袁瑞研+王許安+劉穎斌
摘 要: CXC受體2(CXC receptor 2,CXCR2)是多種趨化因子受體,與機(jī)體的炎癥免疫過程密切相關(guān)。近年來,隨著炎癥免疫在腫瘤中的研究進(jìn)一步深入,發(fā)現(xiàn)CXCR2與其配體相互作用形成多種信號軸,共同在胰腺癌、乳腺癌、結(jié)直腸癌等多種惡性腫瘤的腫瘤微環(huán)境構(gòu)建與調(diào)控中發(fā)揮重要作用,對腫瘤的血管生成、腫瘤細(xì)胞的增殖、轉(zhuǎn)移、侵襲以及上皮細(xì)胞間質(zhì)轉(zhuǎn)化等方面均有明顯影響與調(diào)控作用。
關(guān)鍵詞 腫瘤;炎癥;免疫;CXCR2;趨化因子
中圖分類號:R73 文獻(xiàn)標(biāo)志碼:A 文章編號:1006-1533(2017)20-0003-05
Research progress of relationship between cancer and CXCR2 along with its ligands
YUAN Ruiyan, WANG Xuan, LIU Yingbin
(Department of General Surgery, Xinhua Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China)
ABSTRACT: CXC receptor 2(CXCR2 )is the receptor of various chemokines, which is closely connected with bodys inflammation and immunity. Recently, with the further research of inflammation and immunity in cancer, it is shown that the interaction of CXCR2 and its ligands works like all kinds of signaling axes and that plays an important role in both construction and modification of tumor microenvironment in many malignant cancers, such as pancreatic cancer, breast cancer, colorectal cancer and so on. CXCR2 axis has obvious impact and regulation on tumor angiogenesis, proliferation, metastasis, invasion and epithelial-mesenchymal transition of tumor cells.
KEY WORDS neoplasms; inflammation; immunity; CXCR2; chemokines
CXC受體2(CXC receptor 2,CXCR2)屬于G蛋白偶聯(lián)受體家族,其配體為CXCL1(C-X-C motif chemokine ligand 1)、CXCL2、CXCL3、CXCL5、CXCL6、CXCL7、CXCL8等多種CXC類趨化因子[1]。早期研究發(fā)現(xiàn),CXCR2可募集中性粒細(xì)胞向炎癥區(qū)域轉(zhuǎn)移[2-3],認(rèn)為與炎癥免疫相關(guān)。近年發(fā)現(xiàn),CXCR2參與多種腫瘤的發(fā)生、發(fā)展、治療過程,CXCR2軸在腫瘤微環(huán)境中的作用越來越得到重視。
CXCR2家族可促進(jìn)結(jié)腸癌[4]、鱗狀細(xì)胞癌[5]的發(fā)生,能調(diào)節(jié)胰腺導(dǎo)管腺癌髓源性抑制細(xì)胞(myeloidderived suppressor cells,MDSC)的轉(zhuǎn)移[1],促進(jìn)乳腺癌細(xì)胞轉(zhuǎn)移和侵襲[6-7],以及上皮細(xì)胞間質(zhì)轉(zhuǎn)化(epithelialmesenchymal transition,EMT)[8],對腫瘤微環(huán)境的構(gòu)建發(fā)揮著重要作用。同時,在乳腺腫瘤、胰腺癌中具有促血管生成作用[9]。治療方面,研究發(fā)現(xiàn)CXCR2在胰腺導(dǎo)管腺癌[1]以及化療耐藥乳腺癌[6]治療中可能是重要的切入點(diǎn)。
1 CXCR2及其配體的結(jié)構(gòu)與功能
1.1 CXCR2的結(jié)構(gòu)
CXCR2是CXC類趨化因子所對應(yīng)受體家族的一員,常分布于中性粒細(xì)胞,亦可見于肥大細(xì)胞、巨噬細(xì)胞、內(nèi)皮細(xì)胞及多種腫瘤細(xì)胞,因其能與白細(xì)胞介素(IL)-8高親和力特異結(jié)合,故又稱IL8Rβ(interleukin 8 receptor,beta)。CXCR2編碼基因位于染色體2q33-q36,受體蛋白約由350個氨基酸組成[10]。類似于其他趨化因子受體,CXCR2屬于7次跨膜的G蛋白偶聯(lián)受體,胞內(nèi)、胞外各有3個結(jié)構(gòu)域。位于胞外的N末端結(jié)構(gòu)域與趨化因子配體的結(jié)合相關(guān),同時通過1個酪氨酸磷酸化模體激活受體[11];受體C末端片段位于胞內(nèi),鄰近C末端的LLKIL模體與位于胞外第2段肽環(huán)內(nèi)的1個天冬氨酸殘基對于受體結(jié)合后的快速內(nèi)化具有重要作用;G蛋白結(jié)合位點(diǎn)位于胞內(nèi)第2段肽環(huán)內(nèi),由DRY模體組成,與胞內(nèi)下游信號通路轉(zhuǎn)導(dǎo)相關(guān)。此外,該段肽環(huán)內(nèi)包含1段由10個氨基酸組成的保守肽段,并且每個胞外結(jié)構(gòu)域均含1個特有的半胱氨酸殘基[12-13]。
1.2 CXCR2配體
趨化因子是一種小分子量細(xì)胞因子,可使白細(xì)胞發(fā)生定向趨化運(yùn)動。根據(jù)半胱氨酸殘基的數(shù)目及位置,可將趨化因子分為4大類:CXC類、CC類、C類及CX3C類。其中,CXC類趨化因子通??筛鶕?jù)是否含ELR模體,分為ELR+趨化因子及ELR-趨化因子,ELR模體位于N末端,是含3個氨基酸片段(glu-leu-arg)、8~14 KD的多肽。CXCR2配體均為ELR+趨化因子,主要有CXCL1-2-3-5-6-7-8,且其配體編碼基因均位于4號染色體。以下對CXCR2配體作一分述。endprint
CXCL1又稱生長調(diào)節(jié)致癌基因α(growth-regulated oncogene α,GRO α),編碼CXCL1基因,最先由Anisowicz等[14]在中國倉鼠胚胎成纖維細(xì)胞中發(fā)現(xiàn),人CXCL1基因位于4號染色體上。Richmond等[15-16]最先在人黑色素瘤細(xì)胞系培養(yǎng)基懸液中提取出CXCL1,認(rèn)為其是腫瘤細(xì)胞自分泌的一種生長因子,CXCL1在黑色素瘤及多種急、慢性炎癥中表達(dá)量顯著升高。此外,該因子還與Kaposi肉瘤、非小細(xì)胞肺癌,結(jié)直腸癌等腫瘤血管生成相關(guān)。CXCL2的氨基酸序列與CXCL1有90%的相似度,其編碼基因亦位于4號染色體上,對多形核白細(xì)胞及造血干細(xì)胞具有趨化作用[17-18]。CXCL3編碼基因同樣位于4號染色體,可調(diào)控單核細(xì)胞的轉(zhuǎn)移及粘附,與小腦形態(tài)發(fā)生具有一定相關(guān)性,在成神經(jīng)管細(xì)胞瘤[19]、乳腺癌[20]當(dāng)中具有一定的研究。CXCL5又稱上皮細(xì)胞源性中性粒細(xì)胞活化肽(epithelial cell-derived neutrophil-activating peptide),人CXCL5基因定位于4號染色體q13-q21部位,包含4個外顯子和3個內(nèi)顯子,其cDNA共編碼114個氨基酸,與CXCL8基因結(jié)構(gòu)類似。越來越多的研究表明,CXCL5不僅與免疫炎癥相關(guān),更與許多腫瘤有著密切關(guān)聯(lián)。CXCL6可與CXCR1、CXCR2結(jié)合發(fā)揮炎癥因子趨化功能。CXCL7在血小板激活后會大量釋放,參與有絲分裂發(fā)生、細(xì)胞外基質(zhì)合成、糖代謝多個過程[21-22]。近年來,亦有研究發(fā)現(xiàn)CXCR2/ CXCL7軸在結(jié)腸癌等腫瘤性疾病中發(fā)揮作用[23]。CXCL8即IL-8,是一種強(qiáng)烈的促炎因子,巨噬細(xì)胞、上皮細(xì)胞、氣管平滑肌細(xì)胞等都可以分泌,CXCR1與CXCR2均為CXCL8受體。人CXCL8蛋白由位于4號染色體上的CXCL8基因編碼,最初以99個氨基酸長的前體肽形式存在,巨噬細(xì)胞培養(yǎng)時可分泌72個氨基酸長的IL-8活性肽[24]。CXCL8對多種炎癥細(xì)胞具有趨化作用,并且有很強(qiáng)的促血管生成作用。除了在機(jī)體固有免疫中發(fā)揮重要作用,對CXCL8其他功能的研究還涉及支氣管炎、齒齦炎等炎癥性疾病、肥胖相關(guān)性疾病[25]、精神分裂癥[26]、結(jié)腸癌、胰腺癌、黑色素瘤、惡性間皮瘤、肺癌、Kaposi肉瘤等腫瘤疾病[27]。
2 CXCR2與腫瘤關(guān)系研究進(jìn)展
2.1 CXCR2在乳腺癌中的研究
CXCR2主要通過與CXCL8、CXCL5、GRO α等作用影響乳腺癌的進(jìn)展,但具體的作用機(jī)制目前仍未明晰。研究發(fā)現(xiàn),乳腺癌骨轉(zhuǎn)移的腫瘤細(xì)胞相關(guān)性成骨細(xì)胞(tumor-associated osteoblasts,TAOBs)源性CXCL5結(jié)合其特異性受體CXCR2與Raf/MEK/ERK激活相關(guān),通過MSK1、Elk-1磷酸化,進(jìn)而促進(jìn)組蛋白H3乙?;约皊nail啟動子磷酸化,引起snail上調(diào),E-cadherin下調(diào),影響乳腺癌腫瘤細(xì)胞系MCF-7及MDA-MB-231的轉(zhuǎn)移、侵襲以及EMT,而細(xì)胞增殖情況未見改變[8]。稍所不同的是,Xu等[28]發(fā)現(xiàn)過表達(dá)CXCR2對乳腺癌細(xì)胞的增殖、轉(zhuǎn)移、侵襲、抗凋亡、腫瘤形成等均有促進(jìn),并且通過提高環(huán)氧合酶2表達(dá),減少AKT表達(dá),進(jìn)而促進(jìn)腫瘤轉(zhuǎn)移及耐藥。Sharma等[6]還觀察到耐藥乳腺癌細(xì)胞Cl66細(xì)胞的CXCR2表達(dá)下調(diào),而其配體表達(dá)量增高,進(jìn)一步研究發(fā)現(xiàn)這些耐藥細(xì)胞的干性標(biāo)志及間質(zhì)細(xì)胞標(biāo)志表達(dá)增多,表明兩者之間存在一定的相關(guān)性,靶向治療CXCR2信號通路可能在耐藥乳腺癌的治療中發(fā)揮作用。
2.2 CXCR2在胰腺腫瘤中的研究
CXCR2在胰腺腫瘤分子生物學(xué)機(jī)制的研究可能為胰腺癌的診斷與治療提供更優(yōu)的策略選擇。Steele等[1]發(fā)現(xiàn)CXCR2表達(dá)在人胰腺癌中性粒細(xì)胞/骨髓來源抑制細(xì)胞中有明顯上調(diào),中性粒細(xì)胞/骨髓來源抑制細(xì)胞在胰腺癌轉(zhuǎn)移微環(huán)境的構(gòu)建中發(fā)揮重要作用,而CXCR2在該過程中扮演了重要角色,抑制CXCR2還可以促進(jìn)T細(xì)胞滲入,提高了抗腫瘤治療的敏感性,CXCR2靶向治療可能成為減少胰腺導(dǎo)管腺癌的進(jìn)展與轉(zhuǎn)移的有效措施。同樣,前期有研究表明人胰腺癌中也有明顯的CXCL5過表達(dá),CXCL5表達(dá)量與腫瘤分化、臨床分期、患者生存率呈明顯的負(fù)相關(guān)。CXCL5誘導(dǎo)AKT、ERK磷酸化促進(jìn)內(nèi)皮細(xì)胞生長及血管生成,同時還通過MAPK、JAK/STAT等通路對腫瘤產(chǎn)生影響[29]。
2.3 CXCR2在結(jié)直腸癌中的研究
CXCR2配體通過與CXCR2作用影響結(jié)直腸癌患者的預(yù)后以及腫瘤發(fā)展與轉(zhuǎn)移。Kawamura等[4]對250例結(jié)直腸癌患者及30名正常人的血清樣本進(jìn)行CXCL5濃度測定,發(fā)現(xiàn)與正常人相比,結(jié)直腸癌患者術(shù)前血清CXCL5濃度明顯較高,同時結(jié)合其臨床病理結(jié)果和生存調(diào)查,發(fā)現(xiàn)CXCL5高血清濃度與性別為女(P=0.0098)以及肝轉(zhuǎn)移具有明顯的相關(guān)性。單變量分析表明,CXCL5升高與總體生存率低相關(guān);多變量分析表明,CXCL5升高在所有結(jié)直腸癌患者中是重要且獨(dú)立的生存預(yù)后影響因素。CXCL5很可能可以作為一種新的結(jié)直腸癌腫瘤標(biāo)志,且其與CXCR2所形成的信號軸可能參與了結(jié)直腸癌的發(fā)生和發(fā)展。Wang等[30]分析139例人結(jié)直腸癌樣本的免疫組化結(jié)果,發(fā)現(xiàn)整合素αvβ6表達(dá)量與IL-8呈明顯相關(guān)性,IL-8與其受體CXCR1/2作用,劑量依賴性激活ERK及Ets-1信號通路,從而上調(diào)整合素αvβ6表達(dá),促進(jìn)結(jié)直腸癌轉(zhuǎn)移。
2.4 CXCR2在肺癌中的研究
早期報道在非小細(xì)胞肺癌中,CXCR2具有明顯促進(jìn)腫瘤炎癥反應(yīng)以及血管生成作用。在體外使用CXCR2抑制劑或敲減肺癌細(xì)胞CXCR2基因,均可降低腫瘤細(xì)胞侵襲能力。在對262例無術(shù)前化療的非小細(xì)胞肺癌切除術(shù)患者組織的探針分析中,發(fā)現(xiàn)所表達(dá)CXCR2主要存在于腫瘤細(xì)胞胞質(zhì)中,且表達(dá)量與患者吸煙及不良預(yù)后密切相關(guān)。同時,對52株非小細(xì)胞肺癌細(xì)胞系及442例早期切除的肺腺癌腫瘤細(xì)胞CXCR2軸基因表達(dá)模式的分析發(fā)現(xiàn),其基因表達(dá)模式與人吸煙相關(guān)肺腺癌及不利臨床特征(如KRAS突變、表皮生長因子受體突變)相關(guān)。此外,在70株人非小細(xì)胞肺癌細(xì)胞系有確定的CXCR2軸啟動子甲基化,進(jìn)而調(diào)節(jié)CXCL5表達(dá)[31]。Khan等[32]用CXCL8的一種突變蛋白G31P特異性抑制CXCR1/2,使cleaved PARP、Caspase-8、Bax表達(dá)升高,Bcl-2表達(dá)降低,促進(jìn)腫瘤細(xì)胞凋亡,并且對H460、A549細(xì)胞的增殖、轉(zhuǎn)移能力呈劑量依賴性抑制,提示CXCR2軸為非小細(xì)胞肺癌潛在的治療靶點(diǎn)。endprint
2.5 CXCR2在其他腫瘤中的研究
Begley等[33]在前列腺癌的研究中發(fā)現(xiàn),CXCL5在前列腺上皮細(xì)胞中同時激活了MAPK和PI3K信號通路,從而促進(jìn)上皮細(xì)胞的增殖和侵襲;CXCL5還促進(jìn)了EGR1基因的轉(zhuǎn)錄,EGR1可編碼一種C2H2型鋅指蛋白,該蛋白可促進(jìn)腫瘤生長與血管生成,并提高腫瘤細(xì)胞的生存能力,揭示了CXCL5/CXCR2軸在前列腺癌中可能發(fā)揮著重要作用。Bayo等[34]在肝細(xì)胞癌培養(yǎng)基中發(fā)現(xiàn),肝癌細(xì)胞分泌了大量CXCL8、CXCL1-2-3、CCL2,這些細(xì)胞因子募集骨髓來源間充質(zhì)干細(xì)胞進(jìn)入腫瘤細(xì)胞微環(huán)境,進(jìn)而通過間充質(zhì)干細(xì)胞促進(jìn)腫瘤細(xì)胞轉(zhuǎn)移并且對腫瘤微環(huán)境其他細(xì)胞組成進(jìn)行調(diào)控,對上述細(xì)胞因子的受體CXCR1/CXCR2進(jìn)行中和,50%間充質(zhì)干細(xì)胞的轉(zhuǎn)移受到抑制。該發(fā)現(xiàn)可為靶向抑制間充質(zhì)干細(xì)胞治療肝細(xì)胞癌提供很好的治療策略。此外,CXCR2軸在腎細(xì)胞癌、膀胱癌、食管癌、胃癌等腫瘤的進(jìn)程中也發(fā)揮著潛在的作用。近幾年膽囊癌發(fā)病率逐年升高,相關(guān)研究越來越受到關(guān)注[35-39],根據(jù)臨床上關(guān)注到的膽囊炎與膽囊癌之間的密切關(guān)系,有理由相信炎癥損傷在膽囊癌腫的發(fā)生、發(fā)展過程中扮演著不可忽視的作用。
3 小結(jié)
隨著人們對炎癥免疫在腫瘤研究中作用認(rèn)識程度的增高,趨化因子及其受體在人體內(nèi)所扮演的角色不再是一種構(gòu)成機(jī)體免疫系統(tǒng)的簡單的蛋白分子,在腫瘤分子生物層面,一個個細(xì)胞因子穿插于調(diào)控腫瘤發(fā)生、轉(zhuǎn)移、侵襲、血管形成等方面的巨大網(wǎng)絡(luò)之中。目前,CXCR2及其配體所形成的信號軸在乳腺癌、結(jié)直腸癌、胰腺癌等疾病中的作用有了廣泛研究,CXCR2軸對腫瘤細(xì)胞的增殖、轉(zhuǎn)移、侵襲、EMT以及腫瘤的血管生成、患者生成預(yù)后均有不同程度的影響,但具體的分子機(jī)制、相關(guān)信號通路的調(diào)控、深層次表觀調(diào)節(jié)方面的影響尚需更加深入的探討。CXCR2軸在腫瘤性疾病中扮演的角色,有為腫瘤臨床早期診斷、患者預(yù)后提供更可靠預(yù)判標(biāo)志的潛能;CXCR2及其配體的靶向治療,更為惡性腫瘤治療提供了更廣闊的思路與更開明的前景。
參考文獻(xiàn)
[1] Steele CW, Karim SA, Leach JD, et al. CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma[J]. Cancer cell, 2016, 29(6): 832-845.
[2] Cacalano G, Lee J, Kikly K, et al. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog[J]. Science, 1994, 265(5172): 682-684.
[3] Eash KJ, Greenbaum AM, Gopalan PK, et al. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow[J]. J Clin Invest, 2010, 120(7): 2423-2431.
[4] Kawamura M, Toiyama Y, Tanaka K, et al. CXCL5, a promoter of cell proliferation, migration and invasion, is a novel serum prognostic marker in patients with colorectal cancer[J]. Eur J Cancer, 2012, 48(14): 2244-2251.
[5] Jamieson T, Clarke M, Steele CW, et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis[J]. J Clin Invest, 2012, 122(9): 3127-3144.
[6] Sharma B, Varney ML, Saxena S, et al. Induction of CXCR2 ligands, stem cell-like phenotype, and metastasis in chemotherapy-resistant breast cancer cells[J]. Cancer Lett, 2016, 372(2): 192-200.
[7] Yu PF, Huang Y, Han YY, et al. TNFalpha-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2+ neutrophils[J]. Oncogene, 2016, doi: 10.1038/onc.2016.217
[8] Hsu YL, Hou MF, Kuo PL, et al. Breast tumor-associated osteoblast-derived CXCL5 increases cancer progression by ERK/MSK1/Elk-1/snail signaling pathway[J].Oncogene, 2013, 32(37): 4436-4447.
[9] Lau WH, Pandey V, Kong X, et al. Trefoil Factor-3 (TFF3) Stimulates De Novo Angiogenesis in Mammary Carcinoma both Directly and Indirectly via IL-8/CXCR2[J]. PloS one, 2015, 10(11): e0141947.endprint
[10] Olson TS, Ley K. Chemokines and chemokine receptors in leukocyte trafficking[J]. Am J Physiol Regul Integr Comp Physiol, 2002, 283(1): R7-28.
[11] Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors[J]. Pharmacol Rev, 2000, 52(1): 145-176.
[12] Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism[J]. Annu Rev Immunol, 2007, (25): 787-820.
[13] Nasser MW, Raghuwanshi SK, Malloy KM, et al. CXCR1 and CXCR2 activation and regulation. Role of aspartate 199 of the second extracellular loop of CXCR2 in CXCL8- mediated rapid receptor internalization[J]. J Biol Chem, 2007, 282(9): 6906-6915.
[14] Anisowicz A, Bardwell L, Sager R. Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells[J]. Proc Natl Acad Sci USA, 1987, 84(20): 7188-7192.
[15] Richmond A, Balentien E, Thomas HG, et al. Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to beta-thromboglobulin[J]. EMBO J, 1988, 7(7): 2025-2033.
[16] Richmond A, Lawson DH, Nixon DW, et al. Characterization of autostimulatory and transforming growth factors from human melanoma cells[J]. Cancer Res, 1985, 45(12 Pt 1): 6390-6394.
[17] Iida N, Grotendorst GR. Cloning and sequencing of a new gro transcript from activated human monocytes: expression in leukocytes and wound tissue[J]. Mol Cell Biol, 1990, 10(10): 5596-5599.
[18] Pelus LM, Fukuda S. Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties[J]. Exp Hematol, 2006, 34(8): 1010-1020.
[19] Farioli-Vecchioli S, Cina I, Ceccarelli M, et al. Tis21 knockout enhances the frequency of medulloblastoma in Patched1 heterozygous mice by inhibiting the Cxcl3-dependent migration of cerebellar neurons[J]. J Neurosci, 2012, 32(44): 15547-15564.
[20] See AL, Chong PK, Lu SY, et al. CXCL3 is a potential target for breast cancer metastasis[J]. Curr Cancer Drug Targets, 2014, 14(3): 294-309.
[21] Castor CW, Miller JW, Walz DA. Structural and biological characteristics of connective tissue activating peptide (CTAPIII), a major human platelet-derived growth factor[J]. Proc Natl Acad Sci USA, 1983, 80(3): 765-769.
[22] Castor CW, Furlong AM, Carter-Su C. Connective tissue activation: stimulation of glucose transport by connective tissue activating peptide III[J]. Biochemistry, 1985, 24(7): 1762-1767.endprint
[23] Desurmont T, Skrypek N, Duhamel A, et al. Overexpression of chemokine receptor CXCR2 and ligand CXCL7 in liver metastases from colon cancer is correlated to shorter diseasefree and overall survival[J]. Cancer Sci, 2015, 106(3): 262-269.
[24] Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis[J]. Neuro Oncol, 2005, 7(2): 122-133.
[25] Sharabiani MT, Vermeulen R, Scoccianti C, et al. Immunologic profile of excessive body weight[J]. Biomarkers, 2011, 16(3): 243-251.
[26] Brown AS, Hooton J, Schaefer CA, et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring[J]. Am J Psychiatry, 2004, 161(5): 889-895.
[27] Zhu YM, Webster SJ, Flower D, et al. Interleukin-8/CXCL8 is a growth factor for human lung cancer cells[J]. Br J Cancer, 2004, 91(11): 1970-1976.
[28] Xu H, Lin F, Wang Z, et al. CXCR2 controls breast cancer metastasis and chemoresistance through PI3K/AKT and COX-2 signalings[J]. Cancer Res, 2013, 73(8 Supplement): 548.
[29] Li A, King J, Moro A, et al. Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer[J]. Am J Pathol, 2011, 178(3): 1340-1349.
[30] Sun Q, Sun F, Wang B, et al. Interleukin-8 promotes cell migration through integrin alphavbeta6 upregulation in colorectal cancer[J]. Cancer Letters, 2014, 354(2): 245-253.
[31] Saintigny P, Massarelli E, Lin S, et al. CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma[J]. Cancer Res, 2013, 73(2): 571-582.
[32] Khan M, Wang B, Wei J, et al. CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3-72)K11R/ G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis[J]. Oncotarget, 2015, 6(25): 21315-21327.
[33] Begley LA, Kasina S, Mehra R, et al. CXCL5 promotes prostate cancer progression[J]. Neoplasia, 2008, 10(3): 244-254.
[34] Bayo J, Real A, Fiore EJ, et al. IL-8, GRO and MCP-1 produced by hepatocellular carcinoma microenvironment determine the migratory capacity of human bone marrowderived mesenchymal stromal cells without affecting tumor aggressiveness[J]. Oncotarget, 2016, doi: 10.18632/ oncotarget.10288
[35] Li M, Zhang Z, Li X, et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway[J]. Nat Genet, 2014, 46(8): 872-876.
[36] Quan Z, Gu J, Dong P, et al. Reactive oxygen speciesmediated endoplasmic reticulum stress and mitochondrial dysfunction contribute to cirsimaritin-induced apoptosis in human gallbladder carcinoma GBC-SD cells[J]. Cancer Lett, 2010, 295(2): 252-259.
[37] Tan Z, Li M, Wu W, et al. NLK is a key regulator of proliferation and migration in gallbladder carcinoma cells[J]. Mol Cell Biochem, 2012, 369(1-2): 27-33.
[38] Wu XS, Shi LB, Li ML, et al. Evaluation of two inflammation-based prognostic scores in patients with resectable gallbladder carcinoma[J]. Ann Surg Oncol, 2014, 21(2): 449-457.
[39] Li M, Lu J, Zhang F, et al. Yes-associated protein 1 (YAP1) promotes human gallbladder tumor growth via activation of the AXL/MAPK pathway[J]. Cancer Lett, 2014, 355(2): 201-209.endprint