上減氮增效是否可行值得進一步探索。本研究采用15N示蹤技術(shù),在大田條件下,探討不同肥力土壤條件下棉花對等量施氮的響應(yīng),以及低肥力條件下不同施氮量及施氮比例對棉花產(chǎn)量及氮肥利用率的影響,旨在為棉花減氮增效提供理論依據(jù)。
1.1 試驗點概況
試驗于2015年在河南省安陽縣白壁鎮(zhèn)中國農(nóng)業(yè)科學院棉花研究所試驗農(nóng)場 (36°06′N,114°21′E) 大田進行。4至10月平均氣溫21.6℃, ≥ 20℃積溫3607.1℃,日照時數(shù)1425.9 h,降雨量247.5 mm。試驗地為一熟連作棉田,土壤類型為潮土,0—20 cm土層土壤養(yǎng)分狀況見表1,土壤肥力梯度由多年氮肥不等量投入形成。
1.2 試驗設(shè)計與樣品采集、測定方法
為確保氮同位素肥料的施用效果,防止施入的同位素氮肥的流失,本研究在大田條件下,采用鐵框法進行微區(qū)試驗,計算出單株需氮量,確保單株施氮量的準確性,同時對鐵框內(nèi)棉花實行精細管理,以期獲得較理想的試驗結(jié)果。
微區(qū)試驗設(shè)計了不同土壤肥力條件下的等量氮肥處理和低肥力條件下氮肥用量及施用比例處理,分別用 N1S1、N1S2、N1S3、N2S3、N3S3、N1S3(1/1) 表示,其中S1、S2、S3分別代表高、中、低三種土壤肥力,N1、N2、N3分別代表低、中、高三個施氮量,施氮量分別為N 113、225、338 kg/hm2,N1S1、N1S2、N1S3、N2S3、N3S3 處理氮肥在苗期和初花期施用,施用比例為1∶2,N1S3(1/1) 處理苗期和初花期氮肥施用比例為1∶1。
為節(jié)省15N尿素并確保施肥效果,以上每個處理使用15N尿素標記5株,到棉花3葉1心時用鐵框框起來,鐵框長1.2 m、寬0.8 m、高0.6 m,高出地面5 cm,保證棉花生長在鐵框中間。4月25日播種,出苗期5月2日,蕾期6月5日,開花期7月8日,吐絮期8月20日。種植密度為52500株/hm2。苗期(5月15日) 和初花期 (7月10日) 施氮肥,于棉行兩側(cè)開溝,溝深30 cm,均勻撒施后蓋土。15N尿素由上?;ぱ芯吭荷a(chǎn),15N豐度為10.20。磷鉀肥全部底施,于耕翻前施入地里,磷 (P2O5)、鉀 (K2O) 肥施用量均為120 kg/hm2。化控、灌水、病蟲害防控等與大田管理相同。
棉花生長期間單株進行精細管理,整枝及落葉分單株收集烘干后計入棉株總干物重,棉株吐絮70%時取整株樣,整株全部拔除后分根 (子葉節(jié)以下)、莖、葉、籽棉、鈴殼等部位烘干后測不同部位干物重,粉粹后測定15N、全氮含量,計算棉株15N回收率。拔除棉株后,取0—60 cm土壤混合樣,每個鐵框內(nèi)取4個重復,每個重復由行上1個點、距棉行兩邊各20 cm 2個點共3個點混合而成,四分法留樣,自然晾干磨碎,過0.25 mm篩備用,測定15N豐度、全氮含量,計算土壤15N殘留率。植物不同部位全氮含量用半微量凱氏定氮法測定,15N豐度用ZHT-03質(zhì)譜計測定。
1.3 數(shù)據(jù)計算和統(tǒng)計方法
棉株不同部位氮吸收量、棉株吸收的氮素來自氮肥的百分比 (Ndff%)、氮肥回收率的計算參照王富林等[15]的方法,公式如下:
棉株不同部位氮吸收量 (g) = 棉株不同部位生物量 (g) × 全氮含量 (%);
Ndff = (棉株15N 豐度 – 0.3663)/(肥料15N 豐度 –0.3663) × 100%;
棉株不同器官15N累積量 (mg) = 棉株全氮吸收量 (g) × Ndff% × 1000;棉株15N回收率 = 棉株15N含量/15N施入量 × 100%;土壤15N回收率 = 土壤15N含量/15N施入量 × 100%;收獲指數(shù)=籽棉產(chǎn)量/生物量。
所有數(shù)據(jù)采用Excel 2007和DPS11.0軟件進行統(tǒng)計分析。
表1 供試土壤0—20 cm土層養(yǎng)分狀況Table 1 Soil nutrient status in tested field (0–20 cm)
2.1 不同肥力土壤氮肥運籌對棉花單株干物重和籽棉產(chǎn)量的影響
由表2可以看出,N1S3、N2S3、N3S3間棉花單株生物量和籽棉產(chǎn)量差異顯著,N2S3棉花單株生物量和籽棉產(chǎn)量顯著高于N1S3和N3S3;N3S3棉花單株生物量顯著高于N1S3,但籽棉產(chǎn)量則相反。N1S3、N2S3、N3S3棉花單株收獲指數(shù)分別為0.40、0.38和0.37,N1S3收獲指數(shù)較高主要是因為其單株生物量偏低。N1S3的單株干物重與N1S3(1/1)間差異不顯著,但N1S3籽棉產(chǎn)量和收獲指數(shù)顯著高于N1S3(1/1)。
低氮處理在氮肥施用比均為1∶2條件下,不同土壤肥力棉花單株籽棉產(chǎn)量差異不顯著,但N1S1棉花單株生物量顯著高于N1S2和N1S3,N1S2棉花單株根和鈴殼生物量相對偏低。
2.2 不同肥力土壤氮肥運籌對棉花氮素積累的影響
由表3可見,低肥力土壤條件下,隨施氮量增加,棉花單株氮素積累量顯著增加,N3S3棉花單株莖、葉的氮素積累量顯著高于N2S3和N1S3。低肥力土壤低氮投入條件下,氮肥基追比對棉花單株氮積累量無顯著影響,但N1S3棉花單株籽棉氮素累積量顯著高于N1S3(1/1),與表2中單株籽棉產(chǎn)量的結(jié)果一致。
N1S1棉花單株氮素積累量顯著高于N1S2和N1S3,其中棉花單株根、莖、鈴殼等部位氮素積累量較高。N1S2與N1S3間棉花單株、籽棉氮素積累量差異不顯著,與表2中單株籽棉產(chǎn)量的結(jié)果一致。
2.3 不同肥力土壤氮肥運籌對棉花15N積累的影響
表4表明,N2S3棉花單株15N積累量顯著高于N3S3和N1S3,N3S3顯著高于N1S3。N1S3(1/1) 棉花單株15N積累量顯著高于N1S3,其中以棉花單株葉、鈴殼、籽棉等部位15N積累量較高。N1S3棉花單株及其鈴殼、籽棉等部位15N積累量均顯著高于N1S2和N1S1,但N1S2和N1S1間棉花單株15N積累量差異不顯著。隨土壤肥力提高,棉花單株吸收15N量呈下降趨勢,低、中、高肥力條件下棉花單株籽棉15N積累量占單株總積累量的百分比分別為56.8%、56.1%、48.6%。
表2 不同肥力土壤氮肥運籌對棉花單株生物量和籽棉產(chǎn)量的影響 (g/plant)Table 2 Effects of N fertilizer application strategy on seed cotton yield and biomass of cotton plants under different soil fertility
表3 不同肥力土壤氮肥運籌對棉花氮素積累的影響 (g/plant)Table 3 Effects of N fertilizer application strategy on N accumulation of cotton plants under different soil fertility
2.4 不同肥力土壤氮肥運籌對棉花Ndff值的影響
由表5可見,N2S3棉花單株Ndff值顯著高于N3S3和N1S3,N1S3棉花單株Ndff值顯著高于N3S3。N1S3(1/1) 除了棉葉外,棉花單株和根、莖、鈴殼、籽棉等部位Ndff值顯著高于N1S3處理,與單株15N的累積量結(jié)果一致。
N1S3棉花單株及其根、莖、鈴殼、籽棉等部位Ndff值均顯著高于N1S2和N1S1,N1S2顯著高于N1S1。結(jié)果表明,隨土壤肥力提升,棉株吸收肥料15N的比例下降,相對增加了對土壤氮素的吸收比例,這一結(jié)果與棉花單株15N的積累結(jié)果一致。
2.5 不同肥力土壤氮肥運籌對棉花15N回收率和氮肥損失率的影響
圖1表明,N1S3棉株的15N回收率顯著高于N1S1和N1S2,而土壤的15N殘留率顯著高于N1S2,顯著低于N1S1。N1S3棉株和土壤的15N總回收率顯著高于N1S2,但與N1S1間差異不顯著,而15N肥料損失率則相反,N1S2的15N肥料損失率顯著高于N1S3、N1S1,N1S3與N1S1間15N肥料損失率無顯著差異。另外,低氮投入時,氮肥基追比對棉株的15N回收率無顯著影響,N1S3(1/1) 土壤15N殘留率及棉株和土壤的15N總回收率顯著低于N1S3,15N肥料損失率則相反。
在低肥力土壤條件下,隨施氮量增加,棉株15N回收率顯著下降,N2S3土壤15N殘留率顯著高于N1S3和N3S3。隨施氮量增加,棉株和土壤總的15N回收率也顯著下降,而15N肥料損失率呈上升趨勢,N3S3的15N肥料損失率顯著高于N1S3和N2S3(圖1)。
表4 不同肥力土壤氮肥運籌對棉花15N積累的影響 (g/plant)Table 4 Effects of N fertilizer application strategy on 15N accumulation of cotton plants under different soil fertility
表5 不同肥力土壤不同氮肥運籌棉花的Ndff值 (%)Table 5 Ndff% of cotton under different soil fertility and N fertilizer management
圖1 不同肥力土壤下氮肥運籌棉花和土壤15N回收率及氮肥損失率Fig. 1 Effects of N application strategy on 15N recovery of cotton plants and soil and N fertilizer loss under different soil fertility
3.1 較低肥力土壤氮肥運籌對棉花產(chǎn)量和氮肥利用率的影響
在相同土壤條件下,棉花產(chǎn)量一般隨施氮量呈二次曲線變化[9–10],施氮量達到一定閾值,棉花產(chǎn)量達到最高值,之后產(chǎn)量隨施氮量增加而下降。本試驗在低肥力土壤條件下 (土壤全氮含量0.60 g/kg),中氮處理棉花單株生物量、籽棉15N吸收量、籽棉產(chǎn)量均高于高氮和低氮投入處理,高氮處理棉花單株生物量雖然高于低氮處理,但由于收獲指數(shù)低于低氮處理,籽棉產(chǎn)量反而低于低氮處理。隨施氮量增加,棉株15N回收率顯著下降,而且高氮處理土壤15N殘留率 (0—60 cm) 低于中氮和低氮處理,棉株和土壤15N總回收率顯著下降,而氮肥損失率顯著增加,可能與高氮投入時氮肥淋移到深層土壤及通過揮發(fā)等途徑損失有關(guān)。
土壤在不受干擾條件下,土壤中的有機氮和無機氮可以礦化2/3供作物吸收利用,土壤中的大部分有機氮、無機氮有被作物吸收利用的潛力[17]。Hou等[18]報道在大田試驗條件下當季氮肥的回收率為29%~49%,與Fritschi等[19]報道的棉花大田氮肥的回收率43%~49%較接近。本試驗條件下氮肥回收率較低,除了低氮處理氮肥回收率高于30% 外,其他處理氮肥回收率均低于30%,與本試驗低肥力條件下棉株的Ndff%較低有關(guān) (各處理棉株吸收氮素來源于15N肥料的百分比變幅在28.4%~42.1%),另外可能與鐵框處理局部限制了棉花0—60 cm表層根系的橫向生長,從而影響其對氮素的充分吸收導致產(chǎn)量偏低有關(guān)。
低肥力土壤低氮條件下,苗期與初花期施氮比例1∶2處理較1∶1處理顯著提高了籽棉氮素吸收量和籽棉產(chǎn)量,顯著增加了土壤15N殘留率、棉株與土壤的15N總回收率,明顯減少了15N損失率,此結(jié)果與馬宗斌等[20]和李鵬程等[21]結(jié)果一致。
3.2 不同肥力土壤棉花產(chǎn)量及氮肥利用率
本試驗在氮肥施用量較低條件下,高肥力土壤棉花單株生物量、氮素吸收總量顯著高于中、低肥力土壤;但棉花對肥料15N的吸收量、棉株15N回收率卻是低肥力土壤高于中、高肥力土壤;隨土壤肥力的提升,棉花對肥料氮素的吸收比例顯著下降,對土壤氮素的吸收比例顯著上升;高肥力土壤肥料15N殘留率顯著高于中、低肥力土壤。這些結(jié)果說明了低肥力土壤施氮效果要優(yōu)于中、高肥力土壤,與羅新寧等[13]結(jié)果一致。在土壤肥力較高時,可以充分發(fā)揮土壤無機氮庫的作用,減少施氮量,提高氮肥利用率。中、高肥力土壤下棉花的施氮效應(yīng)有待進一步研究。
在較低肥力土壤條件下 (土壤全氮含量0.60 g/kg),施氮225 kg/hm2處理棉花籽棉產(chǎn)量和15N回收率均優(yōu)于施氮338 kg/hm2處理,而肥料損失率顯著低于施氮338 kg/hm2處理。因此,在該生態(tài)區(qū)域內(nèi)棉花在常規(guī)施氮量基礎(chǔ)上減少氮肥投入是可行的。較低施氮量 (113 kg/hm2) 時,高肥力土壤 (土壤全氮含量0.83 g/kg) 棉花15N回收率顯著低于低肥力土壤,因此較高肥力土壤棉田可以適當降低施氮量,充分利用棉花對土壤氮素的吸收,減少肥料浪費,實現(xiàn)減氮增效。
[ 1 ]Yang, G Z, Chu K, Tang H Y,et al. Fertilizer15N accumulation,recovery and distribution in cotton plant as affected by N rate and split[J]. Journal of Integrative Agriculture, 2013, 12: 999–1007.
[ 2 ]Yang G Z, Tang H Y, Nie Y C,et al. Responses of cotton growth,yield, and biomass to nitrogen split application ratio[J]. European Journal of Agronomy, 2011, 35: 164–170.
[ 3 ]Navarro-Ainza J A C. Fertilizer nitrogen recovery and15N and bromide distribution in the soil profile as affected by the time of application on an irrigated upland cotton (Gossypium hirsutumL.)[D]. Tucson: PhD Dissertation, University of Arizona, USA, 2007.
[ 4 ]Constable G A, Rochester I J. Nitrogen application to cotton on clay soil: timing and soil testing[J]. Agronomy Journal, 1988, 80:498–502.
[ 5 ]巨曉棠. 氮肥有效率的概念及意義—兼論對傳統(tǒng)氮肥利用率的理解誤區(qū)[J]. 土壤學報, 2014, 51(5): 921–933.Ju X T. The concept and meanings of nitrogen fertilizer availability ratio─Discussing misunderstanding of traditional nitrogen use efficiency[J]. Acta Pedologica Sinica, 2014, 51(5): 921–933.
[ 6 ]王火焰, 周健民. 肥料養(yǎng)分真實利用率計算與施肥策略[J]. 土壤學報, 2014, 51(2): 216–225.Wang H Y, Zhou J M. Calculation of real fertilizer use efficiency and discussion on fertilization strategies[J]. Acta Pedologica Sinica, 2014,51(2): 216–225.
[ 7 ]王西娜, 王朝輝. 旱地土壤中殘留肥料氮的動向及作物有效性[J].土壤學報, 2016, 53(5): 1202–1212.Wang X N, Wang Z H. Dynamics and availability to crops of residual fertilizer nitrogen in upland soil[J]. Acta Pedologica Sinica, 2016,53(5): 1202–1212.
[ 8 ]李鵬程, 董合林, 劉愛忠, 等. 種植密度氮肥互作對棉花產(chǎn)量及氮素利用效率的影響[J]. 農(nóng)業(yè)工程學報, 2015, 31(23): 122–130.Li P C, Dong H L, Liu A Z,et al. Effects of planting density and nitrogen fertilizer interaction on yield and nitrogen use efficiency of cotton[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 122–130.
[ 9 ]李鵬程, 董合林, 劉愛忠, 等. 施氮量對棉花功能葉片生理特性、氮素利用效率及產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學報, 2015, 21(1):81–91.Li P C, Dong H L, Liu A Z,et al. Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 81–91.
[10]馬宗斌, 嚴根土, 劉桂珍, 等. 施氮量對黃河灘區(qū)棉花葉片生理特性、干物質(zhì)積累及產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學報, 2013,19(4): 849–857.Ma Z B, Yan G T, Liu G Z,et al. Effects of nitrogen application rates on main physiological characteristics of leaves, dry matter accumulation and yield of cotton cultivated in the Yellow River bottomlands[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(4):849–857.
[11]閔偉, 侯振安, 冶軍, 等. 灌溉水鹽度和施氮量對棉花產(chǎn)量和水氮利用的影響[J]. 植物營養(yǎng)與肥料學報, 2013, 19(4): 858–867.Min W, Hou Z A, Ye J,et al. Effects of water salinity and nitrogen rate on yield, WUE and NUE of cotton under drip irrigation with saline water conditions[J]. Journal of Plant Nutrition and Fertilizer,2013, 19(4): 858–867.
[12]Dong H Z, Kong X Q, Li W J,et al. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility[J]. Field Crops Research, 2010, 119(6): 106–113.
[13]羅新寧, 陳冰, 張巨松, 等. 氮肥對不同質(zhì)地土壤棉花生物量與氮素積累的影響[J]. 西北農(nóng)業(yè)學報, 2009, 18(4): 160–166.Luo X N, Chen B, Zhang J S,et al. Effect of nitrogen applied levels on the dynamics of biomass, nitrogen accumulation of cotton plant on different soil textures[J]. Acta Agriculture Boreali-occidentalies Sinica, 2009, 18(4): 160–166.
[14]侯振安, 王煒, 郭琛, 等. 不同土壤肥力棉田氮肥適宜用量研究[J].新疆農(nóng)業(yè)科學, 2004, 41(S1): 121–124.Hou Z A, Wang W, Guo C,et al. Study on suitable nitrogen applied rate of cotton in different soil fertility conditions[J]. Xinjiang Agricultural Sciences, 2004, 41(S1): 121–124.
[15]王富林, 周樂, 李洪娜, 等. 不同氮磷配比對富士蘋果幼樹生長及15N-尿素吸收、分配與利用的影響[J]. 植物營養(yǎng)與肥料學報, 2013,19(5): 1102–1108.Wang F L, Zhou L, Li H N,et al. Effect of N, P ratios on the growth and absorption, distribution and utilization of15N-urea of Fuji apple saplings[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5):1102–1108.
[16]林濤, 郭仁松, 崔建平, 等. 施氮對南疆荒漠綠洲滴灌棉田產(chǎn)量及棉纖維品質(zhì)的影響[J]. 西北農(nóng)業(yè)學報, 2013, 22(11): 47–53.Lin T, Guo R S, Cui J P,et al. Effects of nitrogen application on cotton yield and fiber quality under drip irrigation condition in oasis of South Xinjiang[J]. Acta Agriculture Boreali-occidentalies Sinica,2013, 22(11): 47–53.
[17]Seneviratne G. Two-thirds law of nitrogen mineralization under undisturbed soil conditions: A new theory[J]. Pedosphere, 2008,18(2): 149–153.
[18]Hou Z A, Chen W P, Li X,et al. Effects of salinity and fertigation practice on cotton yield and15N recovery[J]. Agricultural Water Management, 2009, 96(10): 1483–1489.
[19]Fritschi F B, Roberts B A, Rains D W,et al. Fate of nitrogen-15 applied to irrigated acala and pima cotton[J]. Agronomy Journal,2004, 96(3): 646–655.
[20]馬宗斌, 劉桂珍, 嚴根土, 等. 施氮方式對轉(zhuǎn)基因棉花 Bt 蛋白含量及產(chǎn)量的影響[J]. 生態(tài)學報, 2013, 33(23): 7601–7609.Ma Z B, Liu G Z, Yan G T,et al. Effects of nitrogen fertilizer methods on the content ofBacillus thuringiensisinsecticidal protein and yield of transgenic cotton[J]. Acta Ecologica Sinica, 2013,33(23): 7601–7609.
[21]李鵬程, 董合林, 劉愛忠, 等. 應(yīng)用15N 研究氮肥運籌對棉花氮素吸收利用及產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學報, 2015, 21(3):590–599.Li P C, Dong H L, Liu A Z,et al. Effects of nitrogen fertilizer application strategy on N uptake, utilization and yield of cotton using a15N trace technique[J]. Journal of Plant Nutrition and Fertilizer,2015, 21(3): 590–599.
Using15N tracing technique to study the yield and environmental effect of decreasing N fertilization on cotton in different fertility fields
LI Peng-cheng, ZHENG Cang-song, SUN Miao, LIU Shao-dong, ZHANG Si-ping, WANG Guo-ping,LI Ya-bing, CHEN Jing, ZHAO Xin-hua*, DONG He-lin*
(Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China)
【Objectives】In the medium fertility field of cotton area in the Yellow River catchments, the North China Plain, the economic optimum nitrogen (N) rate for cotton is 300 kg/hm2, and the result was derived from cotton yield response to N fertilizer rate in field trials for many years, but the N application rate did not fully consider residual N in the soil of cotton field. This paper was to explore effects of different N application rates and ratios on seed cotton yield and N use efficiency under low fertility soil, and effects of the same N application rate under low, medium and high fertility soils in field conditions aimed to provide a theoretical basis for Nfertilization management of cotton.【Methods】Field trials of nitrogen fertilizer management were carried out using15N tracer technique and cotton was used as tested material. Fields with soil total N content of 0.83, 0.74 and 0.60 g/kg were taken as high (S1), media (S2) and low (S3) fertility fields for the experiment. Three N application rates were set up for the low fertility field: 113 kg/hm2(N1), 225 kg/hm2(N2) and 338 kg/hm2(N3). The N fertilizer was divided into equal two parts and topdressed at the seedling and flowering stages. A treatment of twice N topdressing in ratio of 1∶2 was also setup in the low fertility field with low N rate. Cotton and soil (0–60 cm)were sampled at 70% boll opening stage, the contribution of N absorbed from fertilizer and soil were determined using15N tracer technique. The seed cotton yield, and15N recovery rate of cotton plants were investigated.【Results】For the low N rate, the soil fertility had no significant effect on seed cotton yields, the plant N uptake proportion deprived from fertilizer was declined with the increase of soil fertility, while the N uptake proportion deprived from soil nitrogen was increased. The15N recovery rate of cotton plants was decreased significantly with the increase of N application rate, and declined with increase of the soil fertility. There were no significant differences between the low soil fertility and medium soil fertility for15N recovery rate of cotton plant,but the recovery rate under the low soil fertility was significantly higher than that of the high fertility soil. The15N residual rate of high fertility soil was higher than those of the low fertility soil and the medium fertility soil. The15N loss rate was increased significantly with the increase of N application rate and soil fertility. Seed cotton yield for the low N rate at the ratio of 1∶2 was higher than that at the ratio of 1∶1. Under the condition of low fertility soil, seed cotton yield for N 225 kg/hm2was relatively higher than those for N 113 kg/hm2and N 338 kg/hm2because of more15N uptake by cotton plants.【Conclusions】Under the condition of lower soil fertility, the seed cotton yield and15N recovery rate for the moderate N rate (225 kg/hm2) were higher than those for high N rate(338 kg/hm2), and the N fertilizer loss rate was less, which demonstrated that it was feasible for improvement of both N use efficiency and seed cotton yield by decreasing input of N fertilizer. Low N input under the condition of high fertility soil could decrease N fertilizer loss.
soil fertility; cotton; N application rate;15N recovery rate; seed cotton yield
2016–09–26 接受日期:2016–11–22
國家科技支撐計劃(2014BAD03B02);農(nóng)業(yè)部公益性行業(yè)(農(nóng)業(yè))科研專項(201503121,201203096);棉花產(chǎn)業(yè)技術(shù)體系(CARS-18-17)資助。
李鵬程(1972—),男,湖北荊州人,博士,副研究員,主要從事棉花氮肥高效利用及機理研究。Tel:0372-2562225,E-mail:lipengchengcri@163.com。 * 通信作者 E-mail:zhaoxinhua1968@126.com;donghl668@sina.com