国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于變分模態(tài)分解和排列熵的滾動(dòng)軸承故障診斷

2017-11-30 06:00:29鄭小霞周國旺任浩翰
振動(dòng)與沖擊 2017年22期
關(guān)鍵詞:變分內(nèi)圈分量

鄭小霞, 周國旺, 任浩翰, 符 楊

(1.上海電力學(xué)院 自動(dòng)化工程學(xué)院,上海 200090; 2. 上海東海風(fēng)力發(fā)電有限公司,上海 200090)

基于變分模態(tài)分解和排列熵的滾動(dòng)軸承故障診斷

鄭小霞1, 周國旺1, 任浩翰2, 符 楊1

(1.上海電力學(xué)院 自動(dòng)化工程學(xué)院,上海 200090; 2. 上海東海風(fēng)力發(fā)電有限公司,上海 200090)

滾動(dòng)軸承早期故障信號(hào)特征微弱且難以提取,為了從軸承振動(dòng)信號(hào)中提取特征參數(shù)用于軸承故障診斷和識(shí)別,提出基于變分模態(tài)分解(Variational Mode Decomposition,VMD)和排列熵(Permutation Entropy, PE)的信號(hào)特征提取方法,并采用支持向量機(jī)(Support Vector Machine,SVM)進(jìn)行故障識(shí)別。對(duì)軸承振動(dòng)信號(hào)進(jìn)行變分模態(tài)分解,得到不同尺度的本征模態(tài)函數(shù);計(jì)算各本征模態(tài)函數(shù)的排列熵,組成多尺度的復(fù)雜性度量特征向量;將高維特征向量輸入基于支持向量基建立的分類器進(jìn)行故障識(shí)別分類。通過滾動(dòng)軸承實(shí)驗(yàn)數(shù)據(jù)分析了算法中參數(shù)選取問題,將該方法應(yīng)用于滾動(dòng)軸承實(shí)驗(yàn)數(shù)據(jù),并與集合經(jīng)驗(yàn)?zāi)B(tài)分解和小波包分解進(jìn)行對(duì)比,分析結(jié)果表明,基于變分模態(tài)分解和排列熵的診斷方法有更高的診斷準(zhǔn)確率,能夠有效實(shí)現(xiàn)滾動(dòng)軸承的故障診斷。

變分模態(tài)分解;排列熵;支持向量機(jī);滾動(dòng)軸承;故障診斷

滾動(dòng)軸承是機(jī)械設(shè)備中廣泛應(yīng)用的零部件,其運(yùn)行狀態(tài)好壞將直接影響設(shè)備的生產(chǎn)效率和安全。在機(jī)械設(shè)備實(shí)際運(yùn)行中,若不能及時(shí)發(fā)現(xiàn)滾動(dòng)軸承早期故障,其故障產(chǎn)生的沖擊會(huì)加速滾動(dòng)軸承的損壞,最終導(dǎo)致滾動(dòng)軸承失效,對(duì)機(jī)械正常運(yùn)行帶來嚴(yán)重影響。因此,對(duì)滾動(dòng)軸承運(yùn)行狀態(tài)監(jiān)測(cè)與診斷,尤其是滾動(dòng)軸承早期故障診斷具有十分重要的意義[1]。

變分模態(tài)分解(Variational Mode Decomposition,VMD)是由Dragomiretskiy等[2]提出的一種自適應(yīng)信號(hào)處理方法,通過迭代搜尋變分模態(tài)的最優(yōu)解,不斷更新各模態(tài)函數(shù)及中心頻率,得到若干具有一定帶寬的模態(tài)函數(shù)。與經(jīng)驗(yàn)?zāi)B(tài)分解(Empirical Mode Decomposition, EMD)[3]遞歸篩選方法不同,VMD通過求解變分模態(tài)最優(yōu)解實(shí)現(xiàn)模態(tài)分解,有堅(jiān)實(shí)的理論基礎(chǔ);并且與小波變換不同,不用選取基函數(shù);VMD實(shí)質(zhì)是多個(gè)自適應(yīng)維納濾波器組,對(duì)噪聲有較好的魯棒性;在信號(hào)分離方面,VMD能成功分離兩個(gè)頻率相近的純諧波信號(hào)。已有學(xué)者將VMD法應(yīng)用到了機(jī)械故障診斷領(lǐng)域,Wang等[4]研究了VMD 的等效波器組效應(yīng),并將其應(yīng)用到轉(zhuǎn)子系統(tǒng)碰摩故障檢測(cè),通過仿真信號(hào)和實(shí)際燃?xì)廨啓C(jī)振動(dòng)信號(hào)分析表明了VMD 方法能更好的提取信號(hào)的特征信息;唐貴基等[5]通過參數(shù)優(yōu)化的變分模態(tài)分解對(duì)振動(dòng)信號(hào)進(jìn)行分解,得到若干本征模態(tài)函數(shù)分量,對(duì)各分量包絡(luò)譜分析實(shí)現(xiàn)了滾動(dòng)軸承故障的有效判別。

Christoph等[6]提出的排列熵(Permutation Entropy, PE)算法是一種檢測(cè)時(shí)間序列隨機(jī)性和動(dòng)力學(xué)突變的方法,它具有計(jì)算簡單、抗噪聲能力強(qiáng)等特點(diǎn)。而振動(dòng)信號(hào)往往具有非線性、非平穩(wěn)性特征,已有學(xué)者將排列熵用于機(jī)械振動(dòng)信號(hào)突變檢測(cè)并取得較好效果。劉永斌等[7]研究了不同工作狀態(tài)下軸承振動(dòng)信號(hào)的排列熵,結(jié)果表明排列熵可以有效地檢測(cè)出機(jī)械設(shè)備狀態(tài)變化。由于機(jī)械系統(tǒng)振動(dòng)信號(hào)中包含豐富的特征信息,僅在單一尺度上很難提取到微弱的故障特征信息,有必要對(duì)振動(dòng)信號(hào)進(jìn)行多尺度分析[8]。排列熵與其他算法相結(jié)合對(duì)信號(hào)進(jìn)行多尺度分析成為研究的熱點(diǎn),如與小波變換[9]、集合經(jīng)驗(yàn)?zāi)B(tài)分解[10]結(jié)合對(duì)滾動(dòng)軸承進(jìn)行故障診斷分析。

由于軸承早期故障特征信息微弱,僅檢測(cè)原始信號(hào)的動(dòng)力學(xué)突變不能全面反映信號(hào)各模態(tài)的細(xì)節(jié)特征。針對(duì)滾動(dòng)軸承故障振動(dòng)信號(hào)特征的特點(diǎn),將變分模態(tài)分解與排列熵信息測(cè)度相結(jié)合應(yīng)用于滾動(dòng)軸承故障信號(hào)特征提取。將原始振動(dòng)信號(hào)用VMD方法分解得到若干本征模態(tài)函數(shù),提取各模態(tài)分量的排列熵,可以更好的反應(yīng)信號(hào)在不同尺度上的細(xì)節(jié)復(fù)雜度特征。并采用支持向量機(jī)(Support Vector Machine,SVM)進(jìn)行故障狀態(tài)識(shí)別,從而實(shí)現(xiàn)滾動(dòng)軸承故障類別的診斷。該方法集合了VMD算法在信號(hào)分解方面的優(yōu)勢(shì)和排列熵檢測(cè)復(fù)雜系統(tǒng)動(dòng)力突變的特點(diǎn),并將其應(yīng)用于軸承實(shí)驗(yàn)數(shù)據(jù),結(jié)果表明,提出的方法能夠有效的區(qū)分滾動(dòng)軸承故障類型,是一種有效的故障診斷方法。

1 VMD原理

VMD是一種比EMD和LMD (Local Mean Decomposition) 有更好時(shí)頻分布的信號(hào)分解估計(jì)方法,其整體框架是變分問題,根據(jù)預(yù)設(shè)模態(tài)分量個(gè)數(shù)對(duì)信號(hào)進(jìn)行分解。將原始信號(hào)f(x)分解為K個(gè)中心頻率為ωk模態(tài)函數(shù)uk,其中K為預(yù)設(shè)模態(tài)分量個(gè)數(shù)。VMD算法中,重新定義本征模態(tài)函數(shù)(Intrinsic Mode Function, IMF)為一個(gè)調(diào)幅-調(diào)頻信號(hào)

uk(t)=Ak(t)cos(φk(t))

(1)

為了得到具有一定帶寬頻率的K個(gè)模態(tài)分量,首先對(duì)每個(gè)模態(tài)函數(shù)uk,通過Hilbert變換得到邊際譜;然后對(duì)各模態(tài)解析信號(hào)混合一預(yù)估中心頻率,將每個(gè)模態(tài)的頻譜調(diào)制到相應(yīng)的基頻帶;再計(jì)算解析信號(hào)梯度的平方L2范數(shù),估計(jì)出各模態(tài)信號(hào)帶寬,受約束的變分問題為

(2)

式中:{uk}={u1,u2,…,uK}為分解得到的K個(gè)模態(tài)分量;{ωk}={ω1,ω2, …,ωK}為各分量的頻率中心;δ(t)為脈沖函數(shù)。

(3)

式中:α為懲罰參數(shù);λ為Lagrange乘子。

利用Parseval/Plancherel傅里葉等距變換,將式(2)轉(zhuǎn)變到頻域

(4)

經(jīng)進(jìn)一步轉(zhuǎn)換可以得到二次優(yōu)化問題的解為

(5)

式中,ωk為當(dāng)前模態(tài)函數(shù)功率譜的重心,從式(5)可知,維納濾波器被嵌入了VMD算法中,算法有更好的噪聲魯棒性。

對(duì)于中心頻率ωk的取值問題可表達(dá)為

(6)

根據(jù)同樣的過程,首先將中心頻率的取值問題轉(zhuǎn)換到頻域

(7)

中心頻率二次優(yōu)化問題的解為

(8)

VMD算法步驟如下:

步驟2 根據(jù)式(5)和式(8)更新uk和ωk;

步驟3 更新λ

(9)

2 排列熵原理

熵是源于物理學(xué)的概念,是對(duì)系統(tǒng)內(nèi)部紊亂程度的度量,熵值越大,表明系統(tǒng)越復(fù)雜。排列熵是一種衡量一維時(shí)間序列復(fù)雜度的平均熵參數(shù),它與LyaPunov指數(shù)、分形維數(shù)等復(fù)雜度參數(shù)相比,具有計(jì)算簡單、抗噪聲能力強(qiáng)、計(jì)算值穩(wěn)定等優(yōu)點(diǎn)[11-12]。

排列熵算法原理如下:對(duì)于一個(gè)時(shí)間序列{X(i),i=1, 2,…,N}進(jìn)行相空間重構(gòu),得到矩陣

(10)

式中:m為嵌入維數(shù);τ為延遲時(shí)間;G為重構(gòu)相空間中重構(gòu)向量個(gè)數(shù),G=N-(m-1)τ。矩陣中的每一行可看作一個(gè)重構(gòu)分量,共有G個(gè)重構(gòu)分量。將重構(gòu)矩陣中的第j重構(gòu)分量{x(j),x(j+τ),…,x(j+(m-1)τ)}按照升序重新排列,即

{x(i+(j1-1)τ)≤x(i+(j2-1)τ)≤…≤x(i+(jm-1)τ)}

(11)

式中,j1,j2,…,jm為重構(gòu)分量中各元素所在列的索引。

如果重構(gòu)分量中存在相等的值,如x(i+(jp-1)τ)=x(i+(jq-1)τ),則按照jp和jq原來的順序,即當(dāng)jplt;jq時(shí),有x(i+(jp-1)τ)≤x(i+(jq-1)τ)。所以對(duì)于重構(gòu)相空間中的任意一個(gè)重構(gòu)向量X(j)都可以得到一個(gè)反映其元素大小順序的符號(hào)序列S(l)=[j1,j2, …,jm],其中l(wèi)=1, 2, …,g,且g≤m!。m維相空間映射不同符號(hào)序列[j1,j2, …,jm]共有m!個(gè),S(l)是其中的一種排列形式。構(gòu)造序列P1,P2, …,Pg,Pg為第g種符號(hào)序列出現(xiàn)的概率大小。對(duì)于一個(gè)時(shí)間序列{X(i),i=1, 2, …,N}的g個(gè)重構(gòu)向量對(duì)應(yīng)的符號(hào)序列的排列熵(PE),可以按照Shannon熵的形式定義為

(12)

當(dāng)Pl=1/m!時(shí),PE(m)達(dá)到最大值ln(m!)。通常情況下,可通過ln(m!)將Hp(m)標(biāo)準(zhǔn)化,即

PE=PE(m)/ln(m!)

(13)

式中,PE的取值范圍為0≤PE≤1。PE值的大小表示時(shí)間序列{X(i),i=1, 2, …,N}的復(fù)雜和隨機(jī)程度:PE值越大,時(shí)間序列越接近隨機(jī);PE值越小,時(shí)間序列越規(guī)則。

3 基于SVM的軸承故障診斷

SVM是在統(tǒng)計(jì)學(xué)理論基礎(chǔ)上發(fā)展起來的一種通用機(jī)器學(xué)習(xí)方法[13]。SVM法實(shí)質(zhì)是尋找一個(gè)最優(yōu)分類超平面,使得從這個(gè)超平面到兩類樣本集的距離之和最大。SVM本身是一個(gè)二類問題判別方法,對(duì)于多類問題需要對(duì)二分類問題進(jìn)行轉(zhuǎn)換。文中采用“一對(duì)多”的方法[14]對(duì)實(shí)現(xiàn)SVM多分類問題的轉(zhuǎn)換。其基本思想是對(duì)于n個(gè)類別的分類問題需要構(gòu)造個(gè)n兩分類機(jī),其中第i個(gè)分類機(jī)能把第i類同余下的各類劃分開。

本文結(jié)合VMD對(duì)信號(hào)分解的優(yōu)點(diǎn)和排列熵能檢測(cè)時(shí)間序列隨機(jī)性和動(dòng)力學(xué)突變特點(diǎn),提出基于SVM的滾動(dòng)軸承故障識(shí)別方法。首先將原始振動(dòng)信號(hào)進(jìn)行VMD分解,得到若干個(gè)本征模態(tài)分量,再計(jì)算各模態(tài)分量的排列熵,最后將排列熵值作為特征向量輸入支持向量機(jī)分類器進(jìn)行故障分類識(shí)別。基于變分模態(tài)分解和排列熵的滾動(dòng)軸承故障診斷流程圖,如圖1所示。具體步驟如下:

步驟1 在滾動(dòng)軸承正常狀態(tài)、內(nèi)圈故障、外圈故障、滾動(dòng)體故障狀態(tài)下,按照一定的采樣頻率分別進(jìn)行重采樣,得到各狀態(tài)下的振動(dòng)數(shù)據(jù)樣本。

步驟2 對(duì)軸承四種狀態(tài)下的振動(dòng)信號(hào)數(shù)據(jù)進(jìn)行VMD分解,得到各狀態(tài)下的不同尺度模態(tài)分量。

步驟3 計(jì)算各尺度模態(tài)分量復(fù)雜度特征的排列熵測(cè)度PEi(i=1, 2, …,K),并構(gòu)建高維特征向量

PE=[PE1,PE2,…,PEK]

(14)

步驟4 將得到的高維特征向量輸入SVM進(jìn)行訓(xùn)練,得到每一類型故障的SVM預(yù)測(cè)模型。

步驟5 采集測(cè)試信號(hào),按照步驟1、步驟2、步驟3構(gòu)建測(cè)試樣本高維特征向量,分別輸入訓(xùn)練好的4個(gè)SVM預(yù)測(cè)模型,通過SVM分類器的輸出結(jié)果來確定軸承的故障類型和工作狀態(tài)。

圖1 滾動(dòng)軸承故障診斷流程圖Fig. 1 Flow chart of rolling bearing fault diagnosis

4 算法關(guān)鍵參數(shù)選取及實(shí)驗(yàn)分析

為了驗(yàn)證變分模態(tài)分解和排列熵方法的有效性,采用美國凱斯西儲(chǔ)大學(xué)電氣工程實(shí)驗(yàn)室的滾動(dòng)軸承數(shù)據(jù)進(jìn)行實(shí)驗(yàn)數(shù)據(jù)分析。選用的滾動(dòng)軸承為6205-2RS JEM SKF型深溝球軸承,振動(dòng)數(shù)據(jù)采樣頻率為12 kHz、電機(jī)負(fù)載為1 HP。試驗(yàn)用電火花加工技術(shù)在軸承上布置單點(diǎn)故障,故障點(diǎn)的直徑為0.177 8 mm,故障深度為0.279 4 mm。采集正常狀態(tài)、內(nèi)圈單點(diǎn)電蝕、外圈單點(diǎn)電蝕、和滾動(dòng)體單點(diǎn)電蝕四種狀態(tài)的振動(dòng)信號(hào)。

4.1 模態(tài)個(gè)數(shù)確定

用VMD算法進(jìn)行信號(hào)分解時(shí),需要首先確定模態(tài)個(gè)數(shù)K,不同的分解個(gè)數(shù)對(duì)分解的結(jié)果會(huì)產(chǎn)生影響,從而影響最終的診斷。模態(tài)分解個(gè)數(shù)較少時(shí),由于VMD算法相當(dāng)于自適應(yīng)維納濾波器組,原始信號(hào)中一些重要信息將會(huì)被濾掉丟失;信號(hào)的分解個(gè)數(shù)較多時(shí),相鄰模態(tài)分量的頻率中心則會(huì)相距較近,產(chǎn)生頻率混疊。選用滾動(dòng)體單點(diǎn)電蝕故障信號(hào)進(jìn)行VMD分解,不同K值下的中心頻率如表1所示。從表中可以看出,在模態(tài)分量個(gè)數(shù)為5時(shí),中心頻率3 213 Hz和3 415 Hz相距較近,可能會(huì)出現(xiàn)模態(tài)混疊,模態(tài)個(gè)數(shù)選為4較適宜。

表1 不同K值對(duì)應(yīng)的中心頻率

4.2 懲罰參數(shù)的選取

VMD算法中懲罰參數(shù)對(duì)分解結(jié)果也有較大影響,研究發(fā)現(xiàn):懲罰參數(shù)α越小,得到的各IMF分量帶寬越大,反之,α越大各分量帶寬越小。本文引入信噪比概念,用來分析懲罰參數(shù)對(duì)VMD算法分解結(jié)果的影響。信噪比指原始信號(hào)能量與噪聲能量的比值,記為SNR(Signal Noise Ratio)

(15)

對(duì)軸承振動(dòng)信號(hào)做不同征罰參數(shù)的VMD分解,并計(jì)算其信噪比值,如圖2所示。從圖2可知,信號(hào)的信噪比隨著懲罰參數(shù)α的增大而減小,并趨于平穩(wěn)。信噪比的變化與各模態(tài)分量帶寬范圍隨α的改變相一致。從信號(hào)分解的角度來說,重構(gòu)后的信號(hào)能真實(shí)的還原原始信號(hào),這就要求選取較大的信噪比。從信號(hào)濾波角度來說,希望分解算法有一定的噪聲魯棒性,對(duì)信號(hào)分角重構(gòu)后能濾除噪聲,此時(shí)又要求信噪比不能過大。通過對(duì)大量軸承振動(dòng)信號(hào)測(cè)試分析,本文選取懲罰參數(shù)α=2 000,以保證VMD分解過程中的去噪能力和細(xì)節(jié)保留度。對(duì)軸承振動(dòng)信號(hào)的分解結(jié)果如圖3所示。

圖2 不同懲罰參數(shù)下振動(dòng)信號(hào)信噪比Fig.2 The SNR of vibration signal with different penalty parameter

圖3 軸承振信號(hào)VMD分解結(jié)果Fig.3 VMD decomposition results of the rolling bearing vibration signal

4.3 排列熵參數(shù)的選取

在排列熵的計(jì)算中,需要考慮和設(shè)定3個(gè)參數(shù)值,即時(shí)間序列長度N,嵌入維數(shù)m和時(shí)延τ,不同參數(shù)的選取對(duì)熵值的計(jì)算結(jié)果會(huì)產(chǎn)生影響。

為了研究時(shí)延τ對(duì)排列熵計(jì)算數(shù)值的影響,以長度為1 024的軸承振動(dòng)信號(hào)為例,在不同τ下的排列熵值隨嵌入維數(shù)的變化關(guān)系,如圖4所示。由圖4可知,當(dāng)時(shí)延τ在1~6變化時(shí),信號(hào)的排列熵?cái)?shù)值變化很小,時(shí)延τ對(duì)排列熵值影響較小,論文中計(jì)算排列熵時(shí)取τ=1。

Christoph等建議,嵌入維數(shù)m的取值為3~7。因?yàn)?,如果m=1或m=2時(shí),重構(gòu)向量狀態(tài)個(gè)數(shù)較少,不能精確檢測(cè)信號(hào)動(dòng)力學(xué)突變;當(dāng)m取值過大,相空間的重構(gòu)將會(huì)均勻化時(shí)間序列,這時(shí)排列熵的計(jì)算量增大并且不宜反映時(shí)序列的微小變化。Cao 等[15]研究指出當(dāng)嵌入維數(shù)m=5,m=6或m=7時(shí),排列熵的值能夠很好的表征時(shí)間序列的動(dòng)態(tài)特性。論文中,選取嵌入維數(shù)m=6。

圖4 振動(dòng)信號(hào)在不同時(shí)延下的排列熵Fig.4 The PE of vibration signal with different time delays

圖4為在時(shí)延τ=1時(shí),不同數(shù)據(jù)長度的振動(dòng)信號(hào)在不同嵌入維數(shù)下的排列熵值,振動(dòng)信號(hào)的數(shù)據(jù)長度分別為256,512,1 024,2 048和4 096。從圖5可知,在嵌入維數(shù)m≤5時(shí),除了數(shù)據(jù)長度為256時(shí)的排列熵外,其他數(shù)據(jù)長度的排列熵值隨嵌入維數(shù)的增加變化較小,排列熵值也十分接近。當(dāng)嵌入維數(shù)m=6時(shí),其不同長度的振動(dòng)信號(hào)排列熵及其差值,如表2所示。從表2可知,隨信號(hào)長度的增加,其排列熵差值減小,排列熵值在數(shù)據(jù)長度大于1 024時(shí)趨于穩(wěn)定,選擇數(shù)據(jù)長度為2 048較為合適。

圖5 不同長度的振動(dòng)信號(hào)的排列熵Fig.5 The PE of vibration signal with different lengths

表2 不同長度的振動(dòng)信號(hào)排列熵及其差值

4.4 軸承故障診斷

對(duì)正常、內(nèi)圈故障、外圈故障、滾動(dòng)體故障四種狀態(tài)軸承的振動(dòng)信號(hào),每種狀態(tài)取40組數(shù)據(jù),數(shù)據(jù)樣本長度為2 048,共160組數(shù)據(jù)。從每種狀態(tài)樣本數(shù)據(jù)中隨機(jī)抽取25%的數(shù)據(jù),即10組數(shù)據(jù)作為訓(xùn)練樣本,將剩下的正常、內(nèi)圈故障、外圈故障、滾動(dòng)體故障四種狀態(tài)軸承振動(dòng)信號(hào)各30組數(shù)據(jù)作為測(cè)試樣本。

對(duì)訓(xùn)練樣本數(shù)據(jù)進(jìn)行VMD分解,每個(gè)訓(xùn)練樣本得到的4個(gè)模態(tài)分量提取排列熵,共可得到40×4個(gè)排列熵值。將每個(gè)訓(xùn)練樣本得到的4個(gè)排列熵組成一個(gè)特征向量,得到40個(gè)特征向量的平均值如圖6所示。將40個(gè)特征向量作為輸入量,輸入SVM分類器進(jìn)行訓(xùn)練。構(gòu)造4個(gè)兩分類SVM,依次取每種狀態(tài)下的排列熵特征向量作為正類,剩余三種狀態(tài)的排列熵特征向量作為負(fù)類,輸入SVM分類器進(jìn)行訓(xùn)練,得到4個(gè)訓(xùn)練好的SMV預(yù)測(cè)模型。

圖6 特征向量排列熵值Fig.6 The PE of the feature vectors

將四種狀態(tài)軸承振動(dòng)信號(hào)測(cè)試樣本共120組用訓(xùn)練好的SVM分類器進(jìn)行分類,識(shí)別準(zhǔn)確率達(dá)97.5%,其分類結(jié)果如表3所示。從表3可知,有一個(gè)內(nèi)圈故障被診斷為滾動(dòng)體故障,兩個(gè)外圈故障被診斷為內(nèi)圈故障,但對(duì)于正常狀態(tài)和滾動(dòng)體故障狀態(tài)的識(shí)別準(zhǔn)確率為100%。

由于美國凱斯西儲(chǔ)大學(xué)滾動(dòng)軸承信號(hào)為實(shí)驗(yàn)室環(huán)境采集的較為規(guī)整信號(hào),而實(shí)際工況中軸承振動(dòng)信號(hào)中含有很強(qiáng)的噪聲。本文通過對(duì)軸承振動(dòng)信號(hào)加入高斯白噪聲,研究所提出方法對(duì)噪聲的魯棒性。對(duì)四種狀態(tài)軸承振動(dòng)信號(hào)分別添加信噪比為6 dB 的高斯白噪聲,再用本文所提出的方法對(duì)信號(hào)進(jìn)行分解和特征提取,對(duì)軸承狀態(tài)進(jìn)行識(shí)別,其結(jié)果如表4所示。由于噪聲的影響,內(nèi)圈故障識(shí)別率較低,有6個(gè)樣本被識(shí)別為外圈故障。但其他狀態(tài)的正確率為100%,平均識(shí)別正確率也能達(dá)到95%,說明所提出的方法對(duì)噪聲有一定的魯棒性。

為了研究采用不同比例訓(xùn)練樣本時(shí),對(duì)滾動(dòng)軸承運(yùn)行狀態(tài)分類識(shí)別結(jié)果的影響,選取上述美國凱斯西儲(chǔ)大學(xué)滾動(dòng)軸承四種狀態(tài)下振動(dòng)數(shù)據(jù)共160組,在正常狀態(tài)、內(nèi)圈故障、外圈故障和滾動(dòng)體故障樣本數(shù)據(jù)中隨機(jī)抽取20%、30%、40%、50%、60%的數(shù)據(jù)作為訓(xùn)練樣本數(shù)據(jù),將剩下的樣本數(shù)據(jù)作為測(cè)試樣本。表5為不同訓(xùn)練樣本下的分類結(jié)果,可以看出當(dāng)訓(xùn)練數(shù)據(jù)為樣本數(shù)據(jù)的50%時(shí),所提出方法的診斷正確率可達(dá)到100%。當(dāng)訓(xùn)練樣本增大時(shí),建立的分類模型較準(zhǔn)確,識(shí)別度較高,但會(huì)增加算法的計(jì)算量。

為了對(duì)比VMD的分解在故障診斷方法中的作用,對(duì)上述滾動(dòng)軸承四種類型振動(dòng)信號(hào)采用集合經(jīng)驗(yàn)?zāi)B(tài)(Ensemble EMD, EEMD)和小波包進(jìn)行分解。振動(dòng)信號(hào)數(shù)據(jù)源選取和特征提取方法與本文所用處理過程相同。為了方便比較,對(duì)于EEMD 分解得到的模態(tài)分量選取包含主要信息的前4個(gè)模態(tài)分量,小波包分解采用兩層分解得到4組小波系數(shù)。計(jì)算分解得到的各分量和排列熵,并組成特征向量。將特征向量輸入SVM 進(jìn)行訓(xùn)練和測(cè)試,其結(jié)果如表6和表7所示。

表3 基于VMD和排列熵的滾動(dòng)軸承故障識(shí)別結(jié)果

表4 添加白噪聲后滾動(dòng)軸承故障識(shí)別結(jié)果

表5 不同訓(xùn)練樣本數(shù)下故障識(shí)別結(jié)果

表6 基于EEMD和排列熵的滾動(dòng)軸承故障識(shí)別結(jié)果

表7 基于WPD和排列熵的滾動(dòng)軸承故障識(shí)別結(jié)果

從表6可知,采用EEMD分解方法時(shí),對(duì)正常狀態(tài)、內(nèi)圈故障和滾動(dòng)體故障的識(shí)別正確率都達(dá)到了100%,但對(duì)外圈故障的識(shí)別正確率較低,有5個(gè)被診斷為內(nèi)圈故障,使得平均識(shí)別正確率低于采用VMD方法,平均識(shí)別正確率為95.83%。采用小波包分解方法時(shí),正常狀態(tài)和內(nèi)圈故障的診斷正確率也達(dá)到了100%,但有兩個(gè)內(nèi)圈故障被診斷為滾動(dòng)體故障,4 個(gè)滾動(dòng)體故障被診斷為內(nèi)圈故障,平均正確率為95%,低于EEMD方法和VMD方法。所以,基于VMD方法對(duì)信號(hào)進(jìn)行分解,提取排列熵,對(duì)滾動(dòng)軸承故障診斷效果要優(yōu)于EEMD和小波包分解方法。

5 結(jié) 論

本文針對(duì)滾動(dòng)軸承的正常、內(nèi)圈故障、外圈故障、滾動(dòng)體故障診斷識(shí)別問題,提出一種基于變分模態(tài)分解和排列熵的故障診斷識(shí)別方法,對(duì)振動(dòng)信號(hào)進(jìn)行VMD分解,對(duì)得到的模態(tài)分量求取其排列熵,并作為特征向量輸入SVM,實(shí)現(xiàn)故障診斷識(shí)別。通過對(duì)滾動(dòng)軸承信號(hào)進(jìn)行診斷分析,得出如下結(jié)論:

(1) 將VMD 方法應(yīng)用到滾動(dòng)軸承振動(dòng)信號(hào)分析中,能夠?qū)⑿盘?hào)分解為具有一定帶寬頻率的模態(tài)分量,為后續(xù)的特征提取和故障分類識(shí)別提供無模態(tài)混疊現(xiàn)象且特征信息豐富的數(shù)據(jù)源。

(2) 排列熵能夠檢測(cè)信號(hào)隨機(jī)性和動(dòng)力學(xué)突變行為,并與VMD結(jié)合提出一種新的故障診斷方法,對(duì)滾動(dòng)軸承信號(hào)分析表明該方法能對(duì)正常狀態(tài)、內(nèi)圈故障、外圈故障和滾動(dòng)體故障進(jìn)行有效識(shí)別。

(3) 通過采用EEMD和小波包對(duì)振動(dòng)信號(hào)分解,再按本文所提方法進(jìn)行特征提取和故障分類識(shí)別,并與本文所提方法進(jìn)行對(duì)比,結(jié)果表明基于變分模態(tài)分解和排列熵的診斷方法有更高的準(zhǔn)確率,診斷效果更好。

[ 1 ] 唐貴基, 龐彬, 劉尚坤. 基于奇異差分譜和平穩(wěn)子空間分析的滾動(dòng)軸承故障診斷[J]. 振動(dòng)與沖擊, 2015,34(11): 83-87.

TANG Guiji, PANG Bin, LIU Shangkun. Fault diagnosis of rolling bearings based on difference spectrum of singular value and stationary subspace analysis [J]. Journal of Vibration and Shock, 2015, 34(11): 83-87.

[ 2 ] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition [J]. IEEE Tran on Signal Processing,2014,62(3): 531-544.

[ 3 ] HANG N E,WU M,LONG S R,et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London,1998, 454(1971): 903-995.

[ 4 ] WANG Y, MARKERT R, XIANG J, et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system [J]. Mechanical Systems amp; Signal Processing, 2015, 60/61: 243-251.

[ 5 ] 唐貴基, 王曉龍. 參數(shù)優(yōu)化變分模態(tài)分解方法在滾動(dòng)軸承早期故障診斷中的應(yīng)用[J]. 西安交通大學(xué)學(xué)報(bào), 2015, 49(5): 73-81.

TANG Guiji, WANG Xiaolong. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing [J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 73-81.

[ 6 ] CHRISTOPH B, BERND P. Permutation entropy: a natural complexity measure for time series [J]. Physical Review Letters, 2002, 88(17): 174102.

[ 7 ] 劉永斌, 龍潛, 馮志華,等. 一種非平穩(wěn)、非線性振動(dòng)信號(hào)檢測(cè)方法的研究[J]. 振動(dòng)與沖擊, 2007, 26(12): 131-134.

LIU Yongbin, LONG Qian, FENG Zhihua, et al. Detection method for nonlinear and non-stationary signals [J]. Journal of Vibration amp; Shock, 2007, 26(12): 131-134.

[ 8 ] 鄭近德, 程軍圣, 楊宇. 基于LCD和排列熵的滾動(dòng)軸承故障診斷[J]. 振動(dòng)、測(cè)試與診斷, 2014, 34(5): 802-806.

ZHENG Jinde, CHENG Junsheng, YANG Yu. A rolling bearing fault diagnosis method based on LCD and permutation entropy [J]. Journal of Vibration, Measurement amp; Diagnosis, 2014, 34(5): 802-806.

[ 9 ] 馮輔周, 司愛威, 饒國強(qiáng),等. 基于小波相關(guān)排列熵的軸承早期故障診斷技術(shù)[J]. 機(jī)械工程學(xué)報(bào), 2012, 48(13):73-79.

FENG Fuzhou, SI Aiwei, RAO Guoqiang, et al. Early fault diagnosis technology for bearing based on wavelet correlation permutation entropy[J]. Journal of Mechanical Engineering, 2012, 48(13): 73-79.

[10] ZHANG X, LIANG Y, ZHOU J. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM [J]. Measurement, 2015, 69: 164-179.

[11] FRANK B, POMPE B, SCHNEIDER U, et al. Permutation entropy improves fetal behavioural state classification based on heart rate analysis from biomagnetic recordings in near term fetuses [J]. Medical amp; Biological Engineering amp; Computing, 2006, 44(3): 179-187.

[12] YAN R, LIU Y, GAO R X. Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines [J]. Mechanical Systems amp; Signal Processing, 2012, 29(5): 474-484.

[13] RIFKIN R, KLAUTAU A. In defense of one-vs-all classification[J]. Journal of Machine Learning Research, 2004, 5(1): 101-141.

[14] 姜萬錄, 吳勝強(qiáng). 基于SVM和證據(jù)理論的多數(shù)據(jù)融合故障診斷方法[J]. 儀器儀表學(xué)報(bào), 2010, 31(8): 1738-1743.

JIANG Wanlu, WU Shengqiang. Multi-data fusion fault diagnosis method based on SVM and evidence theory [J]. Chinese Journal of Scientific Instrument, 2010, 31(8): 1738-1743.

[15] CAO Y H, TUNG W W, GAO J B, et al. Detecting dynamical changes in time series using the permutation entropy [J]. Physical Review E , 2004, 70(4): 174-195.

Arollingbearingfaultdiagnosismethodbasedonvariationalmodedecompositionandpermutationentropy

ZHENG Xiaoxia1, ZHOU Guowang1, REN Haohan2, FU Yang1

(1. School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China;2. Shanghai Donghai Wind Power Co., Ltd., Shanghai 200090, China)

The incipient fault characteristic of rolling bearing vibration signals is weak and difficult to extract. In order to extract the characteristic parameters from a bearing vibration signal for bearing fault diagnosis, a signal characteristics extraction method based on the variational mode decomposition and permutation entropy was proposed. The support vector machine was used for fault recognition. Firstly, the bearing vibration signal was decomposed by the variational mode decomposition, and the intrinsic mode functions were obtained in different scales. Secondly, the permutation entropy of each intrinsic mode function was calculated and used to compose the multiscale feature vector. Finally, the high-dimensional feature vector was input to the support vector machine for bearing fault diagnosis. The comparison is made with EEMD and WPD(wavelet packet decomposition). The experimental results show that the proposed method can be used to diagnose bearing faults effectively.

variational mode decomposition; permutation entropy; support vector machine; rolling bearing; fault diagnosis

國家自然科學(xué)基金(51507098);上海綠色能源并網(wǎng)工程技術(shù)研究中心(13DZ2251900);上海市科委重點(diǎn)科技攻關(guān)項(xiàng)目(14DZ1200905);上海市電站自動(dòng)化技術(shù)重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(13DZ2273800)

2016-03-21 修改稿收到日期: 2016-06-06

鄭小霞 女,博士,副教授,1978年生

TH212;TH213.3

A

10.13465/j.cnki.jvs.2017.22.004

猜你喜歡
變分內(nèi)圈分量
帽子的分量
特種復(fù)合軸承內(nèi)圈推力滾道磨削用工裝設(shè)計(jì)
哈爾濱軸承(2021年4期)2021-03-08 01:00:48
逆擬變分不等式問題的相關(guān)研究
求解變分不等式的一種雙投影算法
一物千斤
智族GQ(2019年9期)2019-10-28 08:16:21
主軸軸承內(nèi)圈鎖緊用臺(tái)階套的裝配
論《哈姆雷特》中良心的分量
關(guān)于一個(gè)約束變分問題的注記
分量
一個(gè)擾動(dòng)變分不等式的可解性
昂仁县| 新乡县| 广德县| 田阳县| 当阳市| 莱州市| 景宁| 越西县| 宁陵县| 元氏县| 芦山县| 兴国县| 台东市| 常宁市| 漳平市| 遂溪县| 天峨县| 清水县| 延吉市| 清远市| 巴塘县| 成都市| 龙陵县| 务川| 三江| 张家川| 河东区| 克东县| 紫云| 镇原县| 鲁山县| 周宁县| 托克托县| 阜康市| 沈丘县| 婺源县| 永登县| 上杭县| 万盛区| 台北县| 河间市|