王德福,江志國,李百秋,王國富,蔣亦元
?
稻稈與圓捆機(jī)鋼輥間滑動(dòng)摩擦特性試驗(yàn)
王德福1,2,江志國1,2,李百秋1,2,王國富1,2,蔣亦元1
(1. 東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱 150030;2. 農(nóng)業(yè)部生豬養(yǎng)殖設(shè)施工程重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150030)
針對(duì)鋼輥式圓捆機(jī)秸稈卷捆過程基礎(chǔ)研究較少的情況,該文對(duì)稻稈與鋼輥(由碳素鋼冷軋板卷制而成)之間的滑動(dòng)摩擦特性進(jìn)行了研究。利用自制的鋼輥滑動(dòng)摩擦系數(shù)測(cè)試裝置,采用L27(313)正交試驗(yàn)方案研究了稻稈含水率、正壓應(yīng)力、鋼輥線速度及其之間的交互作用對(duì)稻稈與鋼輥之間滑動(dòng)摩擦系數(shù)的影響,并通過單因素試驗(yàn)分別獲得稻稈含水率、正壓應(yīng)力和鋼輥線速度對(duì)滑動(dòng)摩擦系數(shù)的影響規(guī)律及回歸方程。正交試驗(yàn)結(jié)果表明:稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)受稻稈含水率、正壓應(yīng)力影響顯著,受鋼輥線速度影響較顯著,且影響因素主次順序?yàn)椋旱径捄?正壓應(yīng)力>鋼輥線速度,而且稻稈含水率與正壓應(yīng)力之間的交互作用對(duì)稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)影響顯著;單因素試驗(yàn)結(jié)果表明:稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)隨稻稈含水率的增加而增加,隨正壓應(yīng)力的增加而減小,隨鋼輥線速度的增加而減小;在稻稈含水率為10%~70%、正壓應(yīng)力為1~9 kPa和鋼輥線速度為0.2~0.8 m/s時(shí),稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)的變化范圍為0.353~0.612。研究結(jié)果可為鋼輥式圓捆機(jī)的研究與設(shè)計(jì)提供理論依據(jù)。
秸稈;農(nóng)業(yè)機(jī)械;力學(xué)特性;鋼輥;滑動(dòng)摩擦系數(shù)
中國稻稈年產(chǎn)量超2億t[1],作為重要的可再生生物質(zhì)資源,廣泛應(yīng)用于肥料、飼料、能源、工業(yè)原料和食用菌基料等領(lǐng)域[2-4]。但稻稈資源分布零散,結(jié)構(gòu)疏松,體積龐大,收貯運(yùn)較困難,由于稻稈打捆收獲機(jī)械化程度較低[7-8],嚴(yán)重制約了稻稈資源的規(guī)模化利用。目前用于稻稈收獲的打捆機(jī)主要為中小型鋼輥式圓捆機(jī)[9-12],此類機(jī)型存在效率低、打捆過程易于發(fā)生堵塞等問題,因此,開展其鋼輥對(duì)稻稈摩擦作用特性等基礎(chǔ)研究,促進(jìn)其創(chuàng)新研發(fā)非常必要。
目前,國外對(duì)圓捆機(jī)的相關(guān)基礎(chǔ)研究主要由企業(yè)進(jìn)行,因此其對(duì)圓捆機(jī)卷捆過程摩擦系數(shù)等基礎(chǔ)性研究報(bào)道較少[11-13];國外學(xué)者主要進(jìn)行了苜蓿等牧草的摩擦系數(shù)研究,其中Shinners、Joseph等[14-15]分別研究了不同含水率、壓力、相對(duì)速度和材料類型對(duì)苜蓿秸稈滑動(dòng)摩擦系數(shù)、切碎牧草靜摩擦系數(shù)和滑動(dòng)摩擦系數(shù)的影響;Kakitis等[16]研究了不同滑動(dòng)速度、壓力和表面材料對(duì)蘆葦?shù)炔荼旧镔|(zhì)切碎秸稈動(dòng)態(tài)摩擦系數(shù)的影響;Larsson等[17]研究了不同含水率、壓力對(duì)蘆葦草粉末動(dòng)態(tài)摩擦系數(shù)的影響關(guān)系,并建立模型分析其影響規(guī)律;Phani等[18]研究了在未經(jīng)處理與蒸汽爆破處理后大麥、油菜、燕麥和小麥粉碎秸稈摩擦系數(shù)的變化規(guī)律,而其他主要農(nóng)作物秸稈的相關(guān)研究較少。中國對(duì)圓捆機(jī)的研究以企業(yè)進(jìn)行的經(jīng)驗(yàn)性設(shè)計(jì)或仿制為主[19-20],中國學(xué)者主要進(jìn)行了秸稈粉碎后靜摩擦角及含水率、接觸材料類型對(duì)滑動(dòng)摩擦系數(shù)影響的相關(guān)研究[21-27],其中李永軍等[21]研究了各種粒徑陶瓷顆粒和玉米秸稈粉混合物沿斜面和斜管的滑動(dòng)摩擦系數(shù);隋美麗等[22]分別利用剪切儀和斜面儀研究了玉米秸稈粒度在10~30 mm范圍內(nèi)的內(nèi)摩擦角和滑動(dòng)摩擦角的變化規(guī)律;田宜水等[23]研究了不同地區(qū)不同農(nóng)作物切碎秸稈的靜態(tài)堆積角和外摩擦角等理化特性;霍麗麗等[24]研究了6種不同地區(qū)玉米秸稈和5種不同種類秸稈細(xì)粉的內(nèi)摩擦角及其與金屬、橡膠材料間的最大靜摩擦系數(shù);房欣等[25]研究了不同含水率對(duì)揉搓粉碎處理后大豆秸稈與不同材料間滑動(dòng)摩擦系數(shù)的影響;盧彩云等[26]研究了不同滑板材料、土壤含水率、秸稈部位和接觸角等因素對(duì)小麥秸稈和玉米秸稈摩擦系數(shù)的影響。綜上可知,稻稈與鋼輥之間滑動(dòng)摩擦特性的基礎(chǔ)研究很少,亟待開展。
本文利用自制的鋼輥滑動(dòng)摩擦系數(shù)測(cè)試裝置(鋼輥由厚度為1.5 mm的碳素鋼冷軋板卷制而成[28]),針對(duì)鋼輥式圓捆機(jī)(其鋼輥為主要卷捆部件)卷捆過程中鋼輥對(duì)稻稈摩擦力的主要影響因素——稻稈含水率、正壓應(yīng)力和鋼輥線速度,研究其對(duì)稻稈與鋼輥之間滑動(dòng)摩擦特性的影響規(guī)律,并分別建立其對(duì)應(yīng)的回歸方程,為鋼輥式圓捆機(jī)的研究與設(shè)計(jì)提供基礎(chǔ)依據(jù)。
試驗(yàn)材料為哈爾濱市香坊區(qū)城高子鎮(zhèn)經(jīng)半喂入式水稻收獲機(jī)獲得的完整稻稈,其含水率為10%,中下部平均直徑為4.8 mm,將稻稈壓縮為98 mm×18 mm×60 mm的長方體作為試樣(密度為120 kg/m3)。試驗(yàn)時(shí)將試樣在原含水率基礎(chǔ)上采用復(fù)水法分別調(diào)至各所需含水率,計(jì)算公式(1)如下
式中W為試驗(yàn)所需的稻稈含水率,%;M為稻稈濕質(zhì)量,kg;M為稻稈干質(zhì)量,kg。
采用的測(cè)試裝置如圖1a所示。該測(cè)試裝置主要包括電機(jī)、轉(zhuǎn)矩傳感器(AKC-215型,允許轉(zhuǎn)速:≤5 000 r/min,轉(zhuǎn)矩精度:±0.1%)、鋼輥(外徑160 mm)、S型壓應(yīng)力傳感器(YZC-516型,最大量程為30 MPa)和物料盒(固接于機(jī)架上,長寬高凈尺寸100 mm×20 mm×100 mm)等。其電機(jī)通過1臺(tái)FR-F740-45K-CHT1型變頻器(日本三菱公司)調(diào)節(jié)轉(zhuǎn)速。
另外,采用的儀器設(shè)備還有DHG-9420A型電熱恒溫鼓風(fēng)干燥箱(上海一恒科學(xué)儀器有限公司),BSA3 202S型電子天平(最大量程3 200 g,精度0.01 g,奧多利斯科學(xué)儀器有限公司),游標(biāo)卡尺,TS-5F智能測(cè)試儀(測(cè)量范圍800 N·m,中國航天空氣動(dòng)力技術(shù)研究院)和自主研制的拉壓力測(cè)量儀(數(shù)據(jù)采集速率:20點(diǎn)/s),其中轉(zhuǎn)矩值和拉壓力測(cè)試值分別通過數(shù)據(jù)線傳送至電腦實(shí)現(xiàn)數(shù)據(jù)的采集、顯示和記錄。
如圖1b所示為滑動(dòng)摩擦系數(shù)測(cè)試裝置示意圖,物料盒的豎直中心線與鋼輥軸線垂直相交,試驗(yàn)時(shí)將達(dá)到要求含水率的稻稈試樣放入方形物料盒中,試樣下端面與鋼輥外圓表面充分均勻接觸,從而保證在試驗(yàn)過程中的不同稻稈含水率、正壓應(yīng)力及鋼輥線速度下試樣與鋼輥外圓表面接觸面積均保持相同,緩慢勻速轉(zhuǎn)動(dòng)絲杠,連接件中的軸承將絲杠的螺旋運(yùn)動(dòng)轉(zhuǎn)化為緩沖彈簧、S型壓力傳感器和壓板的上下移動(dòng),通過壓板對(duì)試樣上端面施壓,獲得試樣與鋼輥之間的接觸壓力,其中壓力傳感器用于間接采集試樣與鋼輥之間的接觸壓力值,然后通過計(jì)算得到試樣與鋼輥之間的接觸正壓應(yīng)力值,電機(jī)通過前、后置聯(lián)軸器依次驅(qū)動(dòng)轉(zhuǎn)矩傳感器和鋼輥轉(zhuǎn)動(dòng),轉(zhuǎn)矩傳感器用于采集不同工況下鋼輥轉(zhuǎn)動(dòng)的轉(zhuǎn)矩值,變頻器通過控制電機(jī)來間接調(diào)節(jié)鋼輥線速度,從而實(shí)現(xiàn)不同含水率的稻稈在不同正壓應(yīng)力、不同鋼輥線速度下與鋼輥之間滑動(dòng)摩擦系數(shù)的測(cè)試。
稻稈試樣與鋼輥表面接觸受力分析如圖2所示,鋼輥外圓半徑為,其轉(zhuǎn)動(dòng)的轉(zhuǎn)矩值為,稻稈試樣在沿鋼輥周向方向與鋼輥外圓表面的接觸弧長及其所對(duì)的圓心角分別為1和1,稻稈試樣對(duì)鋼輥施加的正壓力及其與鋼輥之間的滑動(dòng)摩擦力分別為F和F,該測(cè)試裝置采用的測(cè)試原理用公式表達(dá)如下
1. 稻桿試樣 2. 鋼輥
1. Sample of rice straw 2. Steel-roll
注:為稻稈試樣沿鋼輥周向方向與鋼輥外圓表面接觸弧長所對(duì)應(yīng)的稻桿試樣寬度,m;為鋼輥外圓半徑,m;F為稻稈試樣對(duì)鋼輥施加的正壓力,N;F為稻稈試樣對(duì)鋼輥在豎直方向上施加的正壓應(yīng)力值,N·m–2;F為稻稈試樣與鋼輥之間的滑動(dòng)摩擦力,N;1為稻稈試樣在鋼輥圓形截平面內(nèi)與鋼輥接觸弧長所對(duì)應(yīng)的圓心角,rad;為稻稈試樣在鋼輥圓形截平面內(nèi)與鋼輥接觸弧長所對(duì)應(yīng)圓心角一半內(nèi)的任意角,rad;為鋼輥轉(zhuǎn)動(dòng)的轉(zhuǎn)矩值,N·m。
Note:is the width of the rice straw sample corresponding to contact arc length between the rice straw sample along the steel-roll in the circumferential direction and the steel-roll outer surface, m;is the outer radius of the steel-roll, m;Fis the positive pressure applied by the rice straw sample to the steel-roll,Fis the positive pressure stress applied to steel-roll by the rice straw sample in the vertical direction, N·m–2; Fis the sliding friction between the rice straw sample and the steel-roll, N;1is the center angle corresponding to the contact arc length of rice straw and steel-roll in the circular cut plane of the steel-roll, rad;is the angle in half of the central angle corresponding to the contact arc length of rice straw and steel-roll in the circular cut plane of the steel-roll, rad;is the torque value of the rotation of the steel-roll, N·m.
圖2 稻稈試樣與鋼輥表面接觸受力模型簡圖
Fig.2 Schematic diagram of force contact model of rice straw and steel-roll surface
式中為稻稈試樣沿鋼輥周向方向與鋼輥外圓表面接觸弧長所對(duì)應(yīng)的稻桿試樣寬度,m;為稻稈試樣沿鋼輥軸向與鋼輥間的接觸長度,m;F為稻稈試樣對(duì)鋼輥在豎直方向上施加的正壓應(yīng)力值,N/m2;為稻稈試樣在沿鋼輥周向方向與鋼輥外圓表面接觸弧長所對(duì)應(yīng)的1/2圓心角內(nèi)的任意角,rad;F1為稻稈試樣沿鋼輥半徑方向?qū)︿撦伿┘拥目偟姆ㄏ蛄?,N;0為鋼輥空載時(shí)轉(zhuǎn)動(dòng)的轉(zhuǎn)矩值,N·m;1為稻稈試樣對(duì)鋼輥施加壓力時(shí)鋼輥轉(zhuǎn)動(dòng)的轉(zhuǎn)矩值,N·m;為稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)。
由文獻(xiàn)資料及預(yù)試驗(yàn)[29-31]分析可知,鋼輥式圓捆機(jī)在卷捆過程中鋼輥對(duì)稻稈的滑動(dòng)摩擦作用直接影響稻稈卷捆效果和效率,而且稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)與稻稈含水率、正壓應(yīng)力及鋼輥線速度有關(guān)。因此,本文選取稻稈含水率、正壓應(yīng)力和鋼輥線速度為試驗(yàn)因素,稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)為評(píng)價(jià)指標(biāo)進(jìn)行試驗(yàn)研究。試驗(yàn)因素具體取值計(jì)算如下:
1)稻稈含水率
考慮稻稈不同利用領(lǐng)域?qū)Φ径捄实囊螅ㄈ绲径捛噘A時(shí)要求含水率為65%以上[32])以及不同收獲期的稻稈含水率,本試驗(yàn)取稻稈含水率為10%~70%。通過大量預(yù)試驗(yàn),在不同正壓應(yīng)力和鋼輥線速度下,對(duì)不同含水率的稻稈試樣在其試驗(yàn)前后分別進(jìn)行質(zhì)量稱量,可得試驗(yàn)過程中稻稈含水率始終保持恒定。
2)正壓應(yīng)力
根據(jù)前期已進(jìn)行的研究[33]及鋼輥式圓捆機(jī)打捆預(yù)試驗(yàn)可知,稻稈捆直徑為500 mm、長度為750 mm時(shí)其質(zhì)量為27~33 kg(對(duì)應(yīng)含水率為20%~46%),測(cè)得打完捆后的草捆分別與打捆室內(nèi)底部2個(gè)鋼輥的接觸平均弧長為100 mm,接觸平均長度為750 mm,此時(shí)在卷捆過程中,稻稈由于應(yīng)力松弛而對(duì)鋼輥產(chǎn)生的最大壓應(yīng)力為6.37 kPa~7.75 kPa,假設(shè)草捆重力全部由打捆室內(nèi)底部的2個(gè)鋼輥支撐,因此稻稈對(duì)鋼輥的最大正壓應(yīng)力為稻稈質(zhì)量對(duì)鋼輥產(chǎn)生的最大正壓應(yīng)力和稻稈應(yīng)力松弛對(duì)鋼輥產(chǎn)生的正壓應(yīng)力之和。稻稈對(duì)鋼輥式圓捆機(jī)打捆室內(nèi)底部鋼輥的最大壓應(yīng)力的計(jì)算公式為
式中為稻稈捆的重力,N;2為稻稈捆在鋼輥圓形截平面內(nèi)與鋼輥的接觸弧長,m;3為稻稈捆沿鋼輥軸向與鋼輥的接觸長度,m;1為稻稈捆由于應(yīng)力松弛而對(duì)鋼輥產(chǎn)生的最大壓應(yīng)力,kPa;max為稻稈捆對(duì)鋼輥產(chǎn)生總的最大正壓應(yīng)力,kPa。
經(jīng)由公式(3)分析計(jì)算,本試驗(yàn)取稻稈對(duì)鋼輥的正壓應(yīng)力為1 kPa~9 kPa。
3)鋼輥線速度
電機(jī)輸出軸通過聯(lián)軸器與鋼輥旋轉(zhuǎn)軸相連,因此鋼輥轉(zhuǎn)速與電機(jī)輸出軸的轉(zhuǎn)速相同,鋼輥外圓半徑為,經(jīng)計(jì)算分析,本試驗(yàn)取鋼輥線速度為0.2~0.8 m/s,其中鋼輥線速度計(jì)算公式為
式中為鋼輥外圓線速度,m/s;1為電機(jī)額定轉(zhuǎn)速,r/min;1為電機(jī)額定頻率,Hz;2為電機(jī)任意頻率,Hz;為電機(jī)的減速比。
依據(jù)影響稻稈與鋼輥之間滑動(dòng)摩擦系數(shù)的稻稈含水率、正壓應(yīng)力和鋼輥線速度,設(shè)計(jì)三因素三水平正交試驗(yàn),考慮一級(jí)交互作用的影響,3個(gè)試樣,共18種處理,每種處理重復(fù)5次,確定各影響因素及其交互作用的顯著性水平及因素影響的主次順序。然后對(duì)重要的影響因素做單因素試驗(yàn),研究各影響因素對(duì)試驗(yàn)指標(biāo)的影響規(guī)律,獲得對(duì)應(yīng)的回歸方程,為稻稈與鋼輥之間滑動(dòng)摩擦系數(shù)的估測(cè)提供依據(jù)。根據(jù)預(yù)試驗(yàn)確定正交試驗(yàn)的因素水平如表1所示,試驗(yàn)方案采用L27(313)如表2所示。
表1 試驗(yàn)因素水平
試驗(yàn)結(jié)果如表2所示,通過對(duì)比分析可知:影響稻稈與鋼輥之間滑動(dòng)摩擦系數(shù)的因素主次順序依次為稻稈含水率、正壓應(yīng)力和鋼輥線速度。采用Design-expert 8.0.6軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行方差分析[34],由分析結(jié)果可知:稻稈與鋼輥之間滑動(dòng)摩擦系數(shù)受稻稈含水率、正壓應(yīng)力及稻稈含水率與正壓應(yīng)力的交互作用×影響顯著,受鋼輥線速度影響較顯著,而不受稻稈含水率與鋼輥線速度的交互作用×及正壓應(yīng)力與鋼輥線速度的交互作用×的影響,如表3所示。
從正交試驗(yàn)結(jié)果可知,稻稈含水率、正壓應(yīng)力、稻稈含水率和正壓應(yīng)力之間的交互作用×及鋼輥線速度是影響稻稈與鋼輥之間滑動(dòng)摩擦系數(shù)的主要因素,其中交互作用×對(duì)于試驗(yàn)指標(biāo)的影響,后續(xù)將在本文研究的基礎(chǔ)上根據(jù)不同稻稈含水率、正壓應(yīng)力值進(jìn)行大量的基礎(chǔ)性探究試驗(yàn)研究,以獲悉其規(guī)律。為了獲取稻稈在實(shí)際工況中與鋼輥之間滑動(dòng)摩擦系數(shù)的回歸方程,及各影響因素對(duì)稻稈與鋼輥之間滑動(dòng)摩擦系數(shù)的影響規(guī)律,本文選取稻稈含水率、正壓應(yīng)力和鋼輥線速度分別在其合理取值的條件下進(jìn)行單因素試驗(yàn)研究。試驗(yàn)中稻稈含水率、正壓應(yīng)力和鋼輥線速度分別選取5個(gè)水平值,其中稻稈含水率的水平取值為10%、25%、40%、55%、70%,正壓應(yīng)力的水平取值為1.0、3.0、5.0、7.0、9.0 kPa,鋼輥線速度的水平取值為0.2、0.35、0.5、0.65、0.8 m/s。取5個(gè)試樣,共15種處理,每種處理重復(fù)5次,其結(jié)果如表4所示。根據(jù)回歸決定系數(shù)的值,說明回歸模型與試驗(yàn)結(jié)果擬合程度較好,可用于預(yù)測(cè)稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)在不同稻稈含水率、正壓應(yīng)力和鋼輥線速度下的變化情況。如圖3所示為稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)隨稻稈含水率、正壓應(yīng)力和鋼輥線速度的變化曲線圖,可知稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)隨稻稈含水率、正壓應(yīng)力和鋼輥線速度的變化總體上呈單方向變化的趨勢(shì)。
表2 試驗(yàn)方案(L27(313))及結(jié)果
表3 方差分析表
注:“***”表示極顯著(<0.01);“**”表示顯著(0.01≤<0.05);“*”表示較顯著(0.05≤<0.1)。
Note: “***”means extremely significant (<0.01); “**”means very significant(0.01≤<0.05);“*”means significant(0.05≤<0.1).
2.2.1 含水率對(duì)稻稈滑動(dòng)摩擦系數(shù)的影響
在所檢驗(yàn)的影響因素中,稻稈含水率對(duì)稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)影響最為顯著。如圖3a所示,稻稈含水率為10%~70%時(shí),稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)隨稻稈含水率的增加總體上呈現(xiàn)增加的趨勢(shì)。其中,稻稈含水率小于40%時(shí),其滑動(dòng)摩擦系數(shù)的增加較緩慢,大于40%時(shí),滑動(dòng)摩擦系數(shù)增加較快。
因此,在一定范圍內(nèi)適當(dāng)增加稻稈含水率,可以使鋼輥與稻稈之間的滑動(dòng)摩擦系數(shù)增加,從而使鋼輥式圓捆機(jī)卷捆過程中鋼輥對(duì)稻稈的滑動(dòng)摩擦力增加,進(jìn)而在同樣的卷捆條件下可使鋼輥對(duì)稻稈沿其轉(zhuǎn)動(dòng)方向的周向作用力增大,這將有助于加快稻稈在卷捆室內(nèi)的成捆過程并提高打捆效率。
以上增加稻稈含水率的情況主要在青綠稻稈打捆青貯時(shí)發(fā)生,一般情況下稻稈含水率在10%左右,因此,通常情況下稻稈含水率影響有限。
2.2.2 正壓應(yīng)力對(duì)稻稈滑動(dòng)摩擦系數(shù)的影響
如圖3b所示,正壓應(yīng)力為1~9 kPa時(shí),稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)隨正壓應(yīng)力的增加而呈現(xiàn)減小的趨勢(shì),但總體變化較平緩。
總體而言,相對(duì)于稻稈含水率,正壓應(yīng)力對(duì)鋼輥與稻稈間的滑動(dòng)摩擦系數(shù)的影響要小。在鋼輥式圓捆機(jī)卷捆過程的初期,稻稈對(duì)鋼輥的正壓應(yīng)力較小,盡管稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)稍大,但鋼輥對(duì)稻稈的滑動(dòng)摩擦力總體還較??;而隨卷捆進(jìn)程稻稈對(duì)鋼輥的正壓應(yīng)力增加,盡管稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)稍小,但鋼輥對(duì)稻稈的滑動(dòng)摩擦力總體增加較大。
綜合以上分析和前期研究[29-31],在鋼輥式圓捆機(jī)卷捆過程的初期,進(jìn)入卷捆室的稻稈較少,導(dǎo)致卷捆室內(nèi)稻稈質(zhì)量較小、稻稈對(duì)鋼輥的正壓應(yīng)力更小,此時(shí)卷捆室下部鋼輥對(duì)稻稈的摩擦作用力是促使進(jìn)入卷捆室的稻稈形成卷繞累積過程(因此形成旋轉(zhuǎn)草芯、進(jìn)而形成草捆)的關(guān)鍵。因此,卷捆室下部鋼輥應(yīng)采取加大鋼輥與稻稈間滑動(dòng)摩擦系數(shù)的結(jié)構(gòu)設(shè)計(jì)型式,如采用膠輥、表面加焊鋼板條的鋼輥等,以增加下部鋼輥對(duì)稻稈的摩擦作用力。
表4 單因素試驗(yàn)結(jié)果
a. 含水率對(duì)滑動(dòng)摩擦系數(shù)的影響
a. Effect of moisture content on sliding friction coefficient
b. 正壓應(yīng)力對(duì)滑動(dòng)摩擦系數(shù)的影響
b.Effect of positive compressive stress on sliding friction coefficient
c. 鋼輥線速度對(duì)滑動(dòng)摩擦系數(shù)的影響
c.Effect of steel-roll linear speed on sliding friction coefficient
注:a:正壓應(yīng)力為5 kPa,鋼輥線速度為0.5 m·s–1;b:含水率為40%,鋼輥線速度為0.5 m·s–1;c:含水率為40%,正壓應(yīng)力為5 kPa。
Note: a: Positive compressive stress is 5 kPa, steel-roll linear speed is 0.5 m·s–1, b: Moisture content is 40%, steel-roll linear speed is 0.5 m·s–1; c: Moisture content is 40%, positive compressive stress is 5 kPa.
圖3 稻稈滑動(dòng)摩擦系數(shù)變化曲線
Fig.3 Variation curves of sliding friction coefficient of rice straw
2.2.3 鋼輥線速度對(duì)稻稈滑動(dòng)摩擦系數(shù)的影響
對(duì)比單因素試驗(yàn)結(jié)果可知,相對(duì)于稻稈含水率、正壓應(yīng)力,鋼輥線速度對(duì)稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)的影響最小。如圖3c所示,鋼輥線速度為0.2~0.8 m/s時(shí),稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)總體上隨鋼輥線速度的增加而緩慢增加。
因此,在一定范圍內(nèi)適當(dāng)增大鋼輥線速度,鋼輥對(duì)稻稈的滑動(dòng)摩擦系數(shù)增加,在同樣的卷捆條件下可使鋼輥對(duì)稻稈的滑動(dòng)摩擦力增大,從而可在一定程度上增加鋼輥對(duì)稻稈的摩擦作用力或?qū)湍芰?,提高卷捆效率。因此,在鋼輥式圓捆機(jī)打捆過程中,適當(dāng)提高鋼輥線速度,有助于增強(qiáng)鋼輥卷捆能力并提高打捆效率。
綜上所述,在稻稈含水率為10%~70%、正壓應(yīng)力為1~9 kPa和鋼輥線速度為0.2~0.8 m/s時(shí),稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)的變化范圍為0.353~0.612。
1)在本試驗(yàn)因素范圍內(nèi),各因素對(duì)稻稈與鋼輥(由碳素鋼冷軋板卷制而成)之間的滑動(dòng)摩擦系數(shù)的貢獻(xiàn)率從大到小依次為:稻稈含水率、正壓應(yīng)力和鋼輥線速度,且稻稈含水率、正壓應(yīng)力影響顯著,而鋼輥線速度影響較顯著;在交互作用項(xiàng)中,稻稈含水率和正壓應(yīng)力之間的交互作用對(duì)稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)影響顯著,其交互作用關(guān)系對(duì)于試驗(yàn)指標(biāo)的影響,將在后續(xù)的研究中根據(jù)不同稻稈含水率、正壓應(yīng)力值進(jìn)行大量的基礎(chǔ)性探究試驗(yàn)研究,以獲悉其規(guī)律。
2)當(dāng)?shù)径捄蕿?0%~70%時(shí),稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)隨稻稈含水率的增加而增加,其中,稻稈含水率大于40%,其滑動(dòng)摩擦系數(shù)增加的趨勢(shì)比含水率小于40%的趨勢(shì)更明顯;當(dāng)正壓應(yīng)力為1~9 kPa時(shí),稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)隨正壓應(yīng)力的增加而減??;當(dāng)鋼輥線速度為0.2~0.8 m/s時(shí),稻稈與鋼輥之間的滑動(dòng)摩擦系數(shù)隨鋼輥線速度的增加而緩慢增加。
[1] 李葉龍,王德福,李東紅,等.輥盤式圓捆機(jī)卷捆機(jī)理分析與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(12):45-52. Li Yelong,Wang Defu, Li Donghong, et al. Theoretical analysis and experiment of baling mechanism of roll-disk round baler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 45-52.(in Chinese with English abstract)
[2] 朱建春,李榮華,張?jiān)鰪?qiáng),等.陜西作物秸稈的時(shí)空分布、綜合利用現(xiàn)狀與機(jī)制[J].農(nóng)業(yè)工程學(xué)報(bào),2013,29(1):1-9. Zhu Jianchun, Li Ronghua, Zhang Zengqiang, et al. Temporal and spatial distribution of crops straw and its comprehensive utilization mechanism in Shanxi[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE)), 2013, 29(1): 1-9. (in Chinese with English abstract)
[3] 韓魯佳,閆巧娟,劉向陽,等.中國農(nóng)作物秸稈資源及其利用現(xiàn)狀[J].農(nóng)業(yè)工程學(xué)報(bào),2002,18(3):87-91. Han Lujia, Yan Qiaojuan, Liu Xiangyang, et al. Straw resources and their utilization in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(3): 87-91. (in Chinese with English abstract)
[4] 高海,李國東,劉偉,等.農(nóng)作物秸稈綜合利用現(xiàn)狀及技術(shù)[J].現(xiàn)代農(nóng)業(yè)技術(shù),2011(18):290-291. Gao Hai, Li Guodong, Liu Wei, et al. Status and technology of comprehensive uitilization of crops straw[J]. Modern Agricultural Science and Technology, 2011(18): 290-291. (in Chinese with English abstract)
[5] 王正文,楚德江.秸稈收貯利用體系建設(shè)的困境與政策建議[J].中國環(huán)保產(chǎn)業(yè),2013(9):66-69. Wang Zhengwen, Chu Dejiang. Puzzledom and policy suggestions on system building of straw harvest, store and utilization[J]. Environmental Protection Industry of China, 2013(9): 66-69. ( in Chinese with English abstract)
[6] 裴進(jìn)靈.飼草收獲加工機(jī)械的現(xiàn)狀及發(fā)展趨勢(shì)[J].當(dāng)代農(nóng)機(jī),2007(7):12-14. Pei Jinling. Present situation and development trend of forage harvesting processing machinery[J]. Contemporary Agricultural Machinery, 2007(7): 12-14. (in Chinese with English abstract)
[7] 豆賀,高艷芳,胡逢時(shí),等.國內(nèi)外牧草收獲機(jī)械發(fā)展現(xiàn)狀及趨勢(shì)[J].現(xiàn)代化農(nóng)業(yè),2017,450(1):61-64. Dou He, Gao Yanfang, Hu Fengshi, et al. Current situation and trend of pasture harvesting machinery at home and abroad[J]. Modern Agriculture, 2017, 450(1): 61-64. ( in Chinese with English abstract)
[8] 徐秀英.中國牧草收獲機(jī)械發(fā)展現(xiàn)狀及其趨勢(shì)[J].安徽農(nóng)業(yè)科學(xué),2007,35(8):2506-2508. Xu Xiuying. Current status and development of pasture harvesting machinery in China[J]. Journal of Anhui Agri. Sci. 2007, 35(8): 2506-2508. (in Chinese with English abstract)
[9] 房駿,尚力,王慶瑩.我國牧草收獲機(jī)械的發(fā)展現(xiàn)狀及存在問題[J].農(nóng)機(jī)質(zhì)量與監(jiān)督,2006(2):30-31. Fang Jun, Shang Li, Wang Qingying. The present situation and existing problems of herbal harvesting machinery in China[J]. Agricultural Machinery Quality and Supervision, 2006(2): 30-31. (in Chinese with English abstract)
[10] 華德.中國牧草收獲機(jī)械的現(xiàn)狀、發(fā)展趨勢(shì)[J].農(nóng)業(yè)機(jī)械,2014(2):26-30. Hua De. Current situation and development trend of Chinese forage harvesting machinery[J]. Agricultural Machinery, 2014(2): 26-30. (in Chinese with English abstract)
[11] 華榮江,唐尊峰,葉紅艷,等.國內(nèi)外圓捆機(jī)械研究與發(fā)展趨勢(shì)[J].中國農(nóng)機(jī)化,2012(3):23-26. Hua Rongjiang, Tang Zunfeng, Ye Hongyan, et al. Research and development tendency about balerin domestic and overseas[J]. Chinese Agricultural Mechanization, 2012(3): 23-26. ( in Chinese with English abstract)
[12] 張樂佳.國內(nèi)外主要牧草收獲機(jī)械發(fā)展概況[J].農(nóng)業(yè)工程,2014,4(5):20-22. Zhang Lejia. Development situation about main hay- harvsting machine at home and abroad[J].Agricultural Engineering, 2014, 4(5): 20-22.( in Chinese with English abstract)
[13] 侯曉,張俊國,董佳佳.秸稈打捆機(jī)研究現(xiàn)狀及發(fā)展趨勢(shì)[J].農(nóng)村牧區(qū)機(jī)械化,2016(2):16-17. Hou Xiao, Zhang Junguo, Dong Jiajia. Research status and development trend of straw baler[J]. Mechanization Rural Pastoral Areas, 2016(2): 16-17. ( in Chinese with English abstract)
[14] Shinners K J, Koegel R G, Lehman L L. Friction coeffic- ient of alfalfa[J]. Transactions of the Asabe, 1991, 34(1): 33-37.
[15] Joseph St. Friction coefficients of chopped forages[J]. American Society of Agricultural and Biological Engineer, 2008, 26(9): 1-2.
[16] Kakitis A, Nulle I. Friction of chopped straw [J]. AGRIS, 2005, 113(16): 98-107.
[17] Larsson S H. Kinematic wall friction properties of reed canary grass powder at high and low normal stresses[J]. Powder Technology, 2010, 198(15): 108-113.
[18] Phani A, Lope T, Greg S. Physical and Frictional prop-erties of non-treated and steam exploded barley, canola, oat and wheat straw grinds[J]. Powder Technology, 2010, 201(13): 230-241.
[19] 操夫子,趙婉寧,楊雨林,等.圓捆打捆機(jī)研究現(xiàn)狀與發(fā)展趨勢(shì)[J].農(nóng)業(yè)與技術(shù),2014,34(11):38-69. Cao Fuzi, Zhao Wanning, Yang Yulin, et al. Research status and development trend of round bundle[J]. Agriculture and Technology, 2014, 34(11): 38-69. (in Chinese with English abstract)
[20] 韓江,周宏平,王金鵬.農(nóng)林業(yè)打捆機(jī)的發(fā)展概況及趨勢(shì)探討[J].林業(yè)機(jī)械與木工設(shè)備,2015(43):10-18. Han Jiang, Zhou Hongping, Wang Jinpeng. Development and trend of agricultural and forestry bundling machines[J]. Forestry Machinery and Woodworking Equipment, 2015(43): 10-18. (in Chinese with English abstract)
[21] 李永軍,何芳,柏雪源,等.顆粒和粉體混合物沿斜滑道的滑動(dòng)摩擦系數(shù)[J].山東理工大學(xué)學(xué)報(bào)自然科學(xué)版,2003,17(4):10-12. Li Yongjun, He Fang, Bai Xueyuan, et al. Sliding friction coefficient of granular and powder mixture in inclined tube[J]. Journal of Shandong University of Technology (Sci and Tech), 2003, 17(4): 10-12. (in Chinese with English abstract)
[22] 隋美麗.秸稈壓塊飼料機(jī)勻料充型區(qū)的物流分析與計(jì)算機(jī)仿真[D].保定:河北農(nóng)業(yè)大學(xué),2005. Sui Meili. Computer Simulation and Physical Distribution Analysis on the Filling Process of Extruding for Crop Straw[D]. Baoding: Agricultural University of Hebei, 2005. (in Chinese with English abstract)
[23] 田宜水,姚宗路,歐陽雙平,等.切碎農(nóng)作物秸稈理化特性試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(9):124-130. Tian Yishui, Yao Zonglu, Ouyang Shuangping, et al. Physical and chemical characterization of biomass crushed straw[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(9): 124-130. ( in Chinese with English abstract)
[24] 霍麗麗,孟海波,田宜水,等.粉碎秸稈類生物質(zhì)原料物理特性試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(11):189-195. Huo Lili, Meng Haibo, Tian Yishui, et al. Experimental study on physical property of smashed crop straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(11): 189-195. (in Chinese with English abstract)
[25] 房欣,陳海濤,黃振華,等.不同含水率大豆秸稈與不同材料間滑動(dòng)摩擦特性的研究[J].大豆科學(xué),2012,31(5):838-841. Fang Xin, Chen Haitao, Huang Zhenhua, et al. Sliding friction characteristic of different moisture content of soybean stalk with different materials[J]. Soybean Science, 2012, 31(5): 838-841. ( in Chinese with English abstract)
[26] 盧彩云,趙春江,孟志軍,等.基于滑板壓桿旋切式防堵裝置的秸稈摩擦特性研究[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(11):83-89. Lu Caiyun, Zhao Chunjiang, Meng Zhijun, et al. Straw friction characteristic based on rotary cutting anti-blocking device with slide plate pressing straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 83-89. (in Chinese with English abstract)
[27]劉新柱,王玉花,韓平,等.稻草秸稈壓縮特性研究[J].農(nóng)機(jī)化研究,2016(6):225-229. Liu Xinzhu, Wang Yuhua, Han Ping, et al. Compression property research of rice straw[J]. Research on Agricultural Mechanization, 2016(6): 225-229. (in Chinese with English abstract)
[28] 王春光.鋼輥外卷式圓捆機(jī)結(jié)構(gòu)與原理[J].農(nóng)業(yè)機(jī)械,2008(12A):43-45. Wang Chunguang. Structure and principle of steel-roll roller blowing machine[J]. Agricultural Machinery, 2008(12A): 43-45. (in Chinese with English abstract)
[29] 王德福,張全國.青貯稻稈圓捆打捆機(jī)的改進(jìn)研究[J].農(nóng)業(yè)工程學(xué)報(bào),2007,23(11):168-171. Wang Defu, Zhang Quanguo. Improvement of round baler for rice straw ensiling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(11): 168-171. ( in Chinese with English abstract)
[30] 王德福,蔣亦元,王吉權(quán).鋼輥式圓捆打捆機(jī)結(jié)構(gòu)改進(jìn)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(12):84-88. Wang Defu, Jiang Yiyuan, Wang Jiquan. Structure- improving and experiment of steel-roll round baler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(12): 84-88. ( in Chinese with English abstract)
[31] 雷軍樂,王德福,李東紅,等.鋼輥式圓捆機(jī)旋轉(zhuǎn)草芯形成影響因素分析與優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(12):18-25. Lei Junle, Wang Defu, Li Donghong, et al. Influence factors analysis and optimization of forming rotary straw core by steel-roll round baler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 18-25. (in Chinese with English abstract)
[32] 鄭海.秸稈青貯技術(shù)規(guī)程[J].甘肅畜牧獸醫(yī),2011,217(2):30-31. Zheng Hai.Technical specification for straw silage[J]. Gansu Animal and Veterinary Sciences, 2011, 217(2): 30-31.( in Chinese with English abstract)
[33] 雷軍樂,王德福,張全超,等.完整稻稈卷壓過程應(yīng)力松弛試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):76-83. Lei Junle, Wang Defu, Zhang Quanchao, et al. Experiment on stress relaxation characteristics of intact rice straw during rotary compression[J]. Transactions of the Chinese Society of Agricultural Engineering (Trans-actions of the CSAE), 2015, 31(8): 76-83.(in Chinese with English abstract)
[34] 呂金慶,王英博,李紫輝,等.加裝導(dǎo)流板的舀勺式馬鈴薯播種機(jī)排種器性能分析與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):19-28. Lv Jinqing, Wang Yingbo, Li Zihui, et al. Performance analysis and experiment of cup-belt type patato seed- metering device with flow deflector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 19-28. ( in Chinese with English abstract)
王德福,江志國,李百秋,王國富,蔣亦元. 稻稈與圓捆機(jī)鋼輥間滑動(dòng)摩擦特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(21):44-51. doi:10.11975/j.issn.1002-6819.2017.21.005 http://www.tcsae.org
Wang Defu, Jiang Zhiguo, Li Baiqiu, Wang Guofu, Jiang Yiyuan. Experiment on sliding friction characteristics between rice straw and baler steel-roll[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 44-51. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.005 http://www.tcsae.org
Experiment on sliding friction characteristics between rice straw and baler steel-roll
Wang Defu1,2, Jiang Zhiguo1,2, Li Baiqiu1,2, Wang Guofu1,2, Jiang Yiyuan1
(1.150030,; 2.150030,)
Rice straw resource is abundant in China, and annual output of rice straw has been over 200 million t. In recent years, as a kind of renewable biomass resource, rice straw is being used widely in new areas. However, because of the scattered distribution, the loose structure and the large volume of rice straw resource, it is difficult for rice straw to be stored and transported, which has seriously restricted the large-scale utilization of rice straw resource. It is very important to use the round baler to harvest rice straw for the comprehensive utilization of rice straw. In view of the fact that the basic research of the steel-roll round baler is less in China, it is urgent to carry out the basic research on the sliding friction between rice straw and steel-roll. In order to provide the basis for the design of the steel-roll round baler, the experiments of the sliding friction characteristics between rice straw and steel-roll (prepared by the rolling of cold rolled plate of carbon steel) were performed in this paper. Using the self-made device for measuring steel-roll sliding friction coefficient, the effects of moisture content of rice straw, positive compressive stress, steel-roll linear speed, and the interaction between them on the sliding friction coefficient between rice straw and steel-roll were studied by L27 (313) orthogonal experiment. Three factors and 3 levels, 3 samples and a total of 18 kinds of treatments were selected and each treatment repeated 5 times, which were used to determine the significance of the impact of factors and the order of factors. Then 5 levels of moisture content of rice straw, positive compressive stress and steel-roll linear speed were respectively selected in the single factor experiment, and the influence of each factor on the experimental index was studied, obtaining the corresponding regression equations and the coefficients of determination. The results of orthogonal experiment showed that: The sliding friction coefficient between rice straw and steel-roll was significantly affected by moisture content of rice straw and positive compressive stress, while less significantly affected by steel-roll linear speed, and the influencing order of factors was moisture content of rice straw > positive compressive stress > steel-roll linear speed. In the interaction between the factors, the sliding friction coefficient between rice straw and steel-roll was significantly affected by the interaction between moisture content of rice straw and positive compressive stress. The results of single factor experiments showed that: The sliding friction coefficient between rice straw and steel-roll increased with the increasing of moisture content of rice straw, decreased with the increasing of positive compressive stress, and slowly decreased with the increasing of steel-roll linear speed. When the moisture content of rice straw was 10%-70%, the positive compressive stress was 1-9 kPa and the steel-roll linear speed was 0.2-0.8 m/s, the range of sliding friction coefficient between rice straw and steel-roll was 0.353-0.612. Regression models had a good fitting degree with experimental results, and could be used to analyze the changes of the sliding friction coefficient between rice straw and steel-roll. The results can provide theoretical basis for the research and design of key components of steel-roll round balers.
straw; agricultural machinery; mechanical properties; steel-roll; sliding friction coefficient
10.11975/j.issn.1002-6819.2017.21.005
S225.4
A
1002-6819(2017)-21-0044-08
2017-05-29
2017-06-28
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0701300);國家自然科學(xué)基金項(xiàng)目(51405076);黑龍江省科技項(xiàng)目(GA16B301)
王德福,教授,主要從事畜牧機(jī)械方面的研究工作。 Email:dfwang640203@sohu.com