劉永強(qiáng), 潘洪生,2, 陸宴輝*
(1. 中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所, 植物病蟲害生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室, 北京 100193; 2. 新疆農(nóng)業(yè)科學(xué)院植物保護(hù)研究所, 烏魯木齊 830091)
研究簡報(bào) Research Notes
苜蓿盲蝽屬三種害蟲對環(huán)氧蟲啶的敏感性
劉永強(qiáng)1, 潘洪生1,2, 陸宴輝1*
(1. 中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所, 植物病蟲害生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室, 北京 100193; 2. 新疆農(nóng)業(yè)科學(xué)院植物保護(hù)研究所, 烏魯木齊 830091)
環(huán)氧蟲啶是我國自主研發(fā)的一種新型的新煙堿殺蟲劑,主要用于防治刺吸式口器害蟲。本文采用點(diǎn)滴法測定了環(huán)氧蟲啶對中黑盲蝽、苜蓿盲蝽、三點(diǎn)盲蝽的毒力,結(jié)果表明,三種盲蝽對環(huán)氧蟲啶均具有較高的敏感性,其中中黑盲蝽的敏感性最高,LD50值為2.03 ng/頭,其次為苜蓿盲蝽和三點(diǎn)盲蝽,LD50分別為3.12和3.34 ng/頭。多功能氧化酶抑制劑PBO能明顯增加環(huán)氧蟲啶對三種盲蝽的毒力,谷胱甘肽S-轉(zhuǎn)移酶抑制劑DEM只在中黑盲蝽上對環(huán)氧蟲啶表現(xiàn)出增效作用,而羧酸酯酶抑制劑TPP未顯示增效作用。這說明,環(huán)氧蟲啶具有防治苜蓿盲蝽屬三種害蟲的應(yīng)用潛力,細(xì)胞色素P450-單加氧酶可能在環(huán)氧蟲啶代謝中起重要作用。
新煙堿殺蟲劑; 苜蓿盲蝽屬; 毒力; 酶抑制劑
半翅目盲蝽科苜蓿盲蝽屬的苜蓿盲蝽Adelphocorislineolatus(Goeze)、中黑盲蝽A.suturalisJakovlev和三點(diǎn)盲蝽A.fasciaticollisReuter是我國棉花、苜蓿等作物的重要害蟲[1-3]。中黑盲蝽主要分布在長江流域以及黃河流域南部,三點(diǎn)盲蝽主要分布在黃河流域的北部和中部地區(qū),苜蓿盲蝽除在黃河流域北部和中部地區(qū)有分布外,還廣泛分布在西北地區(qū)[1]。三種盲蝽成蟲和若蟲以刺吸方式為害寄主植物的營養(yǎng)和生殖器官,引起葉片、花和果實(shí)的脫落或畸形,導(dǎo)致作物減產(chǎn)。同時(shí),三種盲蝽成蟲具有較強(qiáng)的飛行能力[4],常在不同作物之間轉(zhuǎn)移、交叉為害,導(dǎo)致區(qū)域性、多作物上暴發(fā)成災(zāi)。
環(huán)氧蟲啶(cycloxaprid)是一種順式氧橋雜環(huán)結(jié)構(gòu)新煙堿殺蟲劑[5-7],對靶標(biāo)具有獨(dú)特的抑制作用。它對半翅目害蟲稻飛虱[8]、麥長管蚜[7]、煙粉虱Bemisiatabaci(Gennadius)[9]、葉蟬[10]以及綠盲蝽Apolyguslucorum(Meyer-Dür)[11]具有較高活性。本研究評價(jià)了苜蓿盲蝽屬三種害蟲對環(huán)氧蟲啶的敏感性,同時(shí)通過比較解毒酶抑制劑對環(huán)氧蟲啶的增效作用,初步探索其在三種盲蝽中代謝的可能機(jī)制。
1.1 供試?yán)ハx
中黑盲蝽、苜蓿盲蝽和三點(diǎn)盲蝽成蟲和若蟲采自中國農(nóng)業(yè)科學(xué)院廊坊科研中試基地棉田,隨后轉(zhuǎn)入塑料盒(20 cm×10 cm×6 cm)中,利用新鮮四季豆PhaseolusvulgarisLinn.豆莢進(jìn)行繼代飼養(yǎng)[12]。飼養(yǎng)環(huán)境條件為(26±1)℃,RH(60±5)%,光周期L∥D=14 h∥10 h。蟲源飼養(yǎng)至第4代,用于下列試驗(yàn)研究。
1.2 藥劑及試劑
97%環(huán)氧蟲啶原藥,由華東理工大學(xué)錢旭紅教授實(shí)驗(yàn)室提供;磷酸三苯酯(TPP,化學(xué)純),由上?;瘜W(xué)試劑廠生產(chǎn);增效醚(PBO,90%原油)、順丁烯二酸二乙酯(DEM,97%原油),由Sigma-Aldrich化學(xué)有限公司生產(chǎn)。
1.3 生物測定
毒力測定采用點(diǎn)滴法[13],具體參照Scott和Georghiou的方法并略有修改[14]。將原藥用丙酮溶解配成系列濃度,用二氧化碳麻醉試蟲后,用毛細(xì)管微量點(diǎn)滴器將0.5 μL藥液點(diǎn)滴于4日齡成蟲前胸背板[12],點(diǎn)滴處理后,將試蟲轉(zhuǎn)入養(yǎng)蟲管(高9 cm,直徑2 cm),喂以3 cm長的新鮮四季豆,放入(26±1)℃,光周期L∥D=14 h∥10 h,濕度(60±5)%的條件下飼養(yǎng)。每處理15頭成蟲,重復(fù)3次,以丙酮代替藥劑作對照,24 h后檢查試驗(yàn)結(jié)果[12],用鑷子輕觸后無反應(yīng)者視為死亡。
分別將PBO、DEM、TPP等3種酶抑制劑用丙酮溶解,測定時(shí)將其點(diǎn)滴于4日齡試蟲前胸背板上,點(diǎn)滴量為0.5 μL,用量為20 μg/頭,1 h后用系列濃度殺蟲劑處理,方法同室內(nèi)毒力測定。對照處理酶抑制劑用量為20 μg/頭。
1.4 統(tǒng)計(jì)分析
數(shù)據(jù)處理采用SPSS 13.0軟件,計(jì)算LD50等相關(guān)數(shù)據(jù)。
2.1 室內(nèi)毒力效果
毒力測定中,對照處理試蟲死亡率均低于5%。環(huán)氧蟲啶對中黑盲蝽毒力最高,LD50為2.03 ng/頭,對苜蓿盲蝽和三點(diǎn)盲蝽的LD50分別為3.12和3.34 ng/頭。環(huán)氧蟲啶對苜蓿盲蝽和三點(diǎn)盲蝽致死中量分別為中黑盲蝽的1.54和1.65倍,而苜蓿盲蝽和三點(diǎn)盲蝽對環(huán)氧蟲啶的敏感性沒有差異(LD50置信區(qū)間重疊視為同一水平)。
表1點(diǎn)滴法測定苜蓿盲蝽屬三種害蟲對環(huán)氧蟲啶的敏感性
Table1SusceptibilityofthreeAdelphocorisspeciestocycloxapridinlaboratorydeterminedbytopicalapplication
試蟲Species斜率±SESlope±SELD50/ng·頭-195%置信區(qū)間/ng·頭-195%Confidenceintervalχ2(df)P值Pvalue中黑盲蝽A.suturalis3.15±0.382.031.65~2.487.16(13)0.8937苜蓿盲蝽A.lineolatus3.20±0.383.122.56~3.8413.27(13)0.4271三點(diǎn)盲蝽A.fasciaticollis3.25±0.393.342.75~4.118.24(13)0.8277
2.2 酶抑制劑的增效作用
PBO能增加環(huán)氧蟲啶對三種盲蝽的毒力,在中黑盲蝽、苜蓿盲蝽和三點(diǎn)盲蝽上的增效比分別為5.80、1.45和3.28。TPP和DEM在環(huán)氧蟲啶對苜蓿盲蝽和三點(diǎn)盲蝽的毒力測定中均未顯示增效作用,僅DEM在中黑盲蝽對環(huán)氧蟲啶的敏感性測定中顯示出了增效作用,增效比為1.52。
表2酶抑制劑對環(huán)氧蟲啶的增效作用
Table2SynergismofenzymeinhibitorstocycloxapridagainstthreeAdelphocorisspecies
試蟲Species藥劑CompoundSlope±SELD50/ng·頭-195%置信區(qū)間/ng·頭-195%Confidenceintervalχ2(df)P值Pvalue增效比SR中黑盲蝽A.suturaliscycloxaprid+PBO2.02±0.270.350.24~0.465.37(16)0.99365.80cycloxaprid+DEM3.07±0.371.341.09~1.651.53(13)1.00001.52cycloxaprid+TPP2.22±0.322.081.56~2.702.68(13)0.99890.98苜蓿盲蝽A.lineolatuscycloxaprid+PBO2.73±0.352.151.71~2.696.04(13)0.94471.45cycloxaprid+DEM3.37±0.392.712.24~3.297.52(13)0.87361.15cycloxaprid+TPP3.37±0.393.022.50~3.685.53(13)0.96161.03三點(diǎn)盲蝽A.fasciaticolliscycloxaprid+PBO3.20±0.381.020.83~1.247.64(13)0.86653.28cycloxaprid+DEM2.06±0.323.762.74~4.973.73(13)0.99370.89cycloxaprid+TPP3.26±0.393.572.94~4.426.18(13)0.93930.94
本試驗(yàn)結(jié)果表明,環(huán)氧蟲啶對中黑盲蝽、苜蓿盲蝽和三點(diǎn)盲蝽均具有較高的觸殺毒力,這與Pan等發(fā)現(xiàn)的環(huán)氧蟲啶對綠盲蝽毒力較高的結(jié)論一致,環(huán)氧蟲啶對綠盲蝽的毒力高于傳統(tǒng)新煙堿殺蟲劑啶蟲脒、噻蟲胺、呋蟲胺、烯啶蟲胺、吡蟲啉和噻蟲嗪[12]。上述研究初步表明,環(huán)氧蟲啶具有防治盲蝽類害蟲的應(yīng)用潛力,有待進(jìn)一步開展田間試驗(yàn),確定環(huán)氧蟲啶對三種盲蝽的最佳使用濃度。
新煙堿類殺蟲劑是國內(nèi)外防治半翅目(蚜蟲、煙粉虱和稻飛虱)和鞘翅目(甲蟲類)害蟲的重要?dú)⑾x劑[15],然而,靶標(biāo)害蟲蚜蟲[桃蚜Myzuspersicae(Sulzer)、忽布疣蚜Phorodonhumuli(Schrank)和棉蚜AphisgossypiiGlover]、粉虱(煙粉虱)和馬鈴薯甲蟲LeptinotarsadecemlineataSay等已對新煙堿殺蟲劑產(chǎn)生了一定程度的抗藥性[18-19]。細(xì)胞色素P450 -單加氧酶活性升高是害蟲對傳統(tǒng)新煙堿殺蟲劑(啶蟲脒、吡蟲啉和噻蟲嗪)產(chǎn)生抗性的重要機(jī)制[16-18],已有研究表明細(xì)胞色素P450-單加氧酶活性與棉蚜的吡蟲啉抗性有關(guān)[19],但Cui等發(fā)現(xiàn)環(huán)氧蟲啶對棉蚜吡蟲啉抗性種群和敏感種群的毒力沒有差異,這表明環(huán)氧蟲啶和吡蟲啉可能有不同的毒理學(xué)機(jī)制,可用于吡蟲啉抗性棉蚜種群的治理[20]。同時(shí),環(huán)氧蟲啶對其他吡蟲啉抗性害蟲也具有較高活性,其對具有吡蟲啉抗性的褐飛虱上活性高于吡蟲啉50倍[5]。因此,環(huán)氧蟲啶具有防治包括苜蓿盲蝽屬害蟲在內(nèi)的傳統(tǒng)新煙堿抗性害蟲的應(yīng)用前景。
中腸和脂肪體中的解毒酶通常與殺蟲劑代謝有關(guān)[21],酶活升高可降低昆蟲對殺蟲劑的敏感性[22]。如,細(xì)胞色素P450-單加氧酶活性的升高增加了煙粉虱對吡蟲啉的抗性[16],羧酸酯酶在西花薊馬FrankliniellaoccidentalisPergande對噻蟲嗪的抗性中起一定作用[23];谷胱甘肽S-轉(zhuǎn)移酶活性的升高與有機(jī)磷殺蟲劑抗性的產(chǎn)生有關(guān)[24]。增效測定表明,PBO能明顯增加環(huán)氧蟲啶對三種盲蝽的毒力,而TPP均未表現(xiàn)出增效作用;DEM在測定環(huán)氧蟲啶對苜蓿盲蝽和三點(diǎn)盲蝽的毒力中也未顯示增效作用。因此,細(xì)胞色素P450 -單加氧酶可能在上述三種盲蝽環(huán)氧蟲啶代謝中起主要作用。
[1] 姜玉英, 陸宴輝, 曾娟. 盲蝽分區(qū)監(jiān)測與治理[M]. 北京: 中國農(nóng)業(yè)出版社, 2015.
[2] Lu Yanhui, Qiu Feng, Feng Hongqiang, et al. Species composition and seasonal abundance of pestiferous plant bugs (Hemiptera: Miridae) on Bt cotton in China [J]. Crop Protection, 2008, 27: 465-472.
[3] 陸宴輝, 吳孔明. 棉花盲蝽象及其防治[M]. 北京: 金盾出版社, 2008.
[4] Lu Yanhui, Wu Kongming, Wyckhuys K A G, et al. Comparative flight performance of three important pestAdelphocorisspecies of Bt cotton in China [J]. Bulletin of Entomological Research, 2009, 99(6): 543-550.
[5] Shao Xusheng, Fu Hua, Xu Xiaoyong, et al. Divalent and oxabridged neonicotinoids constructed by dialdehydes and nitromethylene analogues of imidacloprid: design, synthesis, crystal structure, and insecticidal activities [J]. Journal of Agricultural and Food Chemistry, 2010, 58(5): 2696-2702.
[6] Shao Xusheng, Lee P W, Liu Zewen, et al.Cis-configuration: A new tactic/rationale for neonicotinoid molecular design [J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 2943-2949.
[7] Cui Li, Sun Lina, Yang Daibin, et al. Effects of cycloxaprid, a novelcis-nitromethylene neonicotinoid insecticide, on the feeding behavior ofSitobionavenae[J]. Pest Management Science, 2012, 68(11): 1484-1491.
[8] 劉寶生, 張志春, 謝霖, 等. 新藥劑環(huán)氧蟲啶對稻飛虱的殺蟲活性和田間效果[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2013, 26(1): 155-158.
[9] Wang Ran, Zheng Huixin, Qu Cheng, et al. Lethal and sublethal effects of a novelcis-nitromethylene neonicotinoid insecticide, cycloxaprid, onBemisiatabaci[J]. Crop Protection, 2016, 83: 15-19.
[10] Shao Xusheng, Liu Zewen, Xu Xiaoyong, et al. Overall status of neonicotinoid insecticides in China: Production application and innovation [J]. Journal of Pesticide Science, 2013, 38(1): 1-9.
[11] Pan Hongsheng, Liu Yongqiang, Liu Bing, et al. Lethal and sublethal effects of cycloxaprid, a novelcis-nitromethylene neonicotinoid insecticide, on the mirid bugApolyguslucorum[J]. Journal of Pest Science, 2014, 87(4): 731-738.
[12] 陸宴輝, 吳孔明, 蔡曉明, 等. 利用四季豆飼養(yǎng)盲蝽的方法[J]. 植物保護(hù)學(xué)報(bào), 2008, 35(3): 215-219.
[13] Desneux N, Denoyelle R, Kaiser L. A multi-step bioassay to assess the effect of the deltamethrin on the parasitic waspAphidiuservi[J]. Chemosphere,2006,65(10):1697-1706.
[14] Scott J G, Georghiou G P.Mechanisms responsible for high levels of permethrin resistance in housefly [J]. Pesticide Science, 1986, 17(3): 195-206.
[15] Nauen R, Denholm I. Resistance of insect pests to neonicotinoid insecticides: current status and future prospects [J]. Archives of Insect Biochemistry and Physiology, 2005, 58(4): 200-215.
[16] Roditakis E, Grispou M, Morou E, et al. Current status of insecticide resistance in Q biotypeBemisiatabacipopulations from crete [J].Pest Management Science,2009,65(3):313-322.
[17] 姚明德. B型煙粉虱抗吡蟲啉品系的交互抗性譜及抗性生化機(jī)理[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2007.
[18] 封云濤. B型煙粉虱入侵種群對噻蟲嗪抗性機(jī)理的研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2009.
[19] 郭天鳳, 史雪巖, 高希武, 等. 棉蚜吡蟲啉、啶蟲脒不同品系解毒酶活性測定和增效作用的研究[J]. 環(huán)境昆蟲學(xué)報(bào), 2014, 36(3): 388-394.
[20] Cui Li, Qi Haoliang, Yang Daibin, et al. Cycloxaprid: a novel cis-nitromethylene neonicotinoid insecticide to control imidacloprid-resistant cotton aphid (Aphisgossypii)[J]. Pesticide Biochemistry and Physiology, 2016, 132: 96-101.
[21] Valles S M, Yu S J. Detection and biochemical characterization of insecticide resistance in the German cockroach (Dictyoptera: Blattellidae)[J]. Journal of Economic Entomology, 1996, 89(1): 21-26.
[22] 劉喃喃, 朱芳, 徐強(qiáng), 等. 昆蟲抗藥性機(jī)理: 行為和生理改變及解毒代謝增強(qiáng)[J]. 昆蟲學(xué)報(bào), 2006, 49(4): 671-679.
[23] Gao Congfen, Ma Shaozhi, Shan Caihui, et al. Thiamethoxam resistance selected in the western flower thripsFrankliniellaoccidentalis(Thysanoptera: Thripidae): Cross-resistance patterns, possible biochemical mechanisms and fitness costs analysis [J]. Pesticide Biochemistry and Physiology, 2014, 114(5): 90-96.
[24] Zhu Yucheng, Blanco C A, Portilla M, et al. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm,Spodopterafrugiperda[J]. Pesticide Biochemistry and Physiology, 2015, 122: 15-21.
(責(zé)任編輯: 楊明麗)
ThesusceptibilityofthreeAdelphocorisspeciestocycloxaprid
Liu Yongqiang1, Pan Hongsheng1,2, Lu Yanhui1
(1.StateKeyLaboratoryforBiologyofPlantDiseasesandInsectPests,InstituteofPlantProtection,ChineseAcademyofAgriculturalSciences,Beijing100193,China; 2.InstituteofPlantProtection,XinjiangAcademyofAgriculturalSciences,Urumqi830091,China)
Cycloxaprid is a novel self-developed neonicotinoid insecticide for the control of sucking insect pests. ThreeAdelphocorisspecies (Hemiptera: Miridae),A.suturalis,A.lineolatus, andA.fasciaticollis, are important insect pests in cotton, alfalfa and other crops in China. Bioassays of cycloxaprid showed thatA.suturalis(LD50: 2.03 ng/adult) was more susceptible to cycloxaprid thanA.lineolatusandA.fasciaticolliswith LD50values of 3.12 and 3.34 ng/adult, respectively. The toxicity of cycloxaprid to threeAdelphocorisspecies could be synergized by piperonyl butoxide (PBO), but generally not by TPP. Inhibitor of glutathioneS-transferase (GST), the DEM, showed synergism only to cycloxaprid againstA.suturalis. The results suggest that cycloxaprid is a candidate for controllingAdelphocorisspecies. Cytochrome P450-dependent monooxygenase might play an important role in the metabolism of cycloxaprid in these three mirid bugs.
neonicotinoid;Adelphocoris; insecticide toxicity; enzyme inhibitor
2017-03-17
2017-05-14
國家重點(diǎn)研發(fā)計(jì)劃(2017YFD0201900);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-18-12)
* 通信作者 E-mail: yhlu@ippcaas.cn
S 435.622
A
10.3969/j.issn.0529-1542.2017.06.024