楊昕澗,曹陽春,鄭辰,劉凱,郭龍,蔡傳江,劉寶龍,姚軍虎
?
日糧添加亮氨酸和苯丙氨酸對(duì)荷斯坦公犢生長性能及血清代謝物的影響
楊昕澗,曹陽春,鄭辰,劉凱,郭龍,蔡傳江,劉寶龍,姚軍虎
(西北農(nóng)林科技大學(xué)動(dòng)物科技學(xué)院,陜西楊凌712100)
研究日糧添加亮氨酸和苯丙氨酸對(duì)犢牛生長性能和血清代謝物的影響,為亮氨酸和苯丙氨酸在奶牛高效生產(chǎn)中的應(yīng)用提供理論參考。試驗(yàn)選取20頭1日齡體重為(38±3)kg的荷斯坦公犢,隨機(jī)分為4組,分別為對(duì)照組、亮氨酸組(1.435 g·L-1)、苯丙氨酸組(0.725 g·L-1)、混合氨基酸組(1.435 g·L-1亮氨酸和0.725 g·L-1苯丙氨酸),每組5頭牛,各組以丙氨酸調(diào)節(jié)為等氮日糧。犢牛單獨(dú)飼喂,試驗(yàn)共8周,預(yù)試期1周,正試期7周。試驗(yàn)犢牛單圈飼養(yǎng),試驗(yàn)日糧由原奶和開食料組成。犢牛出生后,1 h內(nèi)飼喂4.0 L初乳。此后1周為過渡期,日喂原奶2次,每次3.0 L。過渡期內(nèi)以氨基酸添加量的20%為梯度逐天增加,至出生第6 天達(dá)到添加量的100%。2—8周為正試期,日飼喂添加氨基酸的原奶2次。第2—3周每次3.5 L,4—8周每次4.0 L。第3周開始定量供給開食料,自由飲水。在犢牛1、3、5、7、8周齡測定體重、體高、體斜長和胸圍,計(jì)算體軀指數(shù)和體長指數(shù);采集10 mL血液用于獲得血清,并檢測其氨基酸組成、葡萄糖、尿素氮、胰島素和膽囊收縮素。采用IBM SPSS Statistics V22.0 統(tǒng)計(jì)軟件GLM過程進(jìn)行統(tǒng)計(jì)分析,采用LSD法進(jìn)行多重比較?;旌习被峤M平均日增重顯著低于其余3組(<0.05)。相對(duì)于對(duì)照組,各處理組顯著提高最終體斜長(<0.05)。亮氨酸和苯丙氨酸具有降低最終體高的趨勢(<0.10),而苯丙氨酸顯著降低最終胸圍(<0.05)。與對(duì)照組相比,亮氨酸組和混合氨基酸組顯著提高犢牛8周齡體軀指數(shù)(<0.05)。但各組犢牛初始體重、體斜長、體高、胸圍、體軀指數(shù)、體長指數(shù)和最終體重及體軀指數(shù)無顯著差異(>0.05)。添加亮氨酸顯著提高血清組氨酸、亮氨酸、蘇氨酸、甘氨酸和總必需氨基酸的濃度(<0.05),趨于增加天冬氨酸和總氨酸濃度(<0.10),但顯著降低丙氨酸和甘氨酸濃度(<0.05)。苯丙氨酸顯著提高血清苯丙氨酸、谷氨酸和甘氨酸濃度(<0.05),對(duì)照組因添加丙氨酸調(diào)節(jié)為等氮日糧,其血清丙氨酸濃度顯著高于亮氨酸組與混合氨基酸組(<0.05)。苯丙氨酸和亮氨酸對(duì)血清各種氨基酸濃度無交互效應(yīng)(>0.05)。亮氨酸顯著提高血清葡萄糖濃度(<0.05),苯丙氨酸降低血清葡萄糖濃度(<0.05),且與亮氨酸存在負(fù)交互效應(yīng)(<0.05)。此外,苯丙氨酸顯著提高血清尿素氮含量(<0.05),但亮氨酸和苯丙氨酸添加對(duì)血清中胰島素及膽囊收縮素濃度無顯著影響(>0.05)。日糧中添加亮氨酸可提高犢牛血清部分必需氨基酸、葡萄糖濃度、8周齡體軀指數(shù)和平均日增重。從以上指標(biāo)可見,亮氨酸添加效果優(yōu)于苯丙氨酸,但二者在影響血清葡萄糖濃度方面存在負(fù)交互效應(yīng)。
亮氨酸; 苯丙氨酸; 犢牛; 生長性能; 血清代謝物
【研究意義】亮氨酸作為一種功能性氨基酸[1],可通過激活雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路調(diào)控動(dòng)物機(jī)體蛋白合成及分解代謝[2-3]。苯丙氨酸是芳香族氨基酸的一種,可通過鈣敏感受體促進(jìn)膽囊收縮素(cholecysto-kinin,CCK)的分泌[4]。CCK可促進(jìn)胰腺合成胰淀粉酶、胰蛋白酶和胰蛋白酶原,并刺激胰酶釋放,增強(qiáng)胰酶活性[5]?!厩叭搜芯窟M(jìn)展】研究表明,日糧中添加1 g過瘤胃亮氨酸可促進(jìn)綿羊骨骼肌mTOR信號(hào)通路中4E-BP1和S6K1的磷酸化,進(jìn)而促進(jìn)骨骼肌蛋白合成[6]。此外,亮氨酸代謝產(chǎn)物α-酮異己酸也可顯著促進(jìn)綿羊股二頭肌和背最長肌的蛋白合成[7]。LIU等[8]的研究也證實(shí)亮氨酸可作為營養(yǎng)信號(hào)分子促進(jìn)α-淀粉酶分泌,調(diào)控荷斯坦青年母牛胰腺外分泌功能,從而改善能量供應(yīng),但其是否可促進(jìn)奶牛生長發(fā)育尚不清楚。YU等[9]對(duì)山羊十二指腸灌注苯丙氨酸,結(jié)果表明,苯丙氨酸可促進(jìn)胰酶的分泌。胰酶分泌增多,理論上可改善動(dòng)物對(duì)營養(yǎng)物質(zhì)的利用,但其是否會(huì)影響奶牛生長性能卻不得而知?!颈狙芯壳腥朦c(diǎn)】初生犢牛處于高蛋白周轉(zhuǎn)與骨骼肌蛋白快速合成時(shí)期。與成年牛相比,哺乳犢??筛行У睦冒被岬葼I養(yǎng)物質(zhì)用于自身生長發(fā)育。且此期犢牛前胃系統(tǒng)并未發(fā)育完全,其消化系統(tǒng)與單胃動(dòng)物相似,攝食的牛奶可不經(jīng)瘤網(wǎng)胃而直接到達(dá)皺胃進(jìn)行初步消化,繼而到達(dá)小腸被消化吸收[10],這避免了瘤網(wǎng)胃微生物對(duì)日糧營養(yǎng)組分的改變。【擬解決的關(guān)鍵問題】利用這一生理特性,筆者研究了亮氨酸和苯丙氨酸對(duì)奶公犢生長發(fā)育及血清代謝物的影響,以期為功能性氨基酸在奶牛生產(chǎn)中的應(yīng)用提供理論依據(jù)。
試驗(yàn)于2015年4—9月在現(xiàn)代牧業(yè)(寶雞)有限公司犢牛島進(jìn)行。
試驗(yàn)以20頭1日齡體重為(38±3)kg的荷斯坦公犢為試驗(yàn)對(duì)象,按體重相近原則隨機(jī)分為對(duì)照組(C)、亮氨酸組(L)、苯丙氨酸組(P)、混合氨基酸組(M)4組,每組5頭牛,試驗(yàn)期8周。
試驗(yàn)處理通過向原奶中添加亮氨酸和苯丙氨酸實(shí)現(xiàn),并通過添加丙氨酸調(diào)節(jié)為等氮日糧。處理組添加亮氨酸和苯丙氨酸的依據(jù)參考YU等[11]和LIU等[8]的試驗(yàn)結(jié)果,按照本試驗(yàn)所測原奶中氨基酸含量,添加其基礎(chǔ)氨基酸含量的42%,各處理添加量見表1。L-亮氨酸和L-苯丙氨酸由寧波大榭開發(fā)區(qū)海德氨基酸工業(yè)有限公司提供,純度均為99.0%;L-丙氨酸由淮北新旗氨基酸有限公司提供,純度為99.2%。
表1 原奶中氨基酸添加量
C=對(duì)照組,P=苯丙氨酸組,L=亮氨酸組,M=混合氨基酸組,所有處理組添加丙氨酸調(diào)節(jié)為等氮日糧。下同
C=milk with added alanine as control, P=milk with added phenylalanine and alanine, L=milk with added leucine and alanine, M=milk with added leucine and phenylalanine. Animal were fed with isonitrogenous diets was achieved by added alanine. the same as below
動(dòng)物試驗(yàn)在現(xiàn)代牧業(yè)(寶雞)有限公司犢牛島進(jìn)行,試驗(yàn)日糧由原奶和開食料組成。犢牛出生后,1 h內(nèi)飼喂4 L初乳。此后1周為過渡期,日喂原奶2次,每次3 L。過渡期內(nèi)以氨基酸添加量的10%為梯度逐天增加,至出生第6天達(dá)到添加量的100%。2—8周為正試期,日飼喂添加氨基酸的原奶2次。第2—3周每次3.5 L,4—8周每次4 L。第3周開始定量供給開食料,自由飲水。
1.4.1 日糧組成 普瑞納犢牛開食料由玉米、豆粕、麥麩、甘蔗糖蜜、磷酸氫鈣、石粉、食鹽、L-賴氨酸、維生素A、維生素D3、維生素E、硫酸銅、硫酸亞鐵等組成。干物質(zhì)(dry matter,DM)、粗蛋白(crude protein,CP)、淀粉(starch)、粗灰分(crude ash)、鈣(calcium,Ca)、總磷(total phosphorus,TP)和L-賴氨酸(L-lysine)測定方法參照中華人民共和國國家標(biāo)準(zhǔn)中相應(yīng)的方法進(jìn)行;中性洗滌纖維(neutral detergent fiber,NDF)和酸性洗滌纖維(acid detergent fiber,ADF)含量參照Van Soest等[12]方法測定。開食料化學(xué)組成見表2。每兩周采集一次原奶,測定氨基酸組成,方法參照GB/T5009.124—2003。原奶中精氨酸、組氨酸、異亮氨酸、亮氨酸、賴氨酸、蛋氨酸、苯丙氨酸、蘇氨酸、纈氨酸、丙氨酸、天冬氨酸、胱氨酸、谷氨酸、酪氨酸、甘氨酸、絲氨酸和脯氨酸的含量(g·L-1,DM)分別為1.429、0.920、1.744、3.432、3.055、0.950、1.731、1.804、2.372、1.356、2.869、0.358、7.605、1.846、0.838、2.260和6.458。
表2 試驗(yàn)用犢牛開食料化學(xué)組成(干物質(zhì)基礎(chǔ))
除了L-賴氨酸數(shù)據(jù)由普瑞納提供外,其余指標(biāo)均為實(shí)測值A(chǔ)nalyzed values except L-lysine offered by Purina
1.4.2 生長性能 于晨飼前逐頭稱量犢牛1、3、5、7、8周齡體重、體高、體斜長和胸圍,計(jì)算體軀指數(shù)和體長指數(shù)。
體軀指數(shù)(%)=胸圍(cm)/體斜長(cm)×100;
體長指數(shù)(%)=體斜長(cm)/體高(cm)×100。
1.4.3 血清樣品采集與測定 于犢牛1、3、5、7、8周齡,晨飼后90 min以真空采血管頸靜脈采血約10 mL,37℃傾斜放置至血清析出,3 000 r/min離心15 min,收集血清于2 mL離心管中,加入抑肽酶(10 000 IU·mL-1),-80℃保存待測。檢測血清葡萄糖(Glucose,Glu)、血清氨基酸組成(Amino acids,AA)、尿素氮(Serum urea nitrogen,SUN)、胰島素(Insulin)、CCK。
血清葡萄糖于采樣當(dāng)日采用葡萄糖氧化酶-過氧化物酶法檢測,采用葡萄糖測試盒(南京建成生物工程研究所),使用多功能酶標(biāo)儀(Bio-tek SynergyTMHT,美國)測定。采用試劑盒(南京建成生物工程研究所)測定SUN、STP、Alb、Glb。采用Elisa試劑盒(Cloud-Clone Crop,美國)方法測定Insulin和CCK。
參照文獻(xiàn)[13]的方法,略加改進(jìn)后應(yīng)用全自動(dòng)氨基酸分析儀(日立L-8900,日本)進(jìn)行AA測定。取400 μL血清于2 mL離心管中,加入40 μL正亮氨酸(5 μmol·L-1)、100 μL10%磺基水楊酸溶液和400 μL pH 2.2的檸檬酸鈉緩沖液,充分混勻,置于4℃30 min,然后于4℃下10 000 r/min離心30 min,取上清,經(jīng)2.2 μm水相濾膜過濾到進(jìn)樣瓶中,上機(jī)待測。
試驗(yàn)數(shù)據(jù)用Excel 2016進(jìn)行初步處理后,利用IBM SPSS Statistics V22.0 統(tǒng)計(jì)軟件GLM過程進(jìn)行統(tǒng)計(jì)分析,采用LSD法進(jìn)行多重比較。
原奶中添加亮氨酸和苯丙氨酸對(duì)奶公犢生長性能的影響見表3。由表3可知,各組犢牛初始體重、體斜長、體高、胸圍、體軀指數(shù)、體長指數(shù)和最終體重及體軀指數(shù)無顯著差異(>0.05)。相對(duì)于對(duì)照組,各處理組顯著提高最終體斜長(<0.05)。亮氨酸和苯丙氨酸具有降低最終體高的趨勢(<0.10),而苯丙氨酸顯著降低最終胸圍(<0.05)。與對(duì)照組相比,亮氨酸組和混合氨基酸組顯著提高犢牛8周齡體軀指數(shù)(<0.05)?;旌习被峤M平均日增重(Average daily gain,ADG)顯著低于其余3組(<0.05)。
表3 原奶中添加亮氨酸和苯丙氨酸對(duì)奶公犢生長性能的影響
同行不同小寫字母表示差異顯著(<0.05)。下同
Different lowercases in a row indicate significantly (<0.05). The same as below
表4所示為原奶中添加亮氨酸和苯丙氨酸對(duì)奶公犢血清氨基酸濃度的影響。亮氨酸顯著提高血清組氨酸、亮氨酸、蘇氨酸、甘氨酸和總必需氨基酸的濃度(<0.05),趨于增加天冬氨酸和總氨酸濃度(<0.10),但顯著降低丙氨酸和甘氨酸濃度(<0.05)。與對(duì)照組、苯丙氨酸組和混合氨基酸組相比,亮氨酸組組氨酸濃度分別提高14.3%、20.6%和10.8%,亮氨酸濃度分別提高128.7%、127.5%和7.6%,蘇氨酸濃度分別提高11.8%、13.3%和降低0.5%,甘氨酸濃度分別降低10.7%、17.2%和9.0%,總必需氨基酸濃度分別提高18.1%、15.2%和降低3.6%。苯丙氨酸顯著提高血清苯丙氨酸、谷氨酸和甘氨酸濃度(<0.05),與對(duì)照組、亮氨酸組、混合氨基酸組相比,苯丙氨酸組苯丙氨酸濃度提高98.9%、81.6%和降低3.5%。對(duì)照組因添加丙氨酸調(diào)節(jié)為等氮日糧,其血清丙氨酸濃度顯著高于亮氨酸組與混合添加組(<0.05)。苯丙氨酸和亮氨酸對(duì)血清各種氨基酸濃度無交互效應(yīng)(>0.05)。
表4 原奶中添加亮氨酸和苯丙氨酸對(duì)奶公犢血清氨基酸濃度的影響
表5所示為原奶中添加亮氨酸和苯丙氨酸對(duì)奶公犢血清代謝物濃度的影響。亮氨酸顯著提高血清葡萄糖濃度(<0.05)。與對(duì)照組、苯丙氨酸組和混合氨基酸組相比,亮氨酸組血清葡萄糖濃度分別提高22.9%、23.7%和20.7%。苯丙氨酸降低血清葡萄糖濃度(<0.05),且與亮氨酸存在負(fù)交互效應(yīng)(<0.05)。
表5 原奶中添加亮氨酸和苯丙氨酸對(duì)奶公犢血清代謝物濃度的影響
此外,苯丙氨酸顯著提高血清尿素氮含量(<0.05)。亮氨酸和苯丙氨酸添加對(duì)血清中胰島素及膽囊收縮素濃度無顯著影響(>0.05)。
經(jīng)典營養(yǎng)學(xué)理論將亮氨酸和苯丙氨酸歸為必需氨基酸,動(dòng)物細(xì)胞常不能通過自身合成此類氨基酸或合成量不足以滿足需求,因此必須通過日糧攝入來維持機(jī)體生長及生產(chǎn)活動(dòng)正常進(jìn)行[14]。增加哺乳仔豬亮氨酸攝入量,可通過改善仔豬腸道發(fā)育,從而促進(jìn)其生長發(fā)育[15]。苯丙氨酸屬于芳香族氨基酸,被廣泛應(yīng)用于醫(yī)藥和阿巴斯甜的主要原料,可在腎臟和肝臟經(jīng)羥化酶催化作用氧化成酪氨酸[16],并與酪氨酸一起合成兒茶酚胺、黑色素等神經(jīng)遞質(zhì)和激素。通過十二指腸長期灌注低劑量(2 g·d-1)苯丙氨酸可通過增加血液CCK濃度調(diào)控反芻動(dòng)物胰腺淀粉酶[9],從而提高動(dòng)物生產(chǎn)性能。但SWANEPOEL等[17]研究表明,以菜籽粕為主要蛋白來源的高產(chǎn)奶牛日糧中添加過瘤胃苯丙氨酸對(duì)生產(chǎn)性能無影響。目前,將亮氨酸和苯丙氨酸作為功能性氨基酸,主要研究其對(duì)反芻動(dòng)物乳蛋白合成的調(diào)控及機(jī)制[18-20],關(guān)于其對(duì)犢牛生長性能、血清氨基酸、葡萄糖及相關(guān)激素的影響尚不清楚。本試驗(yàn)通過向原奶中添加亮氨酸和苯丙氨酸研究二者對(duì)奶公犢生長發(fā)育及血清代謝物的影響,并通過添加丙氨酸進(jìn)行等氮處理,使得4組原奶中粗蛋白水平一致。
亮氨酸和苯丙氨酸等功能性氨基酸不僅可作為機(jī)體蛋白質(zhì)合成底物,還能調(diào)控機(jī)體組織及部分功能性蛋白合成,在動(dòng)物生長發(fā)育過程中起著重要作用[21-22]。本試驗(yàn)通過向犢牛攝食的原奶中添加亮氨酸和苯丙氨酸,雖然8周齡斷奶時(shí)各組體重?zé)o顯著差異,但亮氨酸有提高平均日增重的趨勢,亮氨酸組的平均日增重為各組最高?;旌习被峤M日增重顯著低于對(duì)照組,且血清尿素氮含量最高,這可能由氨基酸的不平衡性所致。血清尿素氮濃度可較準(zhǔn)確的反映動(dòng)物體內(nèi)蛋白質(zhì)代謝和氨基酸之間的平衡,較低的尿素氮濃度預(yù)示著更好的氨基酸平衡狀況[23]?;旌习被峤M具有較高的尿素氮濃度,預(yù)示著氨基酸平衡狀況較差,其生長發(fā)育因氨基酸的不平衡而受到抑制。體尺大小主要由遺傳力所決定,但營養(yǎng)水平和飼喂制度可促進(jìn)或阻礙遺傳力發(fā)揮。優(yōu)秀的體軀指數(shù)預(yù)示著較高的體軀容積,體軀容積與產(chǎn)奶量存在潛在正遺傳相關(guān)[24]。添加亮氨酸顯著提高犢牛8周齡體軀指數(shù),說明亮氨酸可促進(jìn)犢牛向擁有更高生產(chǎn)潛力方向發(fā)育。而混合氨基酸組可能由于氨基酸不平衡降低了奶公犢蛋白質(zhì)利用效率,抑制了骨骼和骨骼肌的生長發(fā)育,導(dǎo)致最終體斜長和平均日增重相對(duì)較低。
本試驗(yàn)通過向原奶中添加亮氨酸和苯丙氨酸,發(fā)現(xiàn)亮氨酸可顯著提高犢牛血清組氨酸、亮氨酸、蘇氨酸和總必需氨基酸濃度,對(duì)總氨基酸濃度也有提高的趨勢,與對(duì)照組相比亮氨酸組血清亮氨酸水平濃度提高128.7%。SUN等[15]通過向哺乳仔豬基礎(chǔ)日糧中添加2倍的亮氨酸,發(fā)現(xiàn)亮氨酸具有促進(jìn)仔豬腸道發(fā)育、提高亮氨酸轉(zhuǎn)運(yùn)載體表達(dá)及21 d體重的作用,與對(duì)照相比處理組血漿亮氨酸濃度提高62.0%,天冬酰胺濃度提高23.6%,而其余氨基酸無顯著差異。NEWGARD等[25-26]也分別闡述了亮氨酸對(duì)小鼠和早期斷奶仔豬血液氨基酸的影響。本試驗(yàn)結(jié)果與上述研究不完全一致,可能是受日糧、動(dòng)物、日齡及氨基酸添加比例不同所致。犢牛氨基酸代謝池中可利用氨基酸濃度的增加,表明亮氨酸具有促進(jìn)部分氨基酸吸收入血的作用,其可能是通過促進(jìn)腸道發(fā)育及提高氨基酸轉(zhuǎn)運(yùn)載體表達(dá)實(shí)現(xiàn)。本研究發(fā)現(xiàn),額外添加亮氨酸飼喂?fàn)倥?,并未造成亮氨酸與纈氨酸、異亮氨酸間競爭性拮抗作用的發(fā)生。
近年來,苯丙氨酸作為乳蛋白合成過程中重要氨基酸而受到一定關(guān)注[27]。GLOAGUEN等[28]研究添加不同比例苯丙氨酸對(duì)仔豬生長性能的影響,發(fā)現(xiàn)提供較高比例的苯丙氨酸會(huì)抑制仔豬的生長發(fā)育。SWANEPOEL等[17]研究添加苯丙氨酸對(duì)高產(chǎn)奶牛的影響,結(jié)果表明每日提供7.5 g小腸可吸收苯丙氨酸,不影響其生產(chǎn)性能和血清氨基酸組成,但影響奶牛體況評(píng)分。本試驗(yàn)中,添加苯丙氨酸顯著提高血清苯丙氨酸和甘氨酸濃度,降低谷氨酸濃度,對(duì)其余氨基酸無顯著影響。以上結(jié)果表明,亮氨酸和苯丙氨酸對(duì)犢牛的影響存在差異,具體表現(xiàn)在對(duì)血清氨基酸組成及體型的影響不同。
葡萄糖是所有脊椎動(dòng)物碳水化合物代謝過程中居中心位置的一種單糖,同時(shí)也是動(dòng)物機(jī)體內(nèi)唯一可通過血液和細(xì)胞在全身循環(huán)的碳水化合物,可為機(jī)體提供能量的同時(shí),參與多種生理功能[29]。反芻動(dòng)物葡萄糖代謝與蛋白質(zhì)之間存在著密切的聯(lián)系,TOMá?[30]通過靜脈注射葡萄糖研究其對(duì)羔羊血清氨基酸的影響,發(fā)現(xiàn)血清葡萄糖增多顯著降低哺乳羔羊血清氨基酸水平,同時(shí)發(fā)現(xiàn)注射葡萄糖顯著降低飼喂高脂日糧斷奶羔羊的血清必需和非必需氨基酸水平。孫海洲等[31]利用代謝葡萄糖和代謝蛋白質(zhì)兩個(gè)整體營養(yǎng)指標(biāo)研究生長肥育綿羊葡萄糖和蛋白質(zhì)的平衡,結(jié)果表明生長肥育羊日糧存在一個(gè)最佳代謝蛋白/代謝葡萄糖平衡,在飼喂1.1倍維持能量水平日糧條件下,其值介于1.00—1.07之間。近期研究表明,與葡萄糖對(duì)氨基酸代謝的影響類似,氨基酸同樣影響反芻動(dòng)物葡萄糖代謝。YU等[11]利用十二指腸灌注法研究亮氨酸和苯丙氨酸對(duì)山羊胰腺外分泌功能的影響,結(jié)果表明亮氨酸和苯丙氨酸可促進(jìn)胰腺α-淀粉酶分泌,提高小腸淀粉消化率,進(jìn)而為機(jī)體提供更多葡萄糖。LIU等[8]也證實(shí)亮氨酸可作為營養(yǎng)信號(hào)分子促進(jìn)α-淀粉酶分泌,調(diào)控荷斯坦青年母牛胰腺外分泌功能,從而改善其能量供應(yīng)。
本試驗(yàn)中,各組犢牛血清葡萄糖濃度在3.5—10.0 mmol·L-1范圍內(nèi)變動(dòng)。亮氨酸顯著提高血清葡萄糖濃度,苯丙氨酸則顯著降低血清葡萄糖、提高血清尿素氮濃度。血清葡萄糖濃度越高,意味著可供動(dòng)物直接利用的能量就越多。而較高的血清尿素氮濃度意味著犢牛血清氨基酸平衡狀況較差[23],血清氨基酸并沒有很好的參與機(jī)體蛋白合成,血清中大量存在的必需與非必需氨基酸在說明亮氨酸可能促進(jìn)部分氨基酸吸收的同時(shí),也一定程度說明這些氨基酸沒能被機(jī)體及時(shí)合理利用參與機(jī)體蛋白合成。以上結(jié)果說明,亮氨酸組氨基酸平衡狀況較好,血清氨基酸更好的參與了組織蛋白的合成。添加亮氨酸可提高血清葡萄糖濃度,其可能是通過促進(jìn)胰腺及腸道相關(guān)消化酶合成來實(shí)現(xiàn)。
血液葡萄糖主要受胰島素和胰高血糖素的調(diào)控。胰島素是由胰腺胰島β細(xì)胞受內(nèi)源或外源性物質(zhì)如葡萄糖、乳糖、核糖、精氨酸、胰高血糖素等刺激而分泌的一種蛋白質(zhì)激素,是動(dòng)物機(jī)體內(nèi)唯一可降低血糖的激素。亮氨酸可通過激活mTOR通路影響腎上腺素活力,調(diào)控胰島素分泌[32]。本試驗(yàn)發(fā)現(xiàn)亮氨酸對(duì)血清胰島素含量無顯著影響。與YANG等[32-33]的研究結(jié)果存在差異,可能是由于此期血液中持續(xù)高濃度亮氨酸通過激活mTORC1通路,提高胰腺細(xì)胞內(nèi)低氧誘導(dǎo)因子1-α水平,從而抑制胰腺內(nèi)分泌前體細(xì)胞向胰島β細(xì)胞的分化所致[34-35]。
CCK是由腸道黏膜Ⅰ細(xì)胞分泌,在含115個(gè)氨基酸殘基的CCK原基礎(chǔ)上加工剪切形成的一類多肽[36]。CCK是胰酶合成和釋放的強(qiáng)效刺激劑,且能夠增強(qiáng)胰酶的活性。苯丙氨酸可通過鈣敏感受體有效刺激CCK的釋放[37]。YU等[9]在奶山羊上的研究發(fā)現(xiàn)十二指腸灌注苯丙氨酸可通過增加血液CCK濃度促進(jìn)胰酶分泌。理論上,相關(guān)消化酶分泌增多,動(dòng)物對(duì)營養(yǎng)物質(zhì)的利用效率將會(huì)在一定程度上得到提高。本試驗(yàn),添加苯丙氨酸顯著降低血清葡萄糖濃度,但不影響血清CCK濃度。苯丙氨酸組與對(duì)照組血清葡萄糖濃度差異并不顯著,但其值較低。原因可能是苯丙氨酸促進(jìn)胰島素分泌所致,苯丙氨酸組胰島素/葡萄糖濃度比顯著高于亮氨酸組,且在數(shù)值上高于對(duì)照組。苯丙氨酸對(duì)CCK沒有影響的原因可能是因此期食糜流速較快,腸道缺乏一個(gè)持續(xù)的刺激源所致[38]。
日糧中添加亮氨酸可提高犢牛血清組氨酸、亮氨酸、蘇氨酸、甘氨酸、總必需氨基酸和葡萄糖濃度,提高8周齡體軀指數(shù)和平均日增重。從以上指標(biāo)來說,亮氨酸添加效果優(yōu)于苯丙氨酸,但二者在影響血清葡萄糖濃度方面存在負(fù)交互效應(yīng)。而混合氨基酸組可能因奶公犢攝入氨基酸不平衡降低其蛋白質(zhì)利用效率和生長發(fā)育。本試驗(yàn)條件下,日糧中添加亮氨酸和苯丙氨酸對(duì)犢牛的生長發(fā)育沒有促進(jìn)作用。
[1] WU G Y. Functional amino acids in nutrition and health., 2013, 45(3): 407-411.
[2] BOULTWOOD J, YIP B H, VUPPUSETTY C, PELLAGATTI A, WAINSCOAT J S. Activation of the mTOR pathway by the amino acid L-leucine in the 5q-syndrome and other ribosomopathies., 2013, 53(1): 8-17.
[3] KIM J, SONG G, WU G Y, GAO H J, JOHNSON G A, BAZER F W. Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway., 2013, 88(5): 1-9.
[4] LIOU A P, SEI Y, ZHAO X, FENG J, LU X, THOMAS C, PECHHOLD S, RAYBOULD H E, WANK S A. The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells., 2011, 300(4): 538-546.
[5] 于志清. 青藤堿對(duì)消化液分泌的影響及其機(jī)制的實(shí)驗(yàn)研究[D]. 蘭州: 蘭州大學(xué), 2013.
YU Z Q. Effects of sinomenine on digestive juice secretion: an experimental study[D]. Lanzhou: Lanzhou University, 2013. (in Chinese)
[6] 桑丹, 孫海洲, 郭俊清, 趙存發(fā). 過瘤胃保護(hù)性亮氨酸對(duì)綿羊骨骼肌哺乳動(dòng)物雷帕霉素靶蛋白(mTOR) 信號(hào)傳導(dǎo)通路關(guān)鍵因子的影響. 動(dòng)物營養(yǎng)學(xué)報(bào), 2011, 23(1): 61-65.
SANG D, SUN H Z, GUO J Q, ZHAO C F. Effects of rumen-protected leucine on the key factors controlling mTOR signal transduction pathway in the skeletal muscle of sheep., 2011, 23(1): 61-65.(in Chinese)
[7] 桑丹. 亮氨酸及α?酮異己酸鈣對(duì)綿羊機(jī)體蛋白質(zhì)合成的影響研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué), 2009.
SANG D. Study on effects of leucine and α-KIC-Ca on protein synthesis in sheep[D]. Hohhot: Innner Mongolia Agriculture University, 2009. (in Chinese)
[8] LIU K, LIU Y, LIU S M, XU M, YU Z P, WANG X, CAO Y C, YAO J H. Relationships between leucine and the pancreatic exocrine function for improving starch digestibility in ruminants., 2015, 98(4): 2576-2582.
[9] YU Z P, XU M, YAO J H, LIU K, LI F, LIU Y, WANG F, SUN F F, LIU N N. Regulation of pancreatic exocrine secretion in goats: differential effects of short-and long-term duodenal phenylalanine treatment., 2013, 97(3): 431-438.
[10] ABE M, IRIKI T, KONDOH K, SHIBUI H. Effects of nipple or bucket feeding of milk-substitute on rumen by-pass and on rate of passage in calves., 1979, 41(1): 175-181.
[11] YU Z P, XU M, WANG F, LIU K, YAO J H, WU Z, QIN D K, SUN F F. Effect of duodenal infusion of leucine and phenylalanine on intestinal enzyme activities and starch digestibility in goats., 2014, 162: 134-140.
[12] VAN SOEST P J, ROBERTSON J B. LEWIS B A. Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle, methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition., 1991, 74: 3583-3597.
[13] JONES B N, Gilligan J. Amino acid analysis by o-phthaldialdehyde precolumn derivatization and reverse-phase HPLC//. New Jersey: Humana Press, 1986: 121-151.
[14] WU G Y. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition., 2014, 5(1): 1-12.
[15] SUN Y L, WU Z L, LI W, ZHANG C, SUN K L, JI Y, WANG B, JIAO N, HE B B, WANG W W, DAI A L, WU G Y. Dietary L-leucine supplementation enhances intestinal development in suckling piglets., 2015, 47(8): 1517-1525.
[16] FITZPATRICK P F. Allosteric regulation of phenylalanine hydroxylase., 2012, 519(2): 194-201.
[17] SWANEPOEL N, ROBINSON P H, ERASMUS L J. Effects of ruminally protected methionine and/or phenylalanine on performance of high producing Holstein cows fed rations with very high levels of canola meal., 2015, 205: 10-22.
[18] RIUS A G, APPUHAMY J A, CYRIAC J, KIROVSKI D, BECVAR O, ESCOBAR J, MCGILLIARD M L, BEQUETTE B J, AKERS R M, HANIGAN M D. Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids., 2010, 93(7): 3114-3127.
[19] 高海娜, 鄭楠, 胡菡, 王加啟. 必需氨基酸通過哺乳動(dòng)物雷帕霉素靶蛋白信號(hào)通路調(diào)控乳蛋白合成的研究進(jìn)展. 動(dòng)物營養(yǎng)學(xué)報(bào), 2014, 26(9): 2451-2456.
GAO H N, ZHENG N, HU H, WANG J Q. Research progress on the regulation of milk protein synthesis by essential amino acid through mammalian target of rapamycin signaling pathway., 2014, 26(9): 2415-2456. (in Chinese)
[20] 代文婷, 李愛軍, 鄭楠, 王加啟. 亮氨酸水平對(duì)奶牛乳腺上皮細(xì)胞增殖及κ-酪蛋白合成相關(guān)基因表達(dá)的影響. 動(dòng)物營養(yǎng)學(xué)報(bào), 2015, 27(5): 1559-1566.
DAI W T, LI A J, ZHENG N, WANG J Q. Effects of leucine level on proliferation and κ-Casein synthesis related gene expressions of bovine mammary epithelial cells., 2015, 27(5): 1559-1566. (in Chinese)
[21] GANG L, WANG X Q, WU G Y, FENG C P, ZHOU H J, LI D F, WANG J J. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals., 2014, 46(7): 1605-1623.
[22] WU G Y, BAZER F W, DAI Z L, LI D F, WANG J J, WU Z L. Amino acid nutrition in animals: protein synthesis and beyond., 2014, 2(2): 387-417.
[23] 席鵬彬, 李德發(fā), 高天增, 龔麗敏. 賴氨酸與蛋白質(zhì)比例對(duì)斷奶仔豬生長性能, 血清尿素氮及游離氨基酸濃度的影響. 動(dòng)物營養(yǎng)學(xué)報(bào), 2002, 14(1): 36-41.
XI P B, LI D F, GAO T Z, GONG L M. A study on the effect of lysine to protein ratio on growth performance, serum urea nitrogen and serum free amino acids concentrations in weaned pigs., 2002, 14(1): 36-41. (in Chinese)
[24] 儲(chǔ)明星, 師守. 奶牛體型線性評(píng)定數(shù)據(jù)的應(yīng)用. 中國奶牛, 1994, 1: 26-27.
CHU M X, SHI S. Application of linear evaluation data of dairy cows.1994, 1: 26-27. (in Chinese)
[25] NEWGARD C B. Interplay between lipids and branched-chain amino acids in development of insulin resistance., 2012, 15(5): 606-614.
[26] ZHANG S H, QIAO S Y, REN M, ZENG X F, MA X, WU Z L, THACKER P, WU G Y. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs., 2013, 45(5): 1191-1205.
[27] IROSHAN I H. The effect of a limited supply of phenylalanine, threonine, or tryptophan on mammary metabolism in dairy cows[D]. Calgary: University of Calgary, 2015.
[28] GLOAGUEN M, FLOC'H N L, PRIMOT Y, CORRENT E, MILGEN J V. Performance of piglets in response to the standardized ileal digestible phenylalanine and tyrosine supply in low-protein diets., 2014, 8(9): 1412-1419.
[29] 盧德勛. 反芻動(dòng)物葡萄糖營養(yǎng)調(diào)控理論體系及其應(yīng)用. 畜牧與飼料科學(xué), 2010, 31(6/7): 402-409.
LU D X. The theoretical system and application of glucose nutrition regulation in ruminant.2010, 31(6/7): 402-409. (in Chinese)
[30] TOMá? J, KOPPEL J, KUCHáR S. The effect of glucose and xylazine on free amino acids concentrations in suckling and ruminating lambs., 1987, 57(1-5): 196-204.
[31] 孫海洲, 盧德勛, 張海鷹, 羿靜, 趙秀英, 馮宗慈. 不同代謝葡萄糖與代謝蛋白質(zhì)比例的日糧對(duì)生長肥育綿羊葡萄糖營養(yǎng)影響的研究. 動(dòng)物營養(yǎng)學(xué)報(bào), 2001, 13(1): 43-48.
SUN H Z, LU D X, ZHANG H Y, YI J, ZHAO X Y, FENG Z C. Effects of different ratio of dietary metabolizable glucose (MG) to metabolizable protein on glucose nutrition in growing-finishing sheep., 2001, 13(1): 43-48. (in Chinese)
[32] YANG J, DOLINGER M, RITACCIO G, CONTI D, ZHU X J, HUANG Y F. Leucine as a stimulant of insulin., 2015: 49-62.
[33] XU G, KWON G, CRUZ W S, MARSHALL C A, MCDANIEL M L. Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic β-cells., 2001, 50(2): 353-360.
[34] RACHDI L, A?ELLO V, DUVILLIé B, SCHARFMANN R. L-leucine alters pancreatic β-cell differentiation and function via the mTOR signaling pathway., 2012, 61(2): 409-417.
[35] 駱超超, 鄭楠, 趙圣國,李松勵(lì), 文芳, 王加啟, 張養(yǎng)東. 氨基酸調(diào)控哺乳動(dòng)物細(xì)胞mTORC1上游通路研究進(jìn)展. 中國農(nóng)業(yè)科學(xué), 2015, 48(S):67-74.
LUO C C, ZHENG N, ZHAO S G, LI S L, WEN F, WANG J Q, ZHANG Y D. Advances of the regulation of amino acids-mediated- mTORC1 upstream pathway in mammalian cells., 2015, 48(S):67-74. (in Chinese)
[36] NILAWEERA K N, GIBLIN L, ROSS R P. Nutrient regulation of enteroendocrine cellular activity linked to cholecystokinin gene expression and secretion., 2010, 66(1): 85-92.
[37] BALLINGER A B, CLARK M L. L-phenylalanine releases cholecystokinin (CCK) and is associated with reduced food intake in humans: evidence for a physiological role of CCK in control of eating., 1994, 43(6): 735-738.
[38] STEINERT R E, LANDROCK M F, HOROWITZ M, FEINLE- BISSET C. Effects of intraduodenal infusions of l-phenylalanine and l-glutamine on antropyloroduodenal motility and plasma cholecystokinin in healthy men., 2015, 21(3): 404-413.
(責(zé)任編輯 林鑒非)
Effect of Leucine and Phenylalanine Supplementation on Growth Performance and Serum Metabolites of Holstein Male Calves
YANG Xinjian, CAO Yangchun, ZHENG Chen, LIU Kai, GUO Long, CAI Chuanjiang, LIU Baolong, YAO Junhu
(College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi)
The objective of the study was to know the effect of leucine and phenylalanine supplementation on growth performance and serum metabolites of Holstein male calves. The study could provide a reference for the high efficient use of leucine and phenylalanine on dairy cows.A total of 20 Holstein male calves (birth weight (38±3) kg) were randomly assigned into treatment groups of control, L (1.435 g·L-1leucine), P (0.725 g·L-1phenylalanine), M (1.435 g·L-1leucine and 0.725 g·L-1phenylalanine), and each treatment added alanine as isonitrogenous diet. The experiment lasted for eight weeks, one week for adaption and seven weeks for feeding experiment. The calves were fed individually. Within one hour after birth, each calf was fed 4.0 L of colostrum. During the first week, the calves were fed their assigned milk twice daily, 3.0 L each. For adaption, the amino acid supplementation was increased 20% daily until it reached 100% of the target supplementation on the sixth day after birth. From week 2 to 3, the calves were fed their assigned milk twice a day, 3.5 L each, while from week 4 to 8, the volume of the milk fed increased to 4 L each time. From the third week after birth of the calves, a quantitative supply of the starter feed was provided, with free access to the drinking water. Body weight, withers height, body length, heart girth, heart girth/body length, body length/withers height were recorded at the 1, 3, 5, 7, and 8 week old, respectively. At the same time, 10 mL of blood was drawn from the jugular vein and placed at a tilted angle for serum precipitation. The serum samples were used to determine the amino acids, glucose, serum urea nitrogen, insulin, and cholecysto-kinin, respectively. Data were analyzed using the GLM procedure of IBM SPSS Statistics V22.0 software, differences among treatments were compared using LSD’s multiple range tests.Average daily gain in M group was significantly lower than control, L and P groups (<0.05). Compared with control group, other three groups significantly increased the final body length (<0.05). L and M treatments tended to increase the final wither height (<0.10), while P treatment significantly decreased the final heart girth (<0.05). Compared with control group, L and M treatments significantly increased the heart girth/body length (<0.05), whereas no difference in initial body weight, body length, wither height, heart girth, heart girth/body length, body length/withers height, final body weight and final body length/withers height was found among treatments (>0.05). L treatment significantly increased the concentrations of histidine, leucine, threonine, glycine, and total essential amino acids (<0.05), tended to increase the concentrations of aspartate and total amino acids (<0.10), while significantly decreased the concentrations of alanine and glycine (<0.05). P treatment significantly increased the concentrations of phenylalanine, glutamate and glycine (<0.05). Compared with L and M groups, control group significantly increased the concentrations of serum alanine (<0.05). For serum concentrations of amino acids, no significant interactions between L and P treatments were detected in our study (<0.05). L treatment significantly increased the concentrations of glucose (<0.05), while P treatment significantly decreased the concentrations of glucose (<0.05). For serum concentrations of glucose, significant interactions between L and P treatments were detected in our study (<0.05). Serum urea nitrogen in P group was significantly higher than other three groups (<0.05), whereas no difference in concentration of insulin and cholecysto-kinin were found among treatments (>0.05).In conclusion, leucine supplementation had a better effect than that of phenylalanine on the serum concentration of essential amino acids, glucose, heart girth/body length and average daily gain of Holstein male calves, whereas negative interactions existed between the two kinds of supplementation.
leucine; phenylalanine; calves; growth performance; serum metabolites
2016-11-30;接受日期:2017-09-18
國家自然科學(xué)基金(31472122)、陜西省科技統(tǒng)籌創(chuàng)新工程項(xiàng)目(2015KTCQ02-19)
楊昕澗,E-mail:18729548121@163.com。曹陽春,E-mail:caoyangchun@126.com。楊昕澗和曹陽春為同等貢獻(xiàn)作者。通信作者姚軍虎,E-mail:yaojunhu2004@sohu.com