徐 鑫,毛紅艷,于 明
(新疆農(nóng)業(yè)科學(xué)院糧食作物研究所,烏魯木齊 830091)
鷹嘴豆抗性淀粉制備工藝優(yōu)化及其結(jié)構(gòu)特性的研究
徐 鑫,毛紅艷,于 明
(新疆農(nóng)業(yè)科學(xué)院糧食作物研究所,烏魯木齊 830091)
目的以Box-Behnken試驗(yàn)設(shè)計(jì)結(jié)合響應(yīng)面分析法,優(yōu)化鷹嘴豆抗性淀粉的制備工藝,并研究其結(jié)構(gòu)特性。方法采用響應(yīng)面法優(yōu)化壓熱-酶法制備鷹嘴豆抗性淀粉的工藝參數(shù),利用掃描電子顯微鏡、紅外光譜及X-射線衍射分析方法,研究鷹嘴豆抗性淀粉的結(jié)構(gòu)特性。結(jié)果鷹嘴豆抗性淀粉制備工藝條件如下:淀粉漿質(zhì)量濃度為21 %、壓熱時(shí)間41 ℃、酶解時(shí)間6.2 h、普魯蘭酶添加量3.9 U/g,此條件下平均得率為23.07 %;鷹嘴豆原淀粉顆粒呈橢球形,而抗性淀粉呈方形或多角形;X-射線衍射圖譜顯示鷹嘴豆抗性淀粉的晶型為C型;紅外光譜分析表明,抗性淀粉分子中未出現(xiàn)新的基團(tuán)。結(jié)論優(yōu)化的鷹嘴豆抗性淀粉制備工藝合理、可行,為鷹嘴豆抗性淀粉的生產(chǎn)提供了理論基礎(chǔ)。
鷹嘴豆;抗性淀粉;響應(yīng)面;結(jié)構(gòu)特性
【研究意義】鷹嘴豆,維吾爾語稱其為諾胡提,在新疆民族醫(yī)院及民間主要用來治療糖尿病、高脂血癥、便秘、消化不良等[1]。現(xiàn)代藥理研究表明,鷹嘴豆具有降血糖、降血脂、清除自由基抗氧化等作用[2-4]。鷹嘴豆在新疆已有2500多年的種植歷史,主要分布于新疆北部木壘、烏什等地[5]。鷹嘴豆耐干旱,耐貧瘠又豐產(chǎn),富含多種植物蛋白、淀粉、黃酮類物質(zhì)以及皂苷等,其中蛋白質(zhì)含量達(dá)22.50%[5],特別是淀粉含量達(dá)40%~60%[6]。通過開發(fā)鷹嘴豆淀粉產(chǎn)品來增加農(nóng)民收入,提高鷹嘴豆的附加值對(duì)促進(jìn)新疆經(jīng)濟(jì)的發(fā)展有實(shí)際意義?!厩叭搜芯窟M(jìn)展】近年來,抗性淀粉因其具有獨(dú)特的生理功能和優(yōu)良的食品加工特性逐漸成為食品科學(xué)研究的熱點(diǎn)之一,而天然淀粉中的抗性淀粉含量低,需要改進(jìn)制備方法以提高抗性淀粉含量。章麗琳等[7]研究獲得纖維素酶-壓熱法制備馬鈴薯抗性淀粉得工藝參數(shù)即淀粉乳含量25%、淀粉乳pH 5.0、酶用量30 U/mL、酶解時(shí)間50 min、壓熱溫度125 ℃、壓熱時(shí)間30 min、老化溫度4 ℃、老化時(shí)間18 h。姜志杰等[8]研究用壓熱酸解法制備木薯抗性淀粉,其最佳制備工藝條件為淀粉乳質(zhì)量分?jǐn)?shù)30%,壓熱溫度120 ℃、壓熱時(shí)間30 min、磷酸添加量2.0 %和糊化時(shí)間30 min?!颈狙芯壳腥朦c(diǎn)】目前市場(chǎng)上銷售的主要以膨化食品、鷹嘴豆粉和鷹嘴豆原豆居多,產(chǎn)品的開發(fā)處于粗加工階段, 急需加大對(duì)其研究及開發(fā)力度。采用壓熱-酶法制備鷹嘴豆抗性淀粉,研究其抗性淀粉的結(jié)構(gòu)特性。目前有對(duì)鷹嘴豆淀粉性質(zhì)的研究,但對(duì)鷹嘴豆抗性淀粉的研究較少?!緮M解決的關(guān)鍵問題】通過響應(yīng)面設(shè)計(jì)優(yōu)化壓熱-酶法制備的工藝,獲得鷹嘴豆抗性淀粉的最佳工藝參數(shù),為鷹嘴豆抗性淀粉產(chǎn)品的開發(fā)奠定基礎(chǔ)。
1.1 材 料
1.1.1 鷹嘴豆
鷹嘴豆由新疆農(nóng)業(yè)科學(xué)院糧食作物研究所提供。
1.1.2 儀器
設(shè)備:D8ADVANCE X 射線粉末衍射儀:德國(guó)布魯克公司;LDZX-30KBS立式壓力蒸汽滅菌器:上海申安醫(yī)療器械廠;XMTD-4000型電熱恒溫水浴鍋:北京市永光明醫(yī)療儀器有限公司;PhenomXL臺(tái)式掃描電鏡儀:荷蘭Phenom公司;TDL-40B低速臺(tái)式大容量離心機(jī):上海安亭科學(xué)儀器廠;耐馳STA449F3型同步熱分析儀:德國(guó); 6700型傅里葉紅外光譜儀:美國(guó)Nicolet; SHA-C水浴恒溫振蕩器:金壇市醫(yī)療儀器廠。
1.2 方 法
1.2.1 鷹嘴豆抗性淀粉制備的單因素試驗(yàn)
以鷹嘴豆抗性淀粉提取率為響應(yīng)值,研究普魯蘭酶添加量、酶解溫度、不同淀粉漿質(zhì)量濃度、酶解時(shí)間和壓熱時(shí)間對(duì)鷹嘴豆抗性淀粉提取率的影響,考察各因素條件對(duì)提取效果的影響,確定各因素的適宜范圍。
1.2.2 響應(yīng)面法優(yōu)化鷹嘴豆抗性淀粉工藝
根據(jù)單因素試驗(yàn)結(jié)果,選擇淀粉漿質(zhì)量濃度、酶解時(shí)間、壓熱時(shí)間和普魯蘭酶添加量為主要因素,采用Design-Expert 8.0軟件,按表1的因素水平設(shè)計(jì)29組試驗(yàn)。表1
表1 響應(yīng)面法設(shè)計(jì)因素和水平
Table 1 Response surface methodology design factors and levels
因素Factor水平 Level-101淀粉漿質(zhì)量濃度(%)Starchslurryconcentration152025壓熱時(shí)間(min)Holdingtime354045酶解時(shí)間(h)Pullulanaseenzymolysis567普魯蘭酶添加量(U/g)Pullulanaseamount345
1.2.3 電子掃描顯微鏡觀察
樣品粉碎過100目篩,將其粘于樣品盤的導(dǎo)電雙面膠上,在IB-5離子濺射器上處理30 min,鍍一層Pt,然后用掃描電鏡觀察、拍照。
1.2.4 X-射線衍射
淀粉和抗性淀粉樣品進(jìn)行充分干燥,在測(cè)定室中放置過夜。測(cè)定條件:X射線管參數(shù)設(shè)置為40 kV電壓和30 mA電流,X衍射源特征線是Cu-Kα輻射,2θ的掃描范圍是5~70℃。
1.2.5 紅外光譜
稱取3 mg樣品于瑪瑙研缽中研磨,采用溴化鉀壓片法,置于樣品架上,用紅外光譜儀波長(zhǎng)為4 000~400 cm-1掃描,得到紅外光譜圖。
1.3 數(shù)據(jù)處理
數(shù)據(jù)采用SPSS 16.0軟件進(jìn)行統(tǒng)計(jì)分析,所有實(shí)驗(yàn)重復(fù)3次。
2.1 單因素實(shí)驗(yàn)
研究表明,鷹嘴豆淀粉漿質(zhì)量濃度為20%時(shí)提取的抗性淀粉較多。隨著淀粉漿質(zhì)量濃度的增加,鷹嘴豆抗性淀粉的提取率增加緩慢,這是由于鷹嘴豆淀粉漿質(zhì)量濃度不同會(huì)直接影響淀粉是否可以充分分散,從而影響抗性淀粉的形成[9]。隨著時(shí)間的逐漸延長(zhǎng),抗性淀粉提取率會(huì)逐漸上升,在40 min時(shí)提取率最高,時(shí)間繼續(xù)延長(zhǎng)而鷹嘴豆抗性淀粉的提取率增加緩慢。這可能是由于熱處理時(shí)間過長(zhǎng),淀粉分子發(fā)生過度降解不利于抗性淀粉的行成[10]。因此,選擇40 min為最佳壓熱時(shí)間進(jìn)行優(yōu)化試驗(yàn)。c、d、e可以得出普魯蘭酶添加量為4 U/g,酶解溫度為55℃,酶解時(shí)間為6 h時(shí)鷹嘴豆抗性淀粉的提取率最高,酶解溫度過高或者過低對(duì)普魯蘭酶的活性影響很大[11]。圖1
2.2 響應(yīng)面
2.2.1 響應(yīng)面
根據(jù)Box-Behnken中心組合原理對(duì)鷹嘴豆抗性淀粉提取率設(shè)計(jì)四因素三水平的響應(yīng)面分析試驗(yàn),研究表明,再用Design-Expert軟件對(duì)試驗(yàn)結(jié)果進(jìn)行回歸分析。表2
2.2.2 模型的建立及顯著性檢驗(yàn)
以鷹嘴豆抗性淀粉的提取率為響應(yīng)值,經(jīng)過多元回歸擬合,得到回歸方程表示為:Y=23.04+1.02A+1.01B+0.33C-0.051D+0.87AB-0.06AC+0.11AD+2.07BC+0.072BD-1.50CD-3.02A2-3.74B2-2.36C2-1.67D2。由表3可知,該模型效應(yīng)極顯著(P<0.000 1),失擬項(xiàng)不顯著(P>0.05),因變量與自變量之間的線性關(guān)系顯著(R2=0.997 5),R2Adj=0.995 0,說明該模型擬合程度較好,試驗(yàn)的二次回歸方程可以用于對(duì)鷹嘴豆抗性淀粉的提取率進(jìn)行預(yù)測(cè)。各因素之間存在一定的交互作用,其中一次項(xiàng)A、B、C、二次項(xiàng)A2、B2、C2、D2以及交互項(xiàng)AB、AC、BC、CD都是極顯著的。表3
2.2.3 響應(yīng)面優(yōu)化分析
研究表明,交互項(xiàng)AB、AC、BC、CD極顯著。等高線圖呈橢圓形,曲面圖比較陡峭,說明兩兩因素交互作用對(duì)鷹嘴豆抗性淀粉的提取率的影響顯著。對(duì)所得方程進(jìn)行逐步回歸,得到優(yōu)化后的最佳工藝參數(shù)為壓熱時(shí)間41 min、鷹嘴豆淀粉漿質(zhì)量濃度21%,普魯蘭酶解添加量3.9 U/g、酶解時(shí)間6.2 h。圖2,表3
2.3 顆粒形貌
鷹嘴豆原淀粉顆均呈光滑的卵圓形,表面光滑;抗性淀粉顆粒呈多角形、立方形。這是由于淀粉顆粒處于高溫、濕熱和強(qiáng)堿條件下,淀粉顆粒開始糊化。反應(yīng)結(jié)束后,淀粉顆粒從高溫驟變到常溫,膨脹的淀粉顆粒來不及恢復(fù)原貌而坍塌[12]。圖3
圖1 淀粉漿質(zhì)量濃度、壓熱時(shí)間、普魯蘭酶添加量、酶解溫度及酶解時(shí)間下鷹嘴豆抗性淀粉提取率變化
Fig.1 Effect of starch slurry concentration,Holding time,Pullulanase enzymolysis time Pullulanase enzymolysis temperature and Pullulanase amount on chickpea resistant starch m formation
表2 響應(yīng)面試驗(yàn)設(shè)計(jì)及結(jié)果
Table 2 Response surface design and results
試驗(yàn)序號(hào)TestcodeA:淀粉漿質(zhì)量濃度Starchslurryconcentration(%)B:壓熱時(shí)間Holdingtime(min)C:酶解時(shí)間Pullulanaseenzymolysistime(h)D:普魯蘭酶添加量Pullulanaseamount(U/g)RS提取率Yieldofresistancestarch(%)110011946211001908300002289401011876500002315601-10153670-10-11674800-1-117349001117681010-10187111-1010168412-10-101625130110203214-1001172115-11001562160-11014261700002307181-100152019010-11862200-10116592100-1119962200002295230000231224-100-1173525-1-1001521260-1-10175927100-1191728001-121052910101906
圖2 四因素交互影響的響應(yīng)面
Fig.2 The response surface interaction map affected by four factors
表3 回歸方程方差
Table 3 The variance analysis of regression equation
方差來源Sourcesofvariance平方和Sumofsquares自由度Degreeoffreedom均方MeansquareFvaluePvalue模型Model1946214139039804<00001A12401124035515<00001B12341123435340<00001C13311333818<00001D00311003108903620AB30113018619<00001AC00141001404100032AD00461004613202692BC17181171849195<00001BD00211002106004507CD897189725684<00001A2590015900168934<00001B2908419084260090<00001C2360813608103304<00001D218081180851577<00001殘差049140035失擬項(xiàng)Lackoffititems04410004435201184純誤差Pureerror005040012總和CorTotal1951128
圖3 鷹嘴豆原淀粉和抗性淀粉的顆粒形貌
Fig.3 Particle morphology of chickpea starch and resistant starch
2.4 X-射線衍射
鷹嘴豆原淀粉在衍射角2θ為15°、17°、19°、23°呈現(xiàn)強(qiáng)的衍射峰,抗性淀粉在2θ為17°、20°、22°呈現(xiàn)強(qiáng)的衍射峰,與原淀粉相比,少了尖銳的衍射峰,這是典型的C型結(jié)晶結(jié)構(gòu)。
2.5 紅外光譜
鷹嘴豆原淀粉和鷹嘴豆抗性淀粉的紅外圖譜顯示,鷹嘴豆原淀粉的-OH對(duì)稱伸縮振動(dòng)峰出現(xiàn)在3 500 cm-1處,2 938 cm-1處的吸收峰對(duì)應(yīng)著C-H不對(duì)稱伸縮振動(dòng)峰;1 672 cm-1是H-O-H彎曲振動(dòng),1 410 cm-1是-CH2-彎曲振動(dòng),1 367 cm-1是-CH-彎曲振動(dòng),1 160 cm-1、995 cm-1是C-O-C的伸縮振動(dòng)產(chǎn)生的。927 cm-1是C-O-C的對(duì)稱伸縮振動(dòng),852 cm-1是D-吡喃糖苷鍵特征吸收。鷹嘴豆抗性淀粉的-OH對(duì)稱伸縮振動(dòng)峰出現(xiàn)在3 565 cm-1處,2 930 cm-1處的吸收峰對(duì)應(yīng)的是c-H不對(duì)稱伸縮振動(dòng)峰;1 652 cm-1是H-O-H彎曲振動(dòng)。圖5
圖4 鷹嘴豆原淀粉和抗性淀粉的X-射線衍射譜
Fig.4 X-ray diffraction patterns of chickpea starch and resistant starch
圖5 鷹嘴豆原淀粉和抗性淀粉的紅外譜
Fig.5 Infrared spectra of chickpea starch and resistant starch
隨著鷹嘴豆的價(jià)值逐漸被認(rèn)識(shí),以及對(duì)其營(yíng)養(yǎng)成分的進(jìn)一步研究,鷹嘴豆已有廣闊的應(yīng)用前景,但鷹嘴豆的加工特性很大程度上取決于鷹嘴豆中淀粉的功能性質(zhì)和消化性,雖然對(duì)鷹嘴豆淀粉和抗性淀粉結(jié)構(gòu)的研究已取得一定進(jìn)展,但還需深入研究:(1)對(duì)鷹嘴豆淀粉的糊化、回生和酶解過程結(jié)構(gòu)變化的深入研究;(2)加工方法對(duì)鷹嘴豆抗性淀粉結(jié)構(gòu)、營(yíng)養(yǎng)消化性及鷹嘴豆的添加對(duì)食品狀態(tài)和性質(zhì)產(chǎn)生的影響;(3)從分子水平探討原淀粉及抗性淀粉的性質(zhì)差異,考察其適宜的食品應(yīng)用領(lǐng)域,為其應(yīng)用提供理論支持。
研究采用響應(yīng)面法優(yōu)化了鷹嘴豆抗性淀粉的制備工藝,研究了淀粉漿質(zhì)量濃度、壓熱時(shí)間、酶解時(shí)間、普魯蘭酶添加量對(duì)鷹嘴豆抗性淀粉提取率的影響,并得到鷹嘴豆抗性淀粉制備的最佳條件:淀粉漿質(zhì)量濃度21%,壓熱時(shí)間41 min、酶解時(shí)間6.2 h、普魯蘭酶解添加量3.9 U/g。此條件下鷹嘴豆抗性淀粉的提取率為23.21%,與理論預(yù)測(cè)值比較接近,這表明回歸模型能夠很好的預(yù)測(cè)鷹嘴豆抗性淀粉的提取率,并且優(yōu)化的效果較為明顯。
掃描電子顯微鏡表明,鷹嘴豆抗性淀粉顆粒結(jié)構(gòu)發(fā)生明顯的變化,原淀粉顆粒為卵圓形,而鷹嘴豆抗性淀粉呈不規(guī)則結(jié)構(gòu),具有更穩(wěn)定的晶體結(jié)構(gòu)。X-射線衍射圖譜顯示,鷹嘴豆抗性淀粉的晶型為C型。紅外光譜分析表明,鷹嘴豆原淀粉及抗性淀粉的紅外光譜圖沒有顯著差異,具有相似的主要特征吸收峰。
References)
[1] 肖克來提,木尼拉.維藥鷹嘴豆的國(guó)內(nèi)外應(yīng)用簡(jiǎn)介[J]. 中國(guó)民族醫(yī)藥雜志,2003,11(3): 20.
Xiaokelaiti Munila (2003).Brief introduction of domestic and foreign application of Cicer arietinum L. [J].JournalofMedicine&PharmacyofChineseMinorities, 11(3): 20. (in Chinese)
[2] 楊建梅,張慧,余琛,等. 鷹嘴豆的研究進(jìn)展[J]. 遼寧中醫(yī)藥大學(xué)學(xué)報(bào),2010,12(1): 89-90.
YANG Jian-mei, ZHANG Hui, YU Chen, et al. (2010). Research progress of chickpeas [J].JournalofLiaoningUniversityofTraditionalChineseMedicine, 12(1): 89-90. (in Chinese)
[3] Nestel, P., Cehun, M., & Chronopoulos, A. (2004). Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations.AmericanJournalofClinicalNutrition,79(3):390-395.
[4] Johnson, S. K., Thomas, S. J., & Hall, R. S. (2005). Palatability and glucose, insulin and satiety responses of chickpea flour and extruded chickpea flour bread eaten as part of a breakfast.EuropeanJournalofClinicalNutrition, 59(2): 169-176.
[5] 趙堂彥,孟茜,瞿恒賢,等. 鷹嘴豆?fàn)I養(yǎng)功能特性及其應(yīng)用[J].糧油食品科技,2014,22(4): 38-41.
ZHAO Tang-yan, MENG Xi, QU Heng-xian, et al. (2014). Nutritional function and application of chickpea [J].ScienceandTechnologyofCerealsOilsandFoods, 22(4):38-41. (in Chinese)
[6] Chavan, J. K., Kadam, S. S., & Salunkhe, D. K. (1986). Biochemistry and technology of chickpea (cicer arietinum l.) seeds.CriticalReviewsinFoodScience&Nutrition, 25(2): 107-132.
[7] 章麗琳,葉陵,張喻.纖維素酶-壓熱法制備馬鈴薯抗性淀粉工藝參數(shù)優(yōu)化[J].中國(guó)釀造,2015,12 (34):105-108.
ZHANG Li-lin, YE Ling, ZHANG Yu.(2015).Optimization of cellulase-autoclave method process parameters for preparation of potato resistant starch [J].ChinaBrewing, 12 (34):105-108. (in Chinese)
[8] 姜志杰 潘飛燕 蘇立杰,等. 壓熱酸解法優(yōu)化木薯抗性淀粉的制備工藝[J].農(nóng)產(chǎn)品加工,2017,(4): 26-29.
JIANG Zhi-jie, PAN Fei-yan, SU Li-jie, et al. (2017).The Optimal Preparation of Cassava Resistant Starch Combined with the Autoclaving Processing and Acid Hydrolysis Method[J].FarmProductsProcessing, (4): 26-29. (in Chinese)
[9] 吳仲, 劉曉玲,王剛,等. 壓熱-酶法制備澤瀉抗性淀粉的工藝[J].食品研究與開發(fā), 2010, 31(2): 19-23.
WU Zhong,LIU Xiao-lin WANG Gang, et al. (2010). Study on Manufacturing the Alisma Oriental (SAM)Juzep.Resistant Starch by Autoclave&Enzyme [J].FoodResearchandDevelopment, 31(2):19-23. (in Chinese)
[10] 吳紅引,王澤南, 張秋子,等. 壓熱-酶法制備碎米抗性淀粉的工藝及其結(jié)構(gòu)特性研究[J]. 現(xiàn)代食品科技,2011,27(2):165-169.
WU Hong-yin, WANG Ze-nan, ZHANG Qiu-zi, et al. (2011). Enzymatic Pressure-heating Preparation of Broken Rice Resistant Starch and its Structural Properties [J].ModernFoodScienceandTechnology, 27(2): 165-169. (in Chinese)
[11] 周小理,劉寧,吳維維,等. 壓熱基礎(chǔ)上酶解制備蕎麥抗性淀粉的響應(yīng)面分析[J].食品工業(yè),2013,34(2):66-69.
ZHOU Xiao-li, LIU Ning WU Wei-wei, et al. (2013). Response Surface Analysis of Preparation Buckwheat Resistant Starch with Enzymatic Hydrolysis on the Basis of Autoclaving [J].TheFoodIndustry, 34(2): 66-69. (in Chinese)
[12] 黃強(qiáng),楊連生,羅發(fā)興,等.高黏度十二烯基琥珀酸淀粉鈉理化性質(zhì)的研究(I)3-糊的性質(zhì)[J].華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2001,(1):42-45.
HUANG Qiang, YANG Lian-sheng, LUO Fa-xing, et al. (2001).The Property of High Viscosity Starch Sodium Dodecenyls uccinate-the Nature Paste [J].JournalofSouthChinaUniversityofTechnology(NaturalScienceEdition) , (1):42-45. (in Chinese)
StudyonOptimizationofChickpeaResistantStarchPreparationandItsStructuralProperties
XU Xin, MAO Hong-yan, YU Ming
(InstituteofCerealCrops,XinjiangAcademyofAgriculturalSciences,Urumqi830091,China)
ObjectivePreparation technology of the chickpea resistant starch was optimized by employing response surface methodology based on Box-Behnken, and its structural characteristics were studied.MethodResponse surface methodology was employed to study the reaction conditions for chickpea resistant starch (RS) content by enzymatic pressure-heating preparation and meanwhile the structural properties of chickpea resistant starch were investigated by the methods of scanning electron microscopy,infrared spectroscopy and X-ray diffraction patterns.ResultThe result showed that the optimal reaction conditions obtained were starch slurry concentration 21%, holding time 41 min, pullulanase enzymolysis time 6.2 h, pullulanase amount 3.9 U/g,the average extraction yield was 23.06%. Scanning electron microscopy (SEM) images showed that the starch shape changed significantly, that chickpea starch granules were in ellipsoid, while the resistant starch granules were in cuboid or polyhedra. X-ray diffraction patterns revealed resistant starches remained C-type. Infrared spectrogram showed the chemical structure of two kinds starch was similar.ConclusionThe optimization of chickpea resistant starch extraction process technology was reasonable and feasible and its results can provide a theory basis for the industrialized production of chickpea starch.
chickpea; resistant starch; response surface methodology; structural properties
YU Ming(1973-),male, native place: Inner Mongolia, associate professor, postgraduate,research field: Agrotechny, (E-mail)2435742497@qq.com
A
1001-4330(2017)10-1847-09
10.6048/j.issn.1001-4330.2017.10.010
2017-08-18
新疆科技興新項(xiàng)目“新疆特色糧豆功能食品開發(fā)”(2012017B10);新疆農(nóng)業(yè)科學(xué)院青年基金項(xiàng)目“鷹嘴豆抗性淀粉的制備方法及其理化性質(zhì)的研究”(xjnkq-2015026);新疆農(nóng)業(yè)科學(xué)院青年基金項(xiàng)目“鷹嘴豆抗性淀粉對(duì)高脂小鼠腸道菌群結(jié)構(gòu)的影響”(xjnkq-2017001)
徐鑫(1986-),女,新疆人,助理研究員,碩士,研究方向?yàn)檗r(nóng)產(chǎn)品加工,(E-mail)cindy1105013 @qq.com
于明(1973-),男,內(nèi)蒙古通遼人,副研究員,碩士,研究方向?yàn)檗r(nóng)產(chǎn)品加工,(E-mail)2435742497@qq.com
Supported by: Supported by New Projects of Xinjiang Science and Technology "The functional food development of characteristic grain and bean of xinjiang"(2012017B10); Youth Fund of Xinjiang Academy of Agricultural Sciences"Study on preparation methods and physicochemical property of chickpea resistant starch" (xjnkq-2015026); Youth fund of Xinjiang Academy of Agricultural Sciences"Effects of resistant starch of chickpea on intestinal microflora in mice Fed High-fat Diet"(xjnkq-2017001)