胡春琴,李睿*,洪春來,曹雯婷,劉嘉偉,周駿,翁煥新
海藻碘肥對(duì)田園水稻、蔬菜及水果碘含量的強(qiáng)化效果
胡春琴1,李睿1*,洪春來2,曹雯婷1,劉嘉偉1,周駿1,翁煥新11
(1.浙江大學(xué)地球科學(xué)學(xué)院,杭州310027;2.浙江省農(nóng)業(yè)科學(xué)院環(huán)境資源與土壤肥料研究所,杭州310021)
以浙江省南部山區(qū)麗水市碧湖盆地碧湖鎮(zhèn)沙岸村為實(shí)驗(yàn)基地,在大田條件下進(jìn)行隨機(jī)區(qū)組樣方實(shí)驗(yàn),驗(yàn)證外源海藻碘肥對(duì)水稻、蔬菜和水果碘含量的生物強(qiáng)化效果。結(jié)果表明:對(duì)水稻以及絲瓜、黃瓜、番茄、茄子、西瓜、毛豆、豇豆等多種蔬菜和水果作物施用外源碘肥,均能有效提高其可食部位碘含量;水稻各部位碘含量差異較大,強(qiáng)化后其可食部位含碘量(按干質(zhì)量計(jì))可達(dá)0.403 mg/kg;而蔬菜、水果經(jīng)強(qiáng)化后其可食部位含碘量(按鮮質(zhì)量計(jì))達(dá)0.130 mg/kg左右,其中豇豆和毛豆從根到可食部位的碘轉(zhuǎn)運(yùn)系數(shù)較高;按日常消費(fèi)量均可滿足世界衛(wèi)生組織所推薦的成人150 μg/d的碘攝入量。低劑量外源碘(0.375 kg/hm2)對(duì)水稻、蔬菜及水果可食部位碘含量增加效果不明顯,高濃度外源碘(≥3.000 kg/hm2)對(duì)部分蔬菜、水果的碘積累產(chǎn)生抑制作用。在本實(shí)驗(yàn)條件下,1.500 kg/hm2可作為大田作物碘強(qiáng)化的推薦施碘量。綜上表明,應(yīng)用海藻碘肥培育富碘作物以代替食鹽加碘,可預(yù)防碘缺乏病,是一條一舉多得的新途徑。
海藻碘肥;大田實(shí)驗(yàn);蔬菜;水果;水稻;碘含量;碘缺乏?。晦D(zhuǎn)運(yùn)系數(shù)
碘是人體所必需的一種微量元素,正常人體內(nèi)含碘25~36 mg,其中70%~80%以碘化物形式集聚在甲狀腺內(nèi)參與甲狀腺激素的合成[1]。人體一旦缺碘,體內(nèi)甲狀腺激素的合成就會(huì)受到抑制,進(jìn)而引發(fā)碘缺乏?。╥odine deficiency disorders,IDD)[2-4],表現(xiàn)為地方性甲狀腺腫、克汀病、地方性亞臨床克汀病、單純性聾啞,使胎兒流產(chǎn)、早產(chǎn)、死產(chǎn)、先天畸形等[4-6]。碘廣泛存在于自然界,水、土壤、巖石、空氣、生物圈都含有微量元素碘。外部環(huán)境缺碘是造成碘缺乏病的主要原因。人體內(nèi)的碘攝入主要來源于外部環(huán)境,食物是人體碘供給的主要載體[7-8]。其中:約50%的碘來自植物性食物,如糧食和蔬菜;約30%來自動(dòng)物性食物,如魚、肉、蛋等;10%~20%來自飲用水[4]。因此,一旦外部環(huán)境缺碘,就會(huì)導(dǎo)致植物和動(dòng)物性食品中碘含量不足,從而引起人體碘攝入量不足,發(fā)生碘缺乏病。
消除碘缺乏病的方法通常是在食鹽中加碘。我國從1995年實(shí)行全民食鹽加碘(universal salt iodization,USI)起,至今已取得顯著成效,甲狀腺腫大患者由1994年的800萬下降到2014年的450萬,克汀病患者由18萬下降到9萬以下[9]。但與此同時(shí),其缺陷也逐漸暴露。由于碘鹽中所加的碘主要為碘酸鉀無機(jī)物,在生產(chǎn)、運(yùn)輸、儲(chǔ)存和烹調(diào)過程中會(huì)損失約76%的碘。因飲食習(xí)慣及食物結(jié)構(gòu)的多樣性,不同地區(qū)、不同人群往往很難準(zhǔn)確控制碘的實(shí)際攝入量。當(dāng)?shù)鈹z入量超過一定閾值后,會(huì)出現(xiàn)高碘甲狀腺腫、甲亢、甲狀腺癌以及視網(wǎng)膜損傷等碘中毒現(xiàn)象[10-13]。近年來的研究發(fā)現(xiàn),高碘還會(huì)造成骨組織結(jié)構(gòu)改變,導(dǎo)致骨質(zhì)疏松,增大骨折的風(fēng)險(xiǎn)[14]。鑒于此,通過施用外源碘肥培育富碘作物正成為科學(xué)補(bǔ)碘的前沿研究領(lǐng)域。一些盆栽、水培試驗(yàn)表明,無論是施用碘酸鉀、碘化鉀等無機(jī)碘,還是施用海藻有機(jī)碘,都能顯著提高作物可食部位的碘含量[15-18]。但在田間條件下生物碘的強(qiáng)化效果是否顯著尚需進(jìn)一步驗(yàn)證。因此,本文擬在大田條件下,通過施用海藻有機(jī)碘肥,培育水稻、番茄、黃瓜、辣椒、西瓜等糧食、蔬菜和水果,測(cè)定其可食部位的碘含量,驗(yàn)證在自然條件下大規(guī)模培育富碘作物的可行性,以探索更加安全有效的防治IDD的備選路徑。
1.1 實(shí)驗(yàn)地點(diǎn)
大田作物實(shí)驗(yàn)基地位于浙江省南部山區(qū)麗水市碧湖盆地碧湖鎮(zhèn)沙岸村。碧湖盆地面積約60 km2,地勢(shì)平坦,海拔55~75 m,相對(duì)高差在20 m以下,由大溪、松陰溪沖積而成。在該盆地平原上有古老的通濟(jì)堰水利工程,灌溉發(fā)達(dá),旱澇保收,耕地面積達(dá)數(shù)千公頃,是浙南山區(qū)糧食、蔬菜等經(jīng)濟(jì)作物的重要產(chǎn)地,近年來已發(fā)展成為華東地區(qū)最大的豇豆生產(chǎn)基地。實(shí)驗(yàn)區(qū)土壤的主要理化性質(zhì)見表1,其中,稻田土壤含碘量1.398 mg/kg,園地土壤含碘量1.860 mg/kg,低于浙江省的平均水平,更低于沿海平原,屬于土壤缺碘區(qū)。
表1 實(shí)驗(yàn)區(qū)土壤的主要理化性質(zhì)Table 1 Physical and chemical characteristics of the soil in the study area
1.2 海藻碘肥制備
實(shí)驗(yàn)所用外源碘為海藻固體碘肥,由富碘海帶與硅藻土混合制成。其中制作碘肥所用的海帶產(chǎn)自山東省青島市,為海帶加工后的下腳料,經(jīng)標(biāo)定,其含碘量為1 017 mg/kg。將海帶在40℃烘箱內(nèi)烘干,粉碎后與過100目(0.154 mm)篩的硅藻土按質(zhì)量比1∶1充分混勻,制成顆粒狀緩釋碘肥[19]備用。
1.3 作物種植
供試的作物種類包括水稻、絲瓜、黃瓜、辣椒、番茄、茄子、西瓜、毛豆、豇豆等。按隨機(jī)區(qū)組樣方法設(shè)計(jì)實(shí)驗(yàn)。種植前,將海藻碘肥以基肥的形式一次性施入,每667 m2施用量分別為0、50、100、200、400、600 kg,相當(dāng)于每公頃土壤施碘量分別為0、0.375、0.750、1.500、3.000、4.500 kg。同時(shí)施入氮磷鉀復(fù)合肥,期間再追施2次復(fù)合肥(300 kg/hm2)。水分澆灌按常規(guī)進(jìn)行。每個(gè)實(shí)驗(yàn)小區(qū)30 m2,每種處理重復(fù)3次,各處理小區(qū)間至少間隔3 m,以避免相互干擾。
1.4 樣品采集與處理
待各種作物成熟達(dá)到上市標(biāo)準(zhǔn)后,采用隨機(jī)取樣法采集樣品。糧食作物和豆類、茄類每種至少采集1 kg以上,瓜類每種從不同植株中采集6~8個(gè)。先用自來水沖洗干凈,再用去離子水沖洗,并用吸水紙吸干表面水分。分別稱取樣品可食部位的鮮質(zhì)量后,將其置于105℃烘箱中烘30 min,再于70℃恒溫下直至樣品全部烘干,然后,粉碎并過60目(0.246 mm)篩,裝入塑料自封袋中,置于陰涼干燥處待測(cè)。
1.5 分析測(cè)定
植物和土壤樣品碘含量的測(cè)定采用放大反應(yīng)比色法[20]:首先稱取0.500 g待測(cè)樣品,放入30 mL瓷坩堝中,用2 mL濃度為10 mol/L的KOH溶液將樣品完全浸潤,放入105℃烘箱中烘烤約1 h,再于180℃烘箱中烘烤40 min至樣品呈黑色膠狀;然后從烘箱中取出,置于電爐上加熱碳化至樣品出現(xiàn)少量灰白色及黃色物質(zhì),此過程大約需要10 min;再將樣品放入馬弗爐中灰化40 min,分?jǐn)?shù)次移入50 mL容量瓶中定容,靜置15 min后,過濾到三角瓶中待測(cè)。
樣品檢測(cè)與標(biāo)準(zhǔn)曲線制作同時(shí)進(jìn)行。吸取20 mL樣品及0.5、1.0、1.5、2.0、2.5 mL碘標(biāo)分別放入比色管中,依次加入體積比1∶2的H3PO43 mL(碘標(biāo)加水至10 mL后加H3PO40.25 mL),飽和溴水0.15 mL,堿性酚鈉溶液0.15 mL,淀粉顯色劑0.3 mL,充分反應(yīng)后,用1 cm比色皿在590 nm波長下測(cè)定其含碘量。
1.6 數(shù)據(jù)處理
應(yīng)用單因素方差分析法和多重比較法,比較不同碘肥施用量下水稻、蔬菜及水果樣品碘含量平均值間的差異顯著性。
用轉(zhuǎn)運(yùn)系數(shù)(translocation factor,TF)表示營養(yǎng)元素碘從作物下部器官到上部器官的轉(zhuǎn)運(yùn)強(qiáng)度,其計(jì)算公式[21]如下:
TF=C上/C下。其中C上和C下分別表示作物上部器官(如果實(shí)、種子)和下部器官(如根)中的碘含量。
2.1 水稻的生物碘強(qiáng)化效果
水稻是世界上最主要的糧食作物之一,中國約65%的人口、全球約38%的人口均以稻米為主食[22-23]。以水稻作為補(bǔ)碘載體可以廣泛有效地消除碘缺乏病,意義重大。由圖1可知,水稻不同部位以及稻田土壤的碘含量均隨著碘肥施用量的增加而增加。在低碘(0.375 kg/hm2)狀態(tài)下,稻米、稻草(莖葉)和土壤的碘含量與未施肥相比,差異均沒有統(tǒng)計(jì)學(xué)意義;隨著碘施用量的增加,則都表現(xiàn)出明顯的增長態(tài)勢(shì)。當(dāng)外源碘施用量為1.500 kg/hm2時(shí),根系碘含量增加顯著,并將5.1%的根系碘轉(zhuǎn)運(yùn)至稻米(表2),使可食部位(稻米)含碘量(按干質(zhì)量計(jì))急劇增加到0.254 mg/kg,是未施碘肥的13倍左右;當(dāng)外源碘施用量達(dá)到3.000和4.500 kg/hm2時(shí),稻米含碘量進(jìn)一步增加到0.364和0.403 mg/kg(圖1),但根—稻米的碘轉(zhuǎn)運(yùn)系數(shù)趨于減?。ū?)。可見,稻米對(duì)1.500 kg/hm2的施碘量響應(yīng)最為明顯,綜合考慮投入產(chǎn)出效益,可將1.500 kg/hm2的施碘量作為推薦施肥量。
圖1 在海藻碘肥不同施用量條件下水稻不同部位及稻田土壤碘含量Fig.1 Iodine contents of different parts of rice and paddy soil under different exogenous iodine addition dosages
對(duì)比土壤-水稻連續(xù)系統(tǒng)的含碘量(圖1)發(fā)現(xiàn):水稻根部含碘量與稻田土壤接近,且高于水稻莖葉和稻米碘含量;稻米含碘量(按干質(zhì)量計(jì))在稻株各器官中最低,未施碘肥時(shí)僅為0.019 mg/kg,是根系的1/35,土壤的1/75,盡管當(dāng)?shù)馐┯昧繛?.500 kg/hm2時(shí),稻米含碘量也只有0.403 mg/kg,是同等條件下水稻根系含碘量的1/25。從水稻不同器官的轉(zhuǎn)運(yùn)系數(shù)來看,從莖葉到稻米的碘轉(zhuǎn)運(yùn)系數(shù)高于從根系到莖葉的碘轉(zhuǎn)運(yùn)系數(shù),更高于從根系到稻米的碘轉(zhuǎn)運(yùn)系數(shù)(表2)。說明水稻根系在大量吸收了土壤中的碘之后,只有極少量的碘進(jìn)入莖葉并轉(zhuǎn)運(yùn)至稻米中積累,與TSUKADA等[24]對(duì)水稻碘強(qiáng)化后的效果一致。密集的水稻根系與稻田土壤碘含量基本相近,能夠非常有效地吸收外源施加的海藻碘肥。從長遠(yuǎn)來看,通過根系和秸稈還田的方式也可以在一定程度上給土壤補(bǔ)碘,以減少后續(xù)施碘的量和次數(shù)。
此外,與水稻對(duì)其他元素的轉(zhuǎn)運(yùn)系數(shù)相比,從根系到稻米的碘轉(zhuǎn)運(yùn)系數(shù)(0.024~0.051)與相應(yīng)的鐵轉(zhuǎn)運(yùn)系數(shù)(0.020~0.040)[25]接近,低于相應(yīng)的硒轉(zhuǎn)運(yùn)系數(shù)(0.450~0.630)、錳轉(zhuǎn)運(yùn)系數(shù)(1.590~3.610)和磷轉(zhuǎn)運(yùn)系數(shù)(4.270~5.740)[25-26]。
表2 水稻不同器官間碘的轉(zhuǎn)運(yùn)系數(shù)Table 2 Translocation factors(TF)of iodine between various rice organs
2.2 蔬菜和水果作物的碘強(qiáng)化效果
從圖2可見,相對(duì)于未施肥的對(duì)照植株,施用不同量的外源碘肥后,新鮮蔬菜、水果作物的可食部位含碘量均有不同程度的上升。具體而言,絲瓜、黃瓜、番茄、茄子、西瓜、毛豆、豇豆這7種作物在施用碘肥后,其碘含量較對(duì)照顯著增加(p<0.05),多數(shù)作物碘含量增加了1.5倍到4倍,其中:茄子由于對(duì)照基數(shù)較小,增加倍數(shù)最高;僅辣椒在施碘肥前后的碘含量沒有明顯變化(P>0.05)。這表明在農(nóng)田土壤中施加一定量的外源海藻碘肥后,多數(shù)種類的新鮮蔬菜、水果可通過根系較有效地吸收土壤中的碘,并將其遷移轉(zhuǎn)化為有機(jī)碘存儲(chǔ)于可食部位中,從而提高碘含量,與WENG等[27]、韓平等[28]的研究結(jié)果一致。在本研究中,毛豆從根到果實(shí)的碘轉(zhuǎn)運(yùn)系數(shù)為0.131,與洪春來[29]的研究結(jié)果(0.113~0.151)相當(dāng)。洪春來[29]還發(fā)現(xiàn),施外源碘后,豇豆、茄子、辣椒、黃瓜、番茄等作物從根到果實(shí)的碘轉(zhuǎn)運(yùn)系數(shù)分別為 0.073~0.102、0.064~0.094、0.032~0.045、0.052~0.081、0.089~0.125??梢?,通過施加外源碘來增加蔬菜、水果作物可食部位的含碘量是有效可行的。
當(dāng)外源碘施用量為0.375 kg/hm2時(shí),各種蔬菜、水果作物可食部位的碘含量與未施肥的對(duì)照相比,其差異沒有統(tǒng)計(jì)學(xué)意義(圖2),說明低碘對(duì)蔬菜、水果碘含量的強(qiáng)化作用還不明顯。這與孫向武等[30]在盆栽實(shí)驗(yàn)中發(fā)現(xiàn)的在低碘施用情況下蔬菜含碘量增速較快,對(duì)碘的吸收為主動(dòng)吸收,且隨著碘含量升高轉(zhuǎn)化為被動(dòng)吸收的結(jié)論有所出入,但與洪春來等[18]研究的幾種蔬菜對(duì)外源碘的吸收和積累特性相似。隨著施碘量的增加,蔬菜、水果作物可食部位的碘含量一般也逐步增加,但不同樣品提高的程度有一定分化。當(dāng)?shù)夥适┯昧繛?.500 kg/hm2時(shí),除豇豆和辣椒外,其他作物可食部位的碘含量都有顯著提高;當(dāng)施碘量達(dá)3.000 kg/hm2時(shí),絲瓜、豇豆、茄子碘含量繼續(xù)顯著提高,西瓜、黃瓜的碘含量則出現(xiàn)下降;而毛豆則是在施碘量為4.500 kg/hm2時(shí)出現(xiàn)碘含量下降的情況(圖2)。這說明當(dāng)土壤中的外源碘含量超過蔬菜、水果所能耐受的限度時(shí),會(huì)產(chǎn)生一定的毒害作用,從而抑制碘的吸收,降低可食部位碘含量。洪春來等[31]在對(duì)大豆施用外源碘肥時(shí)發(fā)現(xiàn),在高濃度外源碘處理下的大豆生物量有所下降,且植株表現(xiàn)出一定的受害癥狀。本文對(duì)毛豆根、莖、葉在高碘和低碘環(huán)境下的碘含量測(cè)定結(jié)果也證實(shí):在高碘(4.500 kg/hm2)條件下,毛豆根、莖、葉的碘含量反而低于低碘(0.375 kg/hm2)施用量下的對(duì)應(yīng)值(圖3)。另外,不同作物對(duì)外源碘的耐受性也存在差異,其中:豇豆的耐受性最強(qiáng),在4.500 kg/hm2外源碘施用下仍處于高碘含量狀態(tài);絲瓜、番茄、茄子、毛豆在3.000 kg/hm2的外源碘環(huán)境中尚未表現(xiàn)出受害癥狀,相對(duì)于西瓜、黃瓜具有更強(qiáng)的耐受性。因此,應(yīng)針對(duì)不同蔬菜施加不同量的外源碘肥,避免過量施碘危害作物生長。
綜上表明,不同蔬菜、水果作物對(duì)碘的吸收能力存在一定的差異。對(duì)毛豆施加外源碘肥后的碘含量增加效果最為顯著,其可食部位的含碘量(按鮮質(zhì)量計(jì))在0.234 mg/kg左右。對(duì)本研究中的幾種作物按含碘量的最大值從大到小排列,依次為毛豆、豇豆、絲瓜、茄子、西瓜、辣椒、番茄和黃瓜,它們的含碘量(按鮮質(zhì)量計(jì))在未施碘肥時(shí)約為0.01~0.08 mg/kg,施碘肥后大部分可接近或超過0.130 mg/kg,與石瑋[32]研究的大田蔬菜對(duì)碘的吸收量大致接近。本研究的生物碘強(qiáng)化目標(biāo)作物限于果類蔬菜或水果,其碘含量低于青菜、小白菜、芹菜等葉類或莖葉類蔬菜的外源碘強(qiáng)化效果[18,33]。這可能是因?yàn)槲⒘康庠谕ㄟ^木質(zhì)部輸送到植物種子和果實(shí)組織過程中大部分被截留在根部和葉片,且果實(shí)生長周期較其他部位短,因此,在植物體各器官間的碘濃度梯度一般表現(xiàn)為按根、莖、葉、果的順序遞減,故果類蔬菜的海藻碘肥補(bǔ)碘效果次于莖葉類蔬菜。但由于食物的多樣性需求和果類蔬菜的不可替代性,仍值得將它們作為一類富碘蔬菜進(jìn)行培育推廣。
圖2 在海藻碘肥不同施用量條件下供試蔬菜和水果可食部位碘含量Fig.2 Iodine contents in the edible parts of the tested vegetables and fruits under different exogenous iodine addition dosages
圖3 在海藻碘肥不同施用量條件下毛豆不同部位碘含量Fig.3 Iodine content in different parts of edamame under different exogenous iodine addition dosages
綜上所述,糧食作物水稻,以及絲瓜、黃瓜、番茄、茄子、西瓜、毛豆、豇豆、番茄等多種蔬菜、水果作物,在田間條件下都能通過施用外源碘肥來有效提高其可食部位的碘含量。在蔬菜、水果類作物中,新鮮毛豆、豇豆從根到果實(shí)的轉(zhuǎn)運(yùn)系數(shù)相對(duì)較高,強(qiáng)化效果較明顯,其含碘量可提高至0.200 mg/kg左右,其他作物含碘量也可提高至0.130 mg/kg左右。因此,每人每天食用0.4 kg碘強(qiáng)化稻米和0.38 kg左右的富碘新鮮蔬菜和水果,即可滿足世界衛(wèi)生組織所推薦的成人150 μg/d的碘需求量,即使加上海藻、牛奶等含碘量相對(duì)較豐富的食物,一般也不會(huì)超過800 μg/d的碘攝入上限。因此,通過施用外源碘肥來提高植物性食品的含碘量以防治碘缺乏?。↖DD)是切實(shí)可行的。
對(duì)于糧食作物水稻以及大多數(shù)果實(shí)類蔬菜、水果作物而言,當(dāng)外源施碘量達(dá)1.500 kg/hm2時(shí),其可食部位碘含量的提高已十分明顯。而當(dāng)外源碘施用量達(dá)到或超過3.000 kg/hm2時(shí),黃瓜、西瓜、毛豆等作物可食部位的碘含量反而降低,表現(xiàn)出一定的受毒害癥狀。因此,綜合考慮投入成本與碘強(qiáng)化效果,1.500 kg/hm2可作為大田作物碘強(qiáng)化的推薦施碘量。
本實(shí)驗(yàn)表明,在農(nóng)田生態(tài)系統(tǒng)中,外源海藻碘肥能被糧食、蔬菜和水果作物通過根、莖、葉、果等器官吸收和轉(zhuǎn)化,輸送并儲(chǔ)存于可食部位(果實(shí))中,從而提高其可食部位的碘含量。前文已述及食鹽加碘雖然成效顯著,但也存在引發(fā)高碘甲狀腺腫、甲亢、甲狀腺癌、視網(wǎng)膜損傷等諸多弊端。且中國90%的碘依靠進(jìn)口,2014年的碘進(jìn)口量約4 345 t,進(jìn)口額達(dá)1.47億美元,其中僅食鹽添加的碘(碘酸鉀)就需要400多t。而海藻可以將海水中的碘富集濃縮近3萬倍,是自然界的碘庫。聯(lián)合國糧食及農(nóng)業(yè)組織(FAO)的統(tǒng)計(jì)資料顯示,我國的海帶養(yǎng)殖產(chǎn)量和加工規(guī)模居世界首位。2014年中國海藻及水生植物產(chǎn)量占世界總產(chǎn)量的48.8%,其中海帶產(chǎn)量136.1萬t,占總量的10%以上。因此,利用海藻碘肥培育富碘作物以代替食鹽加碘,是一舉多得的有益措施。這不但能充分利用豐富的海藻資源培育安全健康的富碘食品,還能將海洋中的碘遷移到內(nèi)陸缺碘地區(qū)的土壤、水體中,促進(jìn)海洋與陸地間的碘循環(huán),進(jìn)一步改善陸地特別是內(nèi)陸山區(qū)的碘環(huán)境,同時(shí)也可以減少對(duì)進(jìn)口碘的依賴。
[1] 蔣云霞,李蓉,鐘國清,等.有機(jī)碘的研究現(xiàn)狀及應(yīng)用.廣東微量元素科學(xué),2010,17(10):12-16.JIANG Y X,LI R,ZHONG G Q,et al.Research status and application of organic iodine.Guangdong Trace Elements Science,2010,17(10):12-16.(in Chinese with English abstract)
[2]ANDERSSON M,KARUMBUNATHAN V,ZIMMERMANN M B.Global iodine status in 2011 and trends over the past decade.The Journal of Nutrition,2012,142(4):744-750.
[3] ANDERSSON M,TAKKOUCHE B,EGLI I,et al.Current global iodine status and progress over the last decade towards the elimination of iodine deficiency.Bulletin of the World Health Organisation,2005,83(7):518-525.
[4] 劉坤,王瑋瑩.甲狀腺疾病與碘鹽的關(guān)系.世界最新醫(yī)學(xué)信息文摘,2015,15(32):190.LIU K,WANG W Y.The relationship between thyroid disease and iodine salt.World Latest Medicine Information,2015,15(32):190.(in Chinese)
[5] EASTMAN C J.Screening for thyroid disease and iodine deficiency.Pathology,2012,44(2):153-159.
[6] 陳正杰,周維祿.淺談當(dāng)前我國民眾碘的營養(yǎng)狀況:對(duì)分地域?qū)嵤┦雏}不同加碘標(biāo)準(zhǔn)的探討.西南農(nóng)業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版),2011,9(1):58-60.CHEN Z J,ZHOU W L.A brief talk on the nutritional status of iodine in China:Discussion on the implementation of different standard of adding iodized salt in different regions.Journal of Southwest Agricultural University(Social Science Edition),2011,9(1):58-60.(in Chinese)
[7] WENG H X,WENG J K,YAN A L,et al.Increment of iodine content in vegetable plants by applying iodized fertilizer and the residual characteristics of iodine in soil.Biological Trace Element Research,2008,123(1/2/3):218-228.
[8] 邢怡,劉左軍,袁惠君,等.植物中的碘與富碘蔬菜的研究.安徽農(nóng)業(yè)科學(xué),2009,37(12):5451-5453.XING Y,LIU Z J,YUAN H J,et al.Study on iodine in plants and enriched iodine vegetable.Journal of Anhui Agricultural Sciences,2009,37(12):5451-5453.(in Chinese with English abstract)
[9] 滕衛(wèi)平.防治碘缺乏病與碘過量.中華內(nèi)分泌代謝雜志,2002,18(3):237-240.TENG W P.Prevention and treatment of iodine deficiency disorders versus iodine excess.Chinese Journal of Endocrinology and Metabolism,2002,18(3):237-240.(in Chinese)
[10]滕衛(wèi)平.倡導(dǎo)科學(xué)補(bǔ)碘,實(shí)行區(qū)域化、個(gè)體化的補(bǔ)碘策略.中華內(nèi)分泌代謝雜志,2006,22(6):510-511.TENG W P.Iodine supplementation had better be conducted by localization and individualization.Chinese Journal of Endocrinology and Metabolism,2006,22(6):510-511.(in Chinese with English abstract)
[11]HEIKEM,MARMORMF.L-cystein protects the pigment epithelium from acute sodium iodate toxicity.Documenta Ophthalmologica,1990,75(1):15-22.
[12] 張穎,李俞瑩,姚旋,等.碘與甲狀腺疾病.生命科學(xué),2012,24(8):901-908.ZHANG Y,LI Y Y,YAO X,et al.Iodine and thyroid diseases.Chinese Bulletin of Life Sciences,2012,24(8):901-908.(in Chinese with English abstract)
[13]李鴻,張嘉越.碘過量與甲狀腺癌相關(guān)性的研究進(jìn)展.醫(yī)學(xué)綜述,2016,22(6):1095-1098.LI H,ZHANG J Y.Research progress in correlation between iodine excess and thyroid cancer.Medical Recapitulate,2016,22(6):1095-1098.(in Chinese with English abstract)
[14]王若.碘過量對(duì)大鼠股骨關(guān)節(jié)軟骨及生長板的影響.天津:天津醫(yī)科大學(xué),2015:36-38.WANG R.Effects of iodine excess on rat’s bone structure and functions.Tianjin:Tianjin Medical University,2015:36-38.(in Chinese with English abstract)
[15]LI R,LIU H P,HONG C L,et al.Iodide and iodate effects on the growth and fruit quality of strawberry.Journal of the Science of Food and Agriculture,2017,97(1):230-235.
[16]LI R,LI D W,LIU H P,et al.Enhancing iodine content and fruit quality of pepper(Capsicum annuum L.)through biofortification.Scientia Horticulturae,2017,214(1):165-173.
[17]洪春來,劉會(huì)萍,翁煥新,等.海藻碘肥強(qiáng)化果菜碘富集的田間應(yīng)用研究.浙江農(nóng)業(yè)學(xué)報(bào),2011,23(6):1192-1198.HONG C L,LIU H P,WENG H X,et al.Iodine fortification of fruit vegetable with seaweed iodine fertilizer application in the field.Acta Agriculturae Zhejiangensis,2011,23(6):1192-1198.(in Chinese with English abstract)
[18]洪春來,翁煥新,嚴(yán)愛蘭,等.幾種蔬菜對(duì)外源碘的吸收與積累特性.應(yīng)用生態(tài)學(xué)報(bào),2007,18(10):2313-2318.HONG C L,WENG H X,YAN A L,et al.Characteristics of iodine uptake and accumulation by vegetables.Chinese Journal of Applied Ecology,2007,18(10):2313-2318.(in Chinese with English abstract)
[19]翁煥新,蔡奇雄.一種含碘復(fù)合肥的制造方法:ZL94108836.7.1998.WENG H X,CAI Q X.A manufacturing method of iodine compound fertilizer:ZL94108836.7.1998.(in Chinese)
[20]李世敏,劉冬.放大反應(yīng)比色法測(cè)定食品中碘的研究.食品科學(xué),2002,23(8):214-217.LI S M,LIU D.Spectrophotometric determination of iodine in foods.Food Science,2002,23(8):214-217.(in Chinese)
[21] 杜彩艷,張乃明,雷寶坤,等.不同玉米(Zea mays)品種對(duì)鎘鋅積累與轉(zhuǎn)運(yùn)的差異研究.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(1):16-23.DU C Y,ZHANG N M,LEI B K,et al.Differences of cadmium and zinc accumulation and translocation in different varieties of Zea mays.Journal of Agro-Environment Science,2017,36(1):16-23.(in Chinese with English abstract)
[22]劉珍環(huán),李正國,唐鵬欽,等.近30年中國水稻種植區(qū)域與產(chǎn)量時(shí)空變化分析.地理學(xué)報(bào),2013,68(5):680-693.LIU Z H,LI Z G,TANG P Q,et al.Spatial-temporal changes of rice area and production in China during 1980—2010.Acta Geographica Sinica,2013,68(5):680-693.(in Chinese with English abstract)
[23]鄔亞文,夏小東,職桂葉,等.基于文獻(xiàn)的國內(nèi)外水稻研究發(fā)展態(tài)勢(shì)分析.中國農(nóng)業(yè)科學(xué),2011,44(20):4129-4141.WU Y W,XIA X D,ZHI G Y,et al.Status and trends of rice science based on bibliometrics.Scientia Agricultura Sinica,2011,44(20):4129-4141.(in Chinese with English abstract)
[24]TSUKADA H,TAKEDA A,TAGAM K,et al.Uptake and distribution of iodine in rice plants.Journal of Environment Quality,2008,37(6):2243-2247.
[25]胡瑩,黃益宗,黃艷超,等.硒對(duì)水稻吸收積累和轉(zhuǎn)運(yùn)錳、鐵、磷和硒的影響.環(huán)境科學(xué),2013,34(10):4119-4125.HU Y,HUANG Y Z,HUANG Y C,et al.Effect of selenium on the uptake and translocation of manganese,iron,phosphorus and selenium in rice(Oryza sativa L.).Environmental Science,2013,34(10):4119-4125.(in Chinese with English abstract)
[26]姜超強(qiáng),沈嘉,祖朝龍.水稻對(duì)天然富硒土壤硒的吸收及轉(zhuǎn)運(yùn).應(yīng)用生態(tài)學(xué)報(bào),2015,26(3):809-816.JIANG C Q,SHEN J,ZU C L.Selenium uptake and transport of rice under different Se-enriched natural soils.Chinese Journal of Applied Ecology,2015,26(3):809-816.(in Chinese with English abstract)
[27]WENG H X,LIU H P,LI D W,et al.An innovative approach for iodine supplementation using iodine-rich phytogenic food.Environmental Geochemistry and Health,2014,36(4):815-828.
[28]韓平,馬智宏,陳宗光,等.西瓜對(duì)外源無機(jī)碘的吸收與利用研究初探.中國農(nóng)學(xué)通報(bào),2011,27(25):205-209.HAN P,MA Z H,CHEN Z G,et al.Preliminary study on the absorption and utilization of exogenous inorganic iodine in watermelon.Chinese Agricultural Science Bulletin,2011,27(25):205-209.(in Chinese with English abstract)
[29]洪春來.土壤-蔬菜系統(tǒng)中碘的生物地球化學(xué)行為與蔬菜對(duì)外源碘的吸收機(jī)制研究.杭州:浙江大學(xué),2007:96-97.HONG C L.Biogeochemical behavior of iodine in soil-vegetable system and the mechanism of exogenous iodine uptake by vegetables.Hangzhou:Zhejiang University,2007:96-97.(in Chinese with English abstract)
[30]孫向武,翁煥新,雍文彬,等.菠菜對(duì)外源碘的生物地球化學(xué)吸收.植物營養(yǎng)與肥料學(xué)報(bào),2004,10(2):192-197.SUN X W,WEN H X,YONG W B,et al.The biogeochemical absorption by spinach fertilizing outer source iodine.Plant Nutrition and Fertilizer Science,2004,10(2):192-197.(in Chinese with English abstract)
[31]洪春來,翁煥新,嚴(yán)愛蘭,等.大豆對(duì)外源碘吸收與積累特性的研究.中國油料作物學(xué)報(bào),2008,30(1):95-99.HONG C L,WENG H X,YAN A L,et al.Study on characteristics of iodine absorption and accumulation of vegetable soybean.Chinese Journal of Oil Crop Sciences,2008,30(1):95-99.(in Chinese with English abstract)
[32]石瑋.大田蔬菜對(duì)碘的吸收與碘在蔬菜內(nèi)的分布.杭州:浙江大學(xué),2007:26-30.SHI W.Uptake of iodine by farmland vegetables and distributions of iodine in vegetables.Hangzhou:Zhejiang University,2007:26-30.(in Chinese with English abstract)
[33]謝伶莉.蔬菜對(duì)外源碘的吸收及碘的形態(tài)分析.杭州:浙江大學(xué),2006:28-35.XIE L L.Uptake of outer source iodine by vegetables and chemicalspecies analysis ofiodine.Hangzhou:Zhejiang University,2006:28-35.(in Chinese with English abstract)
Enhancement effects of seaweed iodine fertilizer application on the iodine contents of rice,vegetables and fruits in the field.Journal of Zhejiang University(Agric.&Life Sci.),2017,43(5):552-560
HU Chunqin1,LI Rui1*,HONG Chunlai2,CAO Wenting1,LIU Jiawei1,ZHOU Jun1,WENG Huanxin1
(1.School of Earth Sciences,Zhejiang University,Hangzhou 310027,China;2.Institute of Environment,Resource,Soil and Fertilizer,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China)
seaweed iodine fertilizer;field experiment;vegetable;fruit;rice;iodine content;iodine deficiency disorder;translocation factor
S 606.2
A
10.3785/j.issn.1008-9209.2016.11.111
Summary As is well-known,the iodine deficiency disorders(IDD)have tremendous adverse effects on the growth and development of human beings.The universal salt iodization(USI)has been introduced for the control and elimination of IDD in many countries.However,excessive iodine intake caused by USI may lead to new diseases such as hyperthyreosis,high level iodine goiter and thyroid cancer.Meanwhile,other investigations indicated that organic iodine is much safer than inorganic iodine added in salt.
A new strategy has been confirmed by pot and hydroponic experiments to cultivate the iodine-rich crops through biofortification for iodine supplement.This study aims to testify the feasibility of cultivating iodine-rich crops in a large scale under natural conditions,thus exploring a potential way for the prevention and elimination of the IDD.
Randomized block experiments were conducted in the farmland in Sha’an Village of Bihu Basin,which located in Lishui City of Zhejiang south mountain area,to explore the biofortification effect of seaweed iodine fertilizer on iodine contents of rice,vegetables and fruits in the field.The seaweed iodine fertilizer was prepared by mixing the smashed kelpwith diatomite according to patent formula.The treatments of exogenous iodine were as follows:0,0.375,0.750,1.500,3.000,and 4.500 kg/hm2.Spectrophotometric method was used to detect the iodine contents of crops and soil samples,and one-way analysis of variance was applied to analyze the difference of iodine contents among all treatments.
國家自然科學(xué)基金(40873058);浙江省國土資源廳“生態(tài)補(bǔ)碘機(jī)制研究及應(yīng)用示范”項(xiàng)目(201400205)。
李睿(http://orcid.org/0000-0001-8712-3094),E-mail:zhedalirui@zju.edu.cn
(First author):胡春琴(http://orcid.org/0000-0001-9971-8044),E-mail:1547425223@qq.com
2016-11-11;接受日期(Accepted):2017-04-25
The results suggested that the iodine content in the edible parts of all the tested crops were significantly enhanced(p<0.05)after biofortification by the seaweed iodine fertilizer,including rice,loofah,cucumber,tomato,eggplant,watermelon,edamame,cowpea,etc.The iodine content of rice grain on a dry mass basis increased from 0.019 mg/kg to 0.403 mg/kg after iodine biofortification,while the iodine content of the vegetables and fruits on a fresh mass basis may be enhanced from 0.01-0.05 mg/kg to 0.130 mg/kg after iodine application.Besides,the iodine translocation factors from the roots to the edible parts of cowpea and edamame were relatively higher than the others.A daily consumption of 0.38 kg fresh iodine-rich vegetables or fruits and 0.40 kg iodine-biofortified rice can offer 150 μg/d iodine for adults,which can meet the daily iodine intake recommended by the World Health Organization(WHO).
In conclusion,the iodine content varied significantly in different parts of rice,and increased gradually from roots to straws and grains.Low concentration(0.375 kg/hm2)of exogenous iodine had little effect on the iodine content of the edible parts of crops,while high concentration(≥3.000 kg/hm2)of exogenous iodine could reduce the iodine content of the edible parts of crops.Upon overall consideration of the costs and benefits for the plantation,1.500 kg/hm2should be an optimal exogenous iodine dosage for the cultivation of iodine-rich crops in the field.
致謝 浙江大學(xué)劉會(huì)萍博士和浙江省農(nóng)業(yè)科學(xué)院實(shí)習(xí)生孫超群、陳艷飛等在實(shí)驗(yàn)過程中給予了大力幫助,謹(jǐn)致謝意!
浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版)2017年5期