国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

ACC 對(duì)不同氮效率油菜生長(zhǎng)后期硝態(tài)氮再利用的調(diào)控機(jī)理

2017-11-01 07:30宋海星官春云陳柯豪張振華
關(guān)鍵詞:老葉新葉全氮

余 音,盧 勝,宋海星,官春云,陳柯豪,張振華*

(1 湖南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院/南方糧油作物協(xié)同創(chuàng)新中心/土壤肥料資源高效利用國(guó)家工程實(shí)驗(yàn)室/農(nóng)田污染控制與農(nóng)業(yè)資源利用湖南省重點(diǎn)實(shí)驗(yàn)室/植物營(yíng)養(yǎng)湖南省普通高等學(xué)校重點(diǎn)實(shí)驗(yàn)室,湖南長(zhǎng)沙 410128;2 國(guó)家油料改良中心湖南分中心,湖南長(zhǎng)沙 410128)

ACC 對(duì)不同氮效率油菜生長(zhǎng)后期硝態(tài)氮再利用的調(diào)控機(jī)理

余 音1,盧 勝1,宋海星1,官春云2,陳柯豪1,張振華1*

(1 湖南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院/南方糧油作物協(xié)同創(chuàng)新中心/土壤肥料資源高效利用國(guó)家工程實(shí)驗(yàn)室/農(nóng)田污染控制與農(nóng)業(yè)資源利用湖南省重點(diǎn)實(shí)驗(yàn)室/植物營(yíng)養(yǎng)湖南省普通高等學(xué)校重點(diǎn)實(shí)驗(yàn)室,湖南長(zhǎng)沙 410128;2 國(guó)家油料改良中心湖南分中心,湖南長(zhǎng)沙 410128)

【目的】研究了進(jìn)一步解析乙烯對(duì)油菜生長(zhǎng)后期硝態(tài)氮再利用的影響,揭示植株生長(zhǎng)后期氮素再利用的生理機(jī)制。【方法】以氮高效油菜品種湘油15 (27號(hào)) 與氮低效油菜品種814 (6號(hào)) 為試驗(yàn)材料,在15 mmol/L氮水平下,每7天澆灌一次50 mL 100 μmol/L 1-氨基環(huán)丙烷-1-羧酸 (1-am-inocyclopropane-1-carboxylic acid,簡(jiǎn)稱(chēng)ACC),研究ACC對(duì)植物生長(zhǎng)后期 (花期、收獲期) 氮素再利用的影響及其與氮素利用效率 (NUE) 的關(guān)系。并用擬南芥野生型 (col.0) 和突變體 (nrt1.5) 材料作為驗(yàn)證,分別于玻璃頂網(wǎng)室和22℃恒溫培養(yǎng)室進(jìn)行砂培試驗(yàn)?!窘Y(jié)果】ACC處理顯著抑制了油菜BnNRT1.5的表達(dá),且植株的衰老可以顯著誘導(dǎo)BnNRT1.5的表達(dá)。相對(duì)于對(duì)照處理,ACC處理植株韌皮部汁液的再轉(zhuǎn)運(yùn)能力顯著降低,導(dǎo)致下部葉含量顯著升高,中部葉含量顯著下降,上部葉含量無(wú)顯著變化,進(jìn)而導(dǎo)致植株含氮量和籽粒含氮量顯著提高,以及以生物量和籽粒產(chǎn)量為基礎(chǔ)的氮素利用效率 (NUE) 顯著降低。由此推測(cè),油菜生長(zhǎng)后期氮素的再利用能力受到NRT1.5基因的顯著調(diào)控。擬南芥野生型和突變體材料的驗(yàn)證結(jié)果表明,相對(duì)于擬南芥野生型 (col.0) 材料,擬南芥nrt1.5植株生長(zhǎng)后期相對(duì)于col.0有更多的累積在植株衰老葉片中,更少的通過(guò)韌皮部轉(zhuǎn)運(yùn)到生長(zhǎng)旺盛的新葉,植物生長(zhǎng)后期氮素從老葉向新葉轉(zhuǎn)運(yùn)的再利用能力顯著降低。【結(jié)論】油菜生長(zhǎng)后期氮素的再利用能力受到ACC的顯著調(diào)控,油菜和擬南芥NRT1.5基因表達(dá)量分別受到抑制或者發(fā)生基因突變時(shí),會(huì)導(dǎo)致植株韌皮部汁液再轉(zhuǎn)運(yùn)量減少,更多累積在衰老葉片中而不能得以高效的再利用。因此,調(diào)控油菜生長(zhǎng)后期NRT1.5的表達(dá),提高油菜生長(zhǎng)后期氮素的再轉(zhuǎn)運(yùn)和利用可以作為提高氮素利用效率的有效手段。

油菜;NRT1.5;ACC;氮素再利用;氮素利用效率

氮 (N) 是作物生長(zhǎng)所必需的營(yíng)養(yǎng)元素之一,而生長(zhǎng)后期氮素再利用是決定作物產(chǎn)量至關(guān)重要的因素之一[1–2]。據(jù)統(tǒng)計(jì),目前油菜氮肥施用量已達(dá)200~300 kg/hm2,氮肥利用效率則不超過(guò)40%,造成了大量資源浪費(fèi)和嚴(yán)重的環(huán)境問(wèn)題[3]。硝態(tài)氮是旱地土壤中氮素的主要形態(tài),是作物的重要氮源,高效利用從土壤中吸收的并且累積在體內(nèi)是作物應(yīng)對(duì)缺氮環(huán)境的重要保證[4]。在蔬菜研究領(lǐng)域,在葉片的累積和再利用一直是研究熱點(diǎn)[5–6],但對(duì)經(jīng)濟(jì)作物有關(guān)的研究不多。

大量研究表明,開(kāi)花前植物體內(nèi)貯存的氮向籽粒的重新分配要比開(kāi)花后期吸收的氮對(duì)籽粒氮貢獻(xiàn)更重要[7],在作物收獲期籽粒中50%~90%的氮來(lái)自營(yíng)養(yǎng)器官氮素再利用[8]的再利用與氮素利用效率密切相關(guān),開(kāi)花后作物對(duì)氮素的吸收減少,油菜角果和花中氮的累積主要靠?jī)?nèi)源氮的再轉(zhuǎn)運(yùn),再利用量高的植株氮素利用效率也高[9–11]。再分配對(duì)植株庫(kù)器官發(fā)育乃至整個(gè)植株的代謝生理都能夠產(chǎn)生重要影響。

植物生長(zhǎng)后期氮素再轉(zhuǎn)移主要由植株韌皮部來(lái)運(yùn)輸,NRT1.7基因的分離及其功能鑒定打破了無(wú)機(jī)氮不參與氮素再分配的傳統(tǒng)理論,可以通過(guò)葉片、根部韌皮部被直接轉(zhuǎn)運(yùn)[12–14]。迄今共發(fā)現(xiàn)3個(gè)NRT家族成員參與韌皮部運(yùn)輸:NRT1.7、NRT1.9、NRT2.4,其中AtNRT1.7是葉片再分配的重要調(diào)節(jié)基因[12],AtNRT1.9基因具有根部韌皮部裝載的功能[13],AtNRT2.4參與地上部韌皮部的運(yùn)輸過(guò)程[14]。AtNRT1.5作為NRT1家族成員之一,具有裝載根部木質(zhì)部的功能[15]。近年研究發(fā)現(xiàn),擬南芥突變體nrt1.5中在根與莖中的分配比例發(fā)生變化,有更多的留在了植物根部[16–17]。乙烯是調(diào)控生長(zhǎng)發(fā)育、成熟衰老的重要內(nèi)源激素,具有影響果實(shí)成熟及植物的衰老等多種功能[18–19]。最近有研究表明,乙烯對(duì)擬南芥AtNRT1.5的表達(dá)有影響,在乙烯前體ACC的作用下AtNRT1.5表達(dá)量被抑制[20]。隨著擬南芥NRT家族基因的相繼克隆,越來(lái)越多轉(zhuǎn)運(yùn)蛋白的具體功能被鑒定,但NRT家族基因的功能很少能在農(nóng)作物生產(chǎn)實(shí)踐中得到驗(yàn)證。通過(guò)前人的研究發(fā)現(xiàn)NRT1.5基因?qū)Φ霓D(zhuǎn)運(yùn)具有很強(qiáng)的調(diào)控能力,因此猜想NRT1.5基因是否會(huì)對(duì)油菜生長(zhǎng)后期葉片氮素營(yíng)養(yǎng)的再利用起到一定的調(diào)控作用?

基于上述假設(shè),本文以氮高效品種湘油15 (27號(hào)) 與氮低效品種814 (6號(hào)) 為試驗(yàn)材料,用不同基因型擬南芥 (col.0、nrt1.5) 材料作為驗(yàn)證,分別進(jìn)行盆栽試驗(yàn),研究轉(zhuǎn)運(yùn)蛋白BnNRT1.5對(duì)油菜生長(zhǎng)后期累積和再利用的影響,進(jìn)一步明確NRT1.5在植物生長(zhǎng)后期再利用過(guò)程中的作用,為進(jìn)一步揭示油菜生長(zhǎng)后期氮素再利用的調(diào)控機(jī)理及其與NUE的關(guān)系提供參考。

1 材料與方法

1.1 試驗(yàn)設(shè)計(jì)

油菜試驗(yàn)于2015~2016年在湖南農(nóng)業(yè)大學(xué)資源與環(huán)境試驗(yàn)基地的玻璃網(wǎng)室中進(jìn)行,通風(fēng)效果較好,與室外環(huán)境相通。供試油菜品種為本課題組經(jīng)過(guò)大田試驗(yàn)篩選出的氮高效品種湘油15 (27號(hào)) 和氮低效品種814 (6號(hào)),其氮高效品種的氮素吸收與利用效率均高于氮低效品種。于2015年10月5日大田育苗,11月10日移栽,用32 cm × 23 cm × 24 cm紅色塑料桶培育,每桶育一株,以水和稀鹽酸清洗干凈的珍珠巖作基質(zhì),進(jìn)行砂培試驗(yàn)。在油菜不同生育期施用Hoagland完全營(yíng)養(yǎng)液,每5天澆灌一次營(yíng)養(yǎng)液,苗期、抽苔期、開(kāi)花期、角果期澆灌量分別為400、750、500和250 mL[9]。營(yíng)養(yǎng)液氮水平為15 mmol/L。于花期初期 (3月初) 開(kāi)始澆灌1-氨基環(huán)丙烷-1-羧酸 (1-am-inocyclopropane-1-carboxylic acid,ACC),每7天澆灌一次,ACC體積為50 mL,濃度為100 μmol/L,以澆灌等量清水作為對(duì)照處理 (CK)。每個(gè)處理重復(fù)3次。

擬南芥試驗(yàn)于湖南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院溫室中進(jìn)行,室內(nèi)溫度控制在22℃,光照強(qiáng)度為80~200 mmol/(m2·s),16 h 光照/8 h 黑暗。試驗(yàn)為砂培試驗(yàn),選取擬南芥野生型 (col.0) 和突變體 (nrt1.5-3,以col.0為背景的NRT1.5突變體) 材料[20]。育苗基質(zhì)為蛭石∶珍珠巖 = 3∶1,發(fā)芽一周后移栽,采用10 cm × 10 cm × 10 cm 塑料盒子培育 (外壁用黑色塑料袋包裹避光),以洗凈的珍珠巖作基質(zhì),每盒培育8株。每5天澆灌一次1/4 Plant Nutrient Solution (PNS)營(yíng)養(yǎng)液[20],苗期、抽苔期、開(kāi)花期、角果期澆灌體積分別為100、150、100、50 mL。營(yíng)養(yǎng)液氮水平均為2.25 mmol/L,每個(gè)突變體重復(fù)4次,隨機(jī)區(qū)組排列。

1.2 取樣及測(cè)定方法

在油菜盛花期,摘取3株下、中、上部 (從下往上數(shù)第1、3、6葉位) 各一片葉,分別洗凈、擦干、剪碎并稱(chēng)取1.00 g樣品,用于不同葉位含量的測(cè)定,重復(fù)3次;剪取油菜的最下端兩片 (老葉) 葉柄及從下往上數(shù)第10、11片 (新葉) 葉柄,迅速將其平整面插入裝有15 mL 10 mmol/L的EDTA-Na2溶液中,黑暗中,25℃恒溫5小時(shí),收集韌皮部汁液[21],提取液用于油菜老葉和新葉的韌皮部汁液含量測(cè)定;在油菜花期和角果初期分別取地上生長(zhǎng)健壯部葉片混勻,液氮速凍,于–80℃冰箱保存,用于測(cè)定BnNRT1.5的表達(dá)量。收獲期樣品于105℃下殺青,60℃~70℃烘干、稱(chēng)重,用于測(cè)定植株全氮,重復(fù)5次。在擬南芥盛花期,取8株蓮座葉混合樣、莖上葉混合樣分別作為老葉、新葉,剪碎后稱(chēng)取0.500 g用于測(cè)定鮮樣NO3–的含量;韌皮部汁液收集液體積為1 mL,收集方法同上;在80%~90%角果變黃時(shí)收獲,殺青、烘干后稱(chēng)重,用于測(cè)定全氮。

NO3–含量用可見(jiàn)光分光光度計(jì)法測(cè)定[22];全氮測(cè)定采用濃硫酸–雙氧水消化[23],用AA3連續(xù)流動(dòng)分析儀 (型號(hào): Auto Analyzer 3,德國(guó)) 測(cè)定[24];提取葉片RNA并轉(zhuǎn)換成cDNA,采用表1的目標(biāo)基因和參考基因的引物序列進(jìn)行qPCR擴(kuò)增[20],測(cè)定BnNRT1.5的相對(duì)表達(dá)量。

計(jì)算公式[25]:

籽粒產(chǎn)量為基礎(chǔ)的氮素生理效率 = 籽粒產(chǎn)量/植株全氮總量

生物產(chǎn)量為基礎(chǔ)的氮素生理效率 = 生物產(chǎn)量/植株全氮總量

氮收獲指數(shù) (NHI) = 籽粒全氮/植株全氮總量收獲指數(shù) (HI) = 籽粒產(chǎn)量/生物產(chǎn)量

變化率 = (處理值 – 對(duì)照值)/對(duì)照值 × 100%

1.3 數(shù)據(jù)分析與處理

試驗(yàn)所得數(shù)據(jù)用Microsoft Excel軟件計(jì)算,用DPS軟件統(tǒng)計(jì)分析。

2 結(jié)果與分析

表1 油菜qRT-PCR的引物序列表Table 1 Sequences of qRT-PCR primer for rape

表2 不同氮效率油菜花期不同葉位量及比例Table 2 content and proportion in different leaves of different B. napus genotypes at flowering stage

表2 不同氮效率油菜花期不同葉位量及比例Table 2 content and proportion in different leaves of different B. napus genotypes at flowering stage

注 (Note):數(shù)據(jù)后不同小寫(xiě)字母表示橫排數(shù)據(jù)差異達(dá) 5% 顯著水平 Values followed by different lowercase letters indicate the horizontal data significant differences at the 5% level. 不同大寫(xiě)字母表示豎排數(shù)據(jù)比較差異達(dá) 5% 顯著水平 Values followed by different capital letters indicate the vertical data significant differences at the 5% level.

下部葉/上部葉Lower/upper leaf(%)6 號(hào) CK 88.68 ± 8.77 cB 328.77 ± 10.32 bA 442.85 ± 17.25 aA 26.64 D 19.92 C No.6 ACC 253.44 ± 27.30 bA 147.56 ± 15.46 cB 500.10 ± 37.86 aA 161.45 B 51.13 B變化率 Change rate (%) 185.8 –95.6 12.9 27 號(hào) CK 82.93 ± 2.02 bB 114.93 ± 39.296 aB 142.41 ± 25.87 aD 77.11 C 59.37 B No.27 ACC 246.60 ± 53.50 aA 113.10 ± 32.006 bB 231.60 ± 41.50 aC 220.99 A 105.98 A變化率 Change rate (%) 197.4 –1.6 62.6品種Genotype處理Treatment下部葉Lower leaf(μg/g)中部葉Middle leaf(μg/g)上部葉Upper leaf(μg/g)下部葉/中部葉Lower/middle leaf(%)

表3 不同氮效率油菜花期老葉、新葉韌皮部汁液中含量及比例Table 3 content and proportion in phloem sap of the old leaves and new leaves in different B. napus genotypes

表3 不同氮效率油菜花期老葉、新葉韌皮部汁液中含量及比例Table 3 content and proportion in phloem sap of the old leaves and new leaves in different B. napus genotypes

注 (Note): 數(shù)據(jù)后不同小寫(xiě)字母表示橫排數(shù)據(jù)間差異達(dá) 5% 顯著水平 Values followed by different lowercase letters indicate the horizontal data significant differences at the 5% level. 數(shù)據(jù)后不同大寫(xiě)字母表示豎排數(shù)據(jù)間差異達(dá) 5% 顯著水平 Values followed by different capital letters indicate the vertical data significant differences at the 5% level.

品種 Genotype 處理 Treatment 老葉 Old leaf (μg/mL) 新葉 New leaf (μg/mL) 老葉/新葉 Old/new leaf (%)6號(hào) CK 23.95 ± 1.43 bA 46.57 ± 9.34 aA 52.39 ± 7.45 B No.6 ACC 12.05 ± 2.70 bB 27.76 ± 3.93 aB 43.08 ± 3.41 B變化率 Change rate (%) –49.69 –40.39 27號(hào) CK 22.76 ± 3.22 bA 28.71 ± 1.43 aB 79.60 ± 13.43 A No.27 ACC 13.24 ± 1.49 bB 28.78 ± 2.86 aB 45.97 ± 1.37 B變化率 Change rate (%) –42.83 0.24

2.2 ACC處理對(duì)油菜產(chǎn)量及氮效率的影響

表4結(jié)果表明,27號(hào)生物產(chǎn)量、籽粒產(chǎn)量、籽粒含氮量、收獲指數(shù)、氮收獲指數(shù)和NUE (生物產(chǎn)量/植株全氮) 均顯著高于6號(hào)品種,植株含氮量和植株全氮差異并不顯著。

不同品種油菜對(duì)ACC的響應(yīng)存在差異。6號(hào)品種ACC與CK相比,生物產(chǎn)量、籽粒產(chǎn)量、NUE(生物產(chǎn)量/植株全氮)、NUE (籽粒產(chǎn)量/植株全氮) 顯著降低,但籽粒含氮量卻顯著提高;27號(hào)品種ACC與CK相比,ACC植株全氮和收獲指數(shù)顯著提高,雖然生物產(chǎn)量差異不顯著,但NUE顯著低于CK。

表4 不同基因型油菜產(chǎn)量及氮效率的變化值Table 4 The variation of seed yield and N use efficiency of different B. napus genotypes

2.3 油菜BnNRT1.5基因表達(dá)量對(duì)ACC的響應(yīng)

圖1表明,ACC處理之后,27號(hào)和6號(hào)在花期以及角果初期BnNRT1.5的表達(dá)量顯著下降。說(shuō)明ACC處理可以顯著抑制油菜生長(zhǎng)后期BnNRT1.5的表達(dá)。相對(duì)于盛花期,角果初期BnNRT1.5的表達(dá)量顯著升高,表明衰老對(duì)于BnNRT1.5的表達(dá)有強(qiáng)烈誘導(dǎo)作用。

2.4AtNRT1.5對(duì)擬南芥葉片及韌皮部汁液中含量及分配的影響

表5表明,col.0老葉中含量顯著低于新葉,含量老葉/新葉為59.0%,但在nrt1.5-3中卻相反,老葉中含量顯著高于新葉,含量老葉/新葉為153.1%。說(shuō)明AtNRT1.5突變之后,在擬南芥老葉中顯著積累。

由表6看出,AtNRT1.5突變導(dǎo)致擬南芥韌皮部汁液含量和分配改變。col.0新葉韌皮部汁液含量為45.30 μg/mL,顯著高于其老葉中含量。nrt1.5-3新葉韌皮部汁液含量為 59.07 μg/mL,顯著低于其老葉中含量。與col.0相比,突變體nrt1.5-3新葉韌皮部汁液含量下降67.3%,達(dá)到差異顯著水平;老葉韌皮部汁液含量下降 36.7%,達(dá)到差異顯著水平。col.0韌皮部含量老葉/新葉比例為45.6%,而nrt1.5-3中比例高達(dá)87.9%。說(shuō)明AtNRT1.5突變影響植株韌皮部汁液中在庫(kù)源之間的再運(yùn)輸,老葉中通過(guò)韌皮部向新葉的轉(zhuǎn)運(yùn)減少,這是導(dǎo)致突變體nrt1.5-3老葉顯著積累的主要原因之一。

圖1 不同油菜基因型地上部BnNRT1.5相對(duì)表達(dá)量Fig. 1 Relative expression of BnNRT1.5 in shoot of B.napus genotypes

2.5AtNRT1.5對(duì)擬南芥產(chǎn)量及氮效率的影響

收獲期產(chǎn)量及氮效率是評(píng)價(jià)植株生長(zhǎng)情況的重要指標(biāo)。從表7可知,擬南芥植株nrt1.5-3含氮量、籽粒含氮量顯著高于col.0。nrt1.5-3生物產(chǎn)量、籽粒產(chǎn)量、籽粒全氮、NUE (籽粒產(chǎn)量/植株全氮) 和NUE(生物產(chǎn)量/植株全氮) 均顯著低于col.0??梢?jiàn),擬南芥AtNRT1.5基因突變會(huì)導(dǎo)致植株的生物量、籽粒產(chǎn)量、收獲指數(shù)、氮收獲指數(shù)和NUE顯著下降。

3 討論

3.1 乙烯對(duì)不同氮效率油菜生長(zhǎng)后期全氮和產(chǎn)量的影響

乙烯是重要的內(nèi)源激素,能調(diào)控植物的代謝,同時(shí)乙烯作為一種信號(hào)分子,參與植物的抗病、機(jī)械損傷及抗逆性反應(yīng),影響果蔬的成熟與衰老,調(diào)控植物代謝基因的表達(dá)[26]。植物生長(zhǎng)調(diào)節(jié)劑乙烯利通過(guò)釋放乙烯起作用。ACC作為乙烯合成的前體物質(zhì),經(jīng)過(guò)ACS、ACO等酶的催化合成乙烯[27],因此,外加ACC和乙烯利處理都可以被認(rèn)為是添加乙烯處理。氮低效油菜 (6號(hào)) 在乙烯處理下,無(wú)論植株全氮還是籽粒全氮相對(duì)于對(duì)照沒(méi)有顯著變化,但籽粒含氮量卻提高了16.5%;在乙烯作用下,氮高效油菜 (27號(hào)) 籽粒全氮有增加的趨勢(shì)但是沒(méi)有達(dá)到顯著差異,植株全氮卻顯著提高20.2% (表4),與噴施一定濃度乙烯利能提高花生籽粒全氮和冬小麥地上部全氮的結(jié)果相一致[28–29]??梢?jiàn),乙烯顯著影響植株全氮以及籽粒全氮,但影響到底是正面還是負(fù)面還因作物基因型差異以及生育期不同而有所差異。

表5 不同擬南芥老葉、新葉含量及比例Table 5 content and proportion in old leaves and new leaves of two A. thaliana genotypes

表5 不同擬南芥老葉、新葉含量及比例Table 5 content and proportion in old leaves and new leaves of two A. thaliana genotypes

注 (Note): 數(shù)據(jù)后不同小寫(xiě)字母表示橫排數(shù)據(jù)間差異達(dá) 5% 顯著水平 Values followed by different lowercase letters indicate the horizontal data significant differences at the 5% level. 數(shù)據(jù)后不同大寫(xiě)字母表示豎排數(shù)據(jù)間差異達(dá) 5% 顯著水平 Values followed by different capital letters indicate the vertical data significant differences at the 5% level.

老葉/新葉 (%)Old leaves /New leaves (%)col.0 35.35 ± 2.17 bB 60.27 ± 7.46 aA 59.01 B nrt1.5-3 59.07 ± 3.68 aA 39.37 ± 8.33 bB 153.07 A變化率 Change rate(%) 67.10 –34.68基因型Genotype老葉 (μg/g)Old leaves新葉 (μg/g)New leaves

表6 不同擬南芥老葉、新葉韌皮部汁液含量及比例Table 6 content and d proportion in the phloem sap of old leaves and new leaves in two Athaliana genotypes

表6 不同擬南芥老葉、新葉韌皮部汁液含量及比例Table 6 content and d proportion in the phloem sap of old leaves and new leaves in two Athaliana genotypes

注 (Note): 數(shù)據(jù)后不同小寫(xiě)字母表示橫排數(shù)據(jù)間差異達(dá) 5% 顯著水平 Values followed by different lowercase letters indicate the horizontal data significant differences at the 5% level. 數(shù)據(jù)后不同大寫(xiě)字母表示豎排數(shù)據(jù)間差異達(dá) 5% 顯著水平 Values followed by different capital letters indicate the vertical data significant differences at the 5% level.

老葉/新葉 (%)Old leaves /new leaves col.0 20.62 ± 0.79 bA 45.30 ± 2.65 aA 45.57 ± 1.65 B nrt1.5-3 13.06 ± 1.69 bA 14.82 ± 1.03 bA 87.88 ± 5.17 A變化率 Change rate (%) –36.67 –67.28基因型Genotype老葉 (μg/mL)Old leaves新葉 (μg/mL)New leaves

表7 不同基因型擬南芥產(chǎn)量及氮效率的變化值Table 7 The variation of yield and N use efficiency of different Athaliana genotypes

乙烯對(duì)提高作物產(chǎn)量方面的研究存在爭(zhēng)議,有研究者認(rèn)為乙烯處理能提高作物的產(chǎn)量[28],有研究者認(rèn)為乙烯對(duì)產(chǎn)量因子沒(méi)有顯著影響[30],也有研究者認(rèn)為乙烯通過(guò)降低光合作用降低產(chǎn)量[31]。氮低效油菜(6號(hào)) 的研究發(fā)現(xiàn),ACC確實(shí)會(huì)使收獲期油菜生物產(chǎn)量以及籽粒產(chǎn)量降低,與程云清等用ACC處理大豆得到的結(jié)果一致,可能與乙烯改變油菜葉片含量 (表2),降低再利用能力有關(guān) (表3)。但從ACC處理使氮高效油菜 (27號(hào)) 籽粒產(chǎn)量顯著提高的研究結(jié)果 (表4) 來(lái)看,ACC處理提高油菜籽粒產(chǎn)量的結(jié)果與葛建軍乙烯提高花生產(chǎn)量的研究一致。作物收獲指數(shù)是作物收獲時(shí)經(jīng)濟(jì)產(chǎn)量與生物產(chǎn)量之比,一定程度上反映了源器官光合產(chǎn)物轉(zhuǎn)運(yùn)到庫(kù)器官的能力大小。6號(hào)、27號(hào)兩油菜品種的收獲指數(shù)為0.18 (表4) 與楊蘭等[32]油菜收獲指數(shù)為0.14~0.17的結(jié)果相近,但低于宋海星等[25]油菜收獲指數(shù)為0.23~0.26的結(jié)果,可能與培養(yǎng)條件差異有關(guān)。因此乙烯是否能提高作物全氮、產(chǎn)量以及收獲指數(shù)與作物的基因型及培養(yǎng)條件有關(guān)。

作物擁有較高的氮素利用效率 (NUE) 是作物獲得高產(chǎn)的重要保障,氮效率高低由氮素吸收效率和利用效率共同決定,作物生長(zhǎng)后期由于根系吸收能力減弱,不能很好地利用環(huán)境中的氮素,所以植物生長(zhǎng)后期提高氮素利用效率往往作為提高作物氮效率的重要手段。植物生長(zhǎng)后期氮素轉(zhuǎn)移主要以有機(jī)氮 (如Rubisco) 和無(wú)機(jī)氮的形式存在,無(wú)機(jī)氮不但為植物的生長(zhǎng)提供營(yíng)養(yǎng),而且作為信號(hào)分子調(diào)控植物代謝過(guò)程[32–33]。近年來(lái)國(guó)內(nèi)外越來(lái)越多的學(xué)者關(guān)注植物的吸收轉(zhuǎn)運(yùn)過(guò)程以及代謝有關(guān)基因的研究,與氮代謝有關(guān)轉(zhuǎn)運(yùn)蛋白與基因的研究或許將成為下一個(gè)提高NUE的研究重點(diǎn)與熱點(diǎn)[34–35]。有發(fā)現(xiàn)超表達(dá)煙草中與氮素吸收、同化有關(guān)的基因,如GS基因能夠提高植株的氮效率,但也有研究發(fā)現(xiàn)即使超表達(dá)苜蓿GS基因卻并沒(méi)使其氮效率得到提高[36–37]。轉(zhuǎn)運(yùn)蛋白與的吸收、同化以及利用密切相關(guān)。目前,已經(jīng)克隆了4類(lèi)轉(zhuǎn)運(yùn)蛋白基因家族,主要包括NRT1、NRT2、CLC和SLAC[38]。NRT1.5屬于NRT1家族成員,是一種低親和雙向轉(zhuǎn)運(yùn)蛋白,它位于質(zhì)膜中,在靠近木質(zhì)部的中柱鞘細(xì)胞中表達(dá),具有裝載根部木質(zhì)部的功能[15]。近年研究發(fā)現(xiàn),當(dāng)擬南芥受到Cd2+脅迫時(shí),AtNRT1.5在根部的表達(dá)受抑制,同時(shí)AtNRT1.8表達(dá)上調(diào);擬南芥突變體nrt1.5中更多的累積在根部,AtNRT1.5缺失改變植物體–在根與莖中的分配比例[16–17]。乙烯處理后油菜BnNRT1.5的表達(dá)量顯著降低 (圖1),與前人用乙烯處理擬南芥,AtNRT1.5表達(dá)量被抑制的研究結(jié)果一致[17,20];且角果期的抑制作用比花期的抑制強(qiáng)烈 (圖1),可能與AtNRT1.5還受到衰老的誘導(dǎo)調(diào)控有關(guān)[22]。

擬南芥的試驗(yàn)也證實(shí)了NRT1.5參與植物生長(zhǎng)后期氮素再轉(zhuǎn)運(yùn)的猜想。擬南芥AtNRT1.5不僅參與在根與莖中的裝載,而且對(duì)擬南芥生長(zhǎng)后期葉片中的累積和轉(zhuǎn)運(yùn)有重要意義。突變體nrt1.5-3衰老葉片中顯著積累,新葉含量顯著下降(表5)轉(zhuǎn)運(yùn)受阻,無(wú)論老葉還是新葉nrt1.5突變體韌皮部含量相對(duì)于對(duì)照都降低 (表6)。由于不能及時(shí)轉(zhuǎn)運(yùn)到其它生長(zhǎng)旺盛部位,造成突變體植株生物產(chǎn)量、籽粒產(chǎn)量,NUE均顯著低于野生型col.0(表7)。

4 結(jié)論

油菜生長(zhǎng)后期氮素的再利用能力受到乙烯 (100 μmol/L ACC處理) 的顯著調(diào)控,油菜NRT1.5基因表達(dá)量受到抑制或者擬南芥NRT1.5基因發(fā)生突變時(shí),會(huì)導(dǎo)致植株韌皮部汁液NO再轉(zhuǎn)運(yùn)量減少,新葉NO含量顯著下降,更多NO累積在衰老葉片中而不能得以高效的再利用,進(jìn)而影響油菜生長(zhǎng)后期的生物產(chǎn)量以及氮素利用效率。因此,調(diào)控NRT1.5的表達(dá)提高植株生長(zhǎng)后期氮素的再轉(zhuǎn)運(yùn)和再利用可以作為提高植物NUE的有效手段。

[ 1 ]Gastal F, Lemaire G. N uptake and distribution in crops: an agronomical and ecophysiological perspective[J]. Journal of Experimental Botany, 2002, 53(370): 789–799.

[ 2 ]Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?[J]. Trends in Plant Science, 2004,9(12): 597–605.

[ 3 ]楊睿, 伍曉明, 安蓉, 等. 同基因型油菜氮素利用效率的差異及其與農(nóng)藝性狀和氮營(yíng)養(yǎng)性狀的關(guān)系[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013,19(3): 586–596.Yang R, Wu X M, An R,et al. Differences of nitrogen use efficiency of rapeseed (Brassica napusL.) genotypes and their relations to agronomic and nitrogen characteristics[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 586–596.

[ 4 ]劉金鑫, 田秋英, 陳范駿, 米國(guó)華. 玉米硝酸鹽累積及其在適應(yīng)持續(xù)低氮脅迫中的作用[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2009, 15(3): 501–505.Liu J X, Tian Q Y, Chen F J, Mi G H. Nitrate accumulation in miaze and its role in adaptation to lasting low nitrogen environments[J].Journal of Plant Nutrition and Fertilizer, 2009, 15(3): 501–505.

[ 5 ]張英鵬, 徐旭軍, 林咸永, 等. 氮素形態(tài)對(duì)菠菜可食部分硝酸鹽和草酸累積的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2006, 12(2): 227–232.Zhang Y P, Xu X J, Lin X Y,et al. Effects of nitrogen forms on nitrate and oxalate accumulation in edible parts of spinach[J]. Plant Nutrition and Fertilizer science, 2006, 12(2): 227–232.

[ 6 ]都韶婷, 章永松. 增施CO2降低小白菜硝酸鹽積累的機(jī)理研究[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, 16(6): 1509–1514.Du S T, Zhang Y S. Mechanisms of CO2enrichment-induced decrease of nitrate accumulation in Chinese cabbage (Brassica chinensisL.)[J]. Plant Nutrition and Fertilizer Science, 2010, 16(6):1509–1514.

[ 7 ]Malagoli P, Laine P, Ourry A,et al. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus)from stem extension to harvest[J]. Annals of Botany, 2005, 95(7):1187–1198.

[ 8 ]Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J. In winter wheat(Triticum aestivumL.) post an thesis nitrogen uptake and remobilization to the grain correlates with agronomic traits and nitrogen physiological markers[J]. Field Crops Research, 2007,102(1): 22–32.

[ 9 ]楊蘭, 榮湘民, 宋海星, 等. 生長(zhǎng)調(diào)節(jié)劑對(duì)油菜產(chǎn)量及氮素利用效率的影響[J]. 湖南農(nóng)業(yè)科學(xué), 2012, 33(05): 27–29.Yang L, Rong X M, Song H X,et al. Effects of growth regulator on yield and nitrogen physiological efficiency of rape[J]. Hunan Agricultural Sciences, 2012, 33(05): 27–29.

[10]Zhang Z H, Song H X, Liu Q, Rong X M,et al. Study on differences of nitrogen efficiency and nitrogen response in different oilseed rape(Brassica napusL.) varieties[J]. Asia Journal of Crop Science, 2009,1(2): 105–112.

[11]Marschner H. Mineral nutrition in higher plants[J]. Plant, Cell &Environment, 1988, 11(2): 147–148.

[12]Fan S C, Lin C S, Hsu PK,et al. TheArabidopsisnitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate[J]. Plant Cell, 2009, 21(9): 2750–2761.

[13]Wang Y Y, Tsay Y F. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport[J]. The Plant Cell, 2011, 23(5):1945–1957.

[14]Kiba T, Feriabourrellier A B, Lafouge F,et al. TheArabidopsisnitrate transporter NRT2.4 plays a double Role in roots and shoots of nitrogen-starved plants[J]. The Plant Cell, 2012, 24(1): 830–835.

[15]Lin S H, Kuo H F, Canivenc G,et al. Mutation of theArabidopsisNRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport[J]. The Plant Cell, 2008, 20(9): 2514–2528.

[16]Zhang G B, Yi H Y, Gong J M. TheArabidopsisEthylene/Jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation[J]. The Plant Cell, 2014, 26(10): 3984–3998.

[17]Chen C Z, Lv X F, Li J Y,et al. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance[J]. Plant Physiology, 2012, 159(4): 1582–1590.

[18]楊曉穎, 胡偉, 徐碧玉, 金志強(qiáng). 乙烯與果實(shí)成熟關(guān)系的研究進(jìn)展[J]. 熱帶農(nóng)業(yè)科學(xué), 2008, 28(2): 70–75.Yang X Y, Hu W, Xu B Y, Jin Z Q. Advances on the relationship between ethylene and fruit ripening[J]. Chinese Journal of Tropical Agriculture, 2008, 28(2): 70–75.

[19]Xie Q, Hu Z, Zhu Z,et al. Over expression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato[J]. Scientific Reports, 2014, 4(7491): 4367.

[20]Han Y L, Song H X, Yu Y,et al. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots ofBrassica napes[J]. Plant Physiology, 2016, 170(3): 1684–1698.

[21]King R W, Zeevaart J A. Enhancement of phloem exudation from cut petioles by chelating agents[J]. Plant Physiology, 1974, 53(1):96–103.

[22]李合生主編. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京: 高等教育出版社, 2000.Li H S. Plant physiology and biochemistry experiment principle and technology [M]. Beijing: Higher Education Press, 2000.

[23]鮑士旦. 土壤農(nóng)化分析[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2000.Bao S D. Soil chemistry analysis [M]. Beijing: Agricultural Press Chinese, 2000.

[24]張英利, 許安民, 尚浩博, 馬愛(ài)生. AA3型連續(xù)流動(dòng)分析儀測(cè)定土壤和植物全氮的方法研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào), 2006,34(10): 128–132.Zhang Y L, Xu A M, Shan H B, Ma A S. Determination study of total nitrogen in soil and plant by continuous flow analytical system[J].Journal of Northwest Sci-Tech University of Agriculture, 2006,34(10): 128–132.

[25]宋海星, 彭建偉, 劉強(qiáng), 等, 不同氮素生理效率油菜生育后期氮素再分配特性研究[J]. 不同氮素生理效率油菜生育后期氮素再分配特性研究[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2008, 41(6): 1858–1864.Song H X, Peng J W, Liu Q,et al. Nitrogen redistribution characteristics of oilseed rape varieties with different nitrogen physiological efficiency during later growing period[J]. Scientia Agricultura Sinica, 2008, 41(6): 1858–1864.

[26]穆師洋, 胡文忠, 姜愛(ài)麗, 等. 乙烯的信號(hào)分子作用及其在采后果蔬生理代謝調(diào)控的研究進(jìn)展[J]. 食品工業(yè)科技, 2015, 36(3): 375–378.Mu S Y, Hu W Z, Jing A L,et al. Research progress in the role of ACC as signal molecule and regulation of physiological metabolism in postharvest fruits and vegetables[J]. Science and Technology of Food Industry, 2015, 36(3): 375–378.

[27]陳新建, 劉國(guó)順, 陳占寬, 等. 乙烯生物合成途徑及其相關(guān)基因工程的研究進(jìn)展[J]. 熱帶亞熱帶植物學(xué)報(bào), 2002, 10(1): 83–98.Chen X J, Liu G S, Chen Z K,et al. A review of the pathway of ACC biosynthesis and the relevant genetic engineering[J]. Journal of Tropical and Subtropical Botany, 2002, 10(1): 83–98.

[28]葛建軍, 朱林, 張國(guó)良, 等. 乙烯利對(duì)花生氮代謝和光合特性的影響[J]. 花生學(xué)報(bào), 2008, 37(2): 22–27.Ge J J, Zhu L, Zhang G L,et al. Effects of ethephon on nitrogen metabolism and photosynthesis characters of peanut[J]. Journal of Peanut Science, 2008, 37(2): 22–27.

[29]Van Sanford D A, 等. 乙烯利和氮在冬小麥中的應(yīng)用[J]. 麥類(lèi)作物學(xué)報(bào), 1990, 6(6): 43–45.Van Sanford D A,et al. Application of ethephon and nitrogen in winter wheat[J]. Journal of Triticeae Crops, 1990, 6(6): 43–45.

[30]葉德練, 王玉斌, 周琳, 等. 乙烯利和氮肥對(duì)夏玉米氮素吸收與利用及產(chǎn)量的調(diào)控效應(yīng)[J]. 作物學(xué)報(bào), 2015, 41(11): 1701–1710.Ye D L, Wang Y B, Zhou L,et al. Effect of ethephon and nitrogen fertilizer on nitrogen uptake, nitrogen use efficiency and yield of summer maize[J]. Acta Agronomica Sinica, 2015, 41(11):1701–1710.

[31]程云清, 趙桂蘭, 劉劍鋒,等. 乙烯抑制劑AVG和促進(jìn)劑ACC對(duì)大豆幼苗葉片光合特征的影響[J]. 浙江大學(xué)學(xué)報(bào), 2010, 36(4):419–426.

[32]Chen X Q, Zhao G L, Liu J F,et al. Effects of ACC inhibitor and promoter on photosynthetic characteristics of soybean (Glycine max)seedling leaves[J]. Journal of Zhejiang University, 2010, 36(4):419–426.

[33]張振華. 油菜體內(nèi)氮素再分配與氮素生理效率的關(guān)系研究[D]. 長(zhǎng)沙: 湖南農(nóng)業(yè)大學(xué)碩士論文, 2007.Zhang Z H, Studies on the relationship between the nitrogen distribution and the nitrogen physiological efficiency in oilseed rape[M]. Changsha: Master Dissertation of Hunan Agricultural Universally, 2007.

[34]李建勇, 龔繼明. 植物硝酸根信號(hào)感受與傳導(dǎo)途徑[J]. 植物生理學(xué)報(bào), 2011, 47(2): 111–118.Li J Y, Gong G M. Nitrate signal sensing and transduction in higher[J]. Plant Physiology Journal, 2011, 47(2): 111–118.

[35]張鵬, 張然然, 都韶婷. 植物體對(duì)硝態(tài)氮的吸收轉(zhuǎn)運(yùn)機(jī)制研究進(jìn)展[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2015, 21(3): 752–762.Zhang P, Zhang R R, Du S T. Research advances in nitrate uptake and transport in plants[J]. Journal of Plant Nutrition and Fertilizer,2015, 21(3): 752–762.

[36]付捷, 田慧, 高亞軍. 分子生物學(xué)途徑提高作物氮效率研究進(jìn)展[J].中國(guó)土壤與肥料, 2013, (4): 1–5.Fu J, Tian H, Gao Y G. Advances in molecular biological approaches for improving nitrogen efficiency of crops[J]. Soil and Fertilizer Sciences in China, 2013, (4): 1–5.

[37]Oliveira I C, Brears T, Knight T J,et al. Overexpression of cytosolic glutamine synthetase: relation to nitrogen, light and photorespiration[J]. Plant Physiology, 2002, 129(3): 1170–1180.

[38]Ortega J L, Temple S J, Sengupta-Gopalan C. Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1may be regulated at the level of RNA stability and protein turnover[J]. Plant Physiology, 2001,126(1): 109–121.

[39]Wang, Ya Y, Hsu,et al. Uptake, allocation and signaling of nitrate[J].Trend in Plant Science, 2012, 17(8): 458–467.

Regulation mechanisms ofre-utilization by ACC at later growth stages of Brassica napus

YU Yin1, LU Sheng1, SONG Hai-xing1, GUAN Chun-yun2, CHEN Ke-hao1, ZHANG Zhen-hua1*
(1 College of Resources and Environmental Sciences, Hunan Agricultural University/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China/National Engineering Laboratory of Soil and Fertilizer Resources Efficient Utilization/Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use/Hunan Provincial Key Laboratory of Plant Nutrition in Common University, Changsha, Hunan 410128, China;2 National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, Hunan 410128, China)

【Objectives】The research will elucidate the regulation mechanisms ofre-utilization by 1-aminocyclopropane-1-carboxylic acid (ACC) and reveal the physiological mechanisms of nitrogen (N) redistribution at later growth stage ofBrassica napus.【Methods】High N efficient variety Xiangyou15 (No.27) and low N efficient variety 814 (No.6) were cultured in sand under 15 mmol/L nitrogen condition. ACC (50 mL 100 μmol/L)was irrigated every 7 days and the correspondingArabidopsis thalianawild type (col.0) and mutant plants (nrt1.5)under greenhouse and environmental chamber respectively, to investigate the regulation mechanisms ofreutilization and its relationship with nitrogen use efficiency (NUE) during the later growth stages.【Result】The relative expression ofBnNRT1.5was significantly inhibited by ACC and senescence. Compared with the control treatment,istribution ability in phloem sap was decreased significantly, resulted incontent of the lower leaves was increased significantly,content of middle leaves was decreased significantly, but there was no significant changes ofcontent in upper leaves under ACC treatment, thus lead to the N content of plant tissues and seeds were increased significantly, and NUE based on biomass and seeds yield were decreased significantly. It was suggested that the N re-utilization capability is significant regulated byNRT1.5gene. UsingArabidopsis thalianawild type (col.0) and mutant (nrt1.5) plants to further elucidate the above results, compared with the wild type (col.0), higher proportion oaccumulated in the older leaves, lower proportion ofredistributed from older leaves to new leaves through phloem sap in mutantnrt1.5plants during the later growth stage, redistribution ability offrom older leaves to new leaves during senescence decreased significantly.【Conclusions】N re-utilization efficiency was regulated by ACC significantly at the later growth stages ofBrassica napus, redistribution contents ofin phloem sap was decreased inArabidopsis mutant(nrt1.5) orBrassica napusunder ACC treatment, higher proportion ofccumulated in older leaves and cannot be reutilized efficiently at the later growth stages. Therefore,NRT1.5is an effective means to improve the crop NUE by increasing N redistribution and re-utilization during the later growth stage.

Brassica napus;NRT1.5; ACC; nitrogen re-utilization; nitrogen use efficiency

2016–11–18 接受日期:2017–02–28

湖南省自然科學(xué)基金青年基金(2016JJ3069);南方糧油作物協(xié)同創(chuàng)新中心;國(guó)家自然科學(xué)基金項(xiàng)目(31101596);湖南省百人計(jì)劃項(xiàng)目;湖南農(nóng)大1515人才項(xiàng)目資助。

余音(1992—),女,湖南保靖縣人,碩士研究生,主要從事植物營(yíng)養(yǎng)生理研究。E-mail:674404638@qq.com

* 通信作者 E-mail:zhzh1468@163.com

猜你喜歡
老葉新葉全氮
老周
梧桐樹(shù)
煤矸石山上不同種植年限和生長(zhǎng)期香根草各部位全氮含量及其分配比例的比較
陳硯章
老 葉
三峽庫(kù)區(qū)消落帶紫色土顆粒分形的空間分異特征
武功山山地草甸土壤有機(jī)質(zhì)、全氮及堿解氮分布格局及關(guān)系
套種綠肥對(duì)土壤養(yǎng)分、團(tuán)聚性及其有機(jī)碳和全氮分布的影響
黨的十八屆三中全會(huì)
芳林新葉稱(chēng)我心