何建美,呂 波,奚丹丹,鄧其明,明 鳳
(1. 復(fù)旦大學(xué) 生命科學(xué)學(xué)院 植物科學(xué)研究所,上海 200433;2. 復(fù)旦大學(xué) 遺傳工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200433;3. 四川農(nóng)業(yè)大學(xué) 水稻研究所,成都 611130)
OsNAC2轉(zhuǎn)錄因子介導(dǎo)生長(zhǎng)素代謝通路調(diào)節(jié)水稻早期根的發(fā)育
何建美1,2,3,呂 波1,2,奚丹丹1,2,鄧其明3,明 鳳1,2
(1. 復(fù)旦大學(xué) 生命科學(xué)學(xué)院 植物科學(xué)研究所,上海 200433;2. 復(fù)旦大學(xué) 遺傳工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200433;3. 四川農(nóng)業(yè)大學(xué) 水稻研究所,成都 611130)
NAC家族是植物特有的一類轉(zhuǎn)錄因子,在植物的生長(zhǎng)發(fā)育和逆境脅迫等方面具有重要的功能.研究發(fā)現(xiàn),OsNAC2基因的過(guò)表達(dá)(ON11)和RNAi(RNAi31)轉(zhuǎn)基因株系,早期主根的長(zhǎng)度有顯著變化的特征.與野生型日本晴水稻(WT)相比,ON11植株的主根變短,而RNAi31的主根變長(zhǎng).通過(guò)對(duì)早期OsNAC2pro∶∶GUS株系根尖染色結(jié)果表明OsNAC2在根尖具有時(shí)序性表達(dá).不同激素誘導(dǎo)OsNAC2表達(dá)譜和OsNAC2pro∶∶GUS株系對(duì)激素響應(yīng)結(jié)果顯示OsNAC2受生長(zhǎng)素顯著性誘導(dǎo).結(jié)合芯片數(shù)據(jù)和qRT-PCR分析,OsNAC2轉(zhuǎn)基因株系中生長(zhǎng)素合成代謝及信號(hào)通路相關(guān)基因表達(dá)量變化較為明顯.同時(shí),ON11根尖淀粉粒發(fā)育及其向重力性受到抑制.因此,推測(cè)OsNAC2可能通過(guò)抑制生長(zhǎng)素的合成代謝及信號(hào)通路相關(guān)基因的表達(dá),降低生長(zhǎng)素含量,并參與生長(zhǎng)素響應(yīng)通路,最終影響水稻根的生長(zhǎng).
OsNAC2; 生長(zhǎng)素; 水稻; 根
根系是一株植物的全部根的總稱,它在植物生長(zhǎng)發(fā)育過(guò)程中起著極其重要的作用,是植物吸收水分及養(yǎng)分、固定和支撐植株的器官[1],也是植物激素、有機(jī)酸和氨基酸等物質(zhì)合成與轉(zhuǎn)化的重要場(chǎng)所.水稻屬于禾本科單子葉作物,其根系由種子根、不定根和側(cè)根組成[2].水稻根系的生長(zhǎng)情況和活力對(duì)其生長(zhǎng)發(fā)育,以及產(chǎn)量水平有直接的影響.
近年來(lái),與水稻根系發(fā)育相關(guān)的基因已有很多報(bào)導(dǎo).如水稻根系發(fā)育相關(guān)的調(diào)控基因OsRAA1過(guò)表達(dá),會(huì)導(dǎo)致主根變短,不定根數(shù)目增加[3].而水稻中QHB基因過(guò)表達(dá),引起不定根原基缺少,不定根減少[4].WOX11能直接抑制在冠狀根原基表達(dá)的A型細(xì)胞分裂素響應(yīng)調(diào)節(jié)因子RR2的表達(dá),與RR2共同在冠狀根發(fā)育中調(diào)節(jié)細(xì)胞的增殖[5].另外,某些基因的突變體,也會(huì)呈現(xiàn)出水稻根系發(fā)育受影響的特征.如堿性/中性轉(zhuǎn)化酶基因OsCyt-inv1的突變體,其根系伸長(zhǎng)區(qū)細(xì)胞萎縮,細(xì)胞縱向長(zhǎng)度顯著變短[6].類谷氨酸受體基因OsGLR3.1突變體的主根、不定根和側(cè)根都變短,主根頂端直徑變小,根分生組織活性喪失,還伴隨著細(xì)胞程序性死亡的提高[7].水稻的葡聚糖內(nèi)切酶基因OsGLU3突變后,會(huì)影響根細(xì)胞的分裂及細(xì)胞的伸長(zhǎng)[8].
水稻根系的發(fā)育受很多因素的影響,如植物激素.其中,生長(zhǎng)素(Indole-3-Acetic Acid, IAA)和細(xì)胞分裂素在根系中的研究相對(duì)較多.在水稻中,生長(zhǎng)素的代謝、轉(zhuǎn)運(yùn)和信號(hào)轉(zhuǎn)導(dǎo)緊密地影響著根系的生長(zhǎng)發(fā)育.研究發(fā)現(xiàn)有些基因與生長(zhǎng)素共同在水稻根系發(fā)育中起作用.在生長(zhǎng)素合成過(guò)程中,YUCCA蛋白能催化色胺的氧化,是主要的限速步驟.當(dāng)OsYUCCA1過(guò)表達(dá)后,植株體內(nèi)IAA含量上升,不定根的數(shù)目增多[9].突變OsCOW1基因會(huì)導(dǎo)致不定根減少,根冠比降低[10].生長(zhǎng)素的極性運(yùn)輸是依賴于它的輸入和輸出蛋白,如AUX1和PIN蛋白家族.在水稻中,抑制OsPIN1的表達(dá)時(shí),水稻不定根的產(chǎn)生和發(fā)育受抑制[11].SCF復(fù)合體、AUX/IAAs和ARFs是生長(zhǎng)素信號(hào)通路中的3類關(guān)鍵作用的蛋白.水稻中AUX/IAA成員有31個(gè),作為AUX/IAA家族成員的OsIAA11,其獲得性突變可抑制水稻側(cè)根發(fā)育[12].CRL1/ARL1是一個(gè)編碼含有植物特有AS2/LOB結(jié)構(gòu)域蛋白的基因,它受外源生長(zhǎng)素的誘導(dǎo)和AUX-ARF通路的調(diào)節(jié),其突變會(huì)抑制不定根發(fā)育[13].此外發(fā)現(xiàn),OsCAND1與擬南芥中的CAND1同源,參與了冠狀根原基生長(zhǎng)素信號(hào)維持的G2/M細(xì)胞周期的轉(zhuǎn)化,影響冠狀根的伸出[14].
NAC家族轉(zhuǎn)錄因子功能廣泛,主要參與非生物脅迫[15-16]、抗病反應(yīng)[17]以及植物的生長(zhǎng)發(fā)育過(guò)程[18]等方面.但在植物根系發(fā)育中,有關(guān)NAC家族成員研究還較少.在擬南芥中,NAC1可在根尖和側(cè)根起始部位表達(dá),并且受生長(zhǎng)素的誘導(dǎo),過(guò)表達(dá)該基因可促進(jìn)側(cè)根形成[19].而SINAT5具有泛素化蛋白連接酶活性,能夠泛素化NAC1,過(guò)表達(dá)SINAT5的擬南芥會(huì)形成較少的側(cè)根[19-20].ANAC092(AtNAC2)也參與側(cè)根的發(fā)育,過(guò)表達(dá)株系的側(cè)根明顯變多[21].
此外,參與脅迫誘導(dǎo)反應(yīng)的NAC家族基因在根系發(fā)育方面也有研究.擬南芥中NTL8(NTM1like8)受到非生物脅迫的誘導(dǎo),可促進(jìn)側(cè)根的形成[22].水稻NAC基因SNAC1通過(guò)增強(qiáng)轉(zhuǎn)基因棉花根系的發(fā)育和降低蒸發(fā)率,提高其對(duì)干旱和鹽脅迫的耐受性[15].過(guò)表達(dá)OsNAC5能增大水稻根系的直徑,對(duì)干旱的耐受性有所提高,提高產(chǎn)量[23].另外,OsNAC9和OsNAC10也可通過(guò)影響根系的結(jié)構(gòu)來(lái)提高其對(duì)干旱的耐受性[16,24].
本研究旨在通過(guò)研究轉(zhuǎn)基因株系與野生型存在主根長(zhǎng)度差異的分子機(jī)制,揭示OsNAC2對(duì)水稻根的發(fā)育的調(diào)控機(jī)制和代謝通路,為更深層次了解OsNAC2對(duì)水稻根的調(diào)控機(jī)制奠定基礎(chǔ).
粳稻品種日本晴、OsNAC2過(guò)表達(dá)株系、RNAi株系及OsNAC2pro∶∶GUS株系為本實(shí)驗(yàn)室保存.KOD Plus高保真聚合酶購(gòu)自ToYoBo公司;E.coliDH5α、RNA提取試劑盒、逆轉(zhuǎn)錄試劑盒、限制性內(nèi)切酶及T4DNA連接酶購(gòu)自TaKaRa公司;質(zhì)粒提取試劑盒和膠回收試劑盒購(gòu)自Axygen;PCR等相關(guān)引物購(gòu)自上海生物工程有限公司.水稻轉(zhuǎn)基因的化學(xué)試劑購(gòu)自上海鼎國(guó)生物技術(shù)有限責(zé)任公司.其他化學(xué)試劑為國(guó)產(chǎn)或進(jìn)口分析純.
1.2.1 qRT-PCR分析
用TRIzol法提取一周齡的水稻根的總RNA,并用TaKaRa Prime Script RT reagent Kit with gDNA Eraser逆轉(zhuǎn)錄試劑盒進(jìn)行基因組的清除和逆轉(zhuǎn)錄.用SYBR Premix Ex Taq TMII(Perfect Real Time)進(jìn)行qRT-PCR反應(yīng)檢測(cè)目的基因的mRNA水平,至少3次生物性重復(fù).qRT-PCR程序: 95℃(3min);94℃(10s),55℃(20s),40個(gè)循環(huán).反應(yīng)完成后,用2-ΔΔCT計(jì)算目的基因與內(nèi)參基因的相對(duì)表達(dá)量.所用到目的基因和內(nèi)參基因引物詳見(jiàn)表1.
表1 qRT-PCR引物表Tab.1 Primers used for qRT-PCR
1.2.2 GUS組織化學(xué)染色
將一周齡的水稻根浸染在GUS染色液中,抽真空使材料沉至15mL的離心管底部,37℃過(guò)夜.吸去染色液,用70%乙醇除盡葉綠素,觀察,拍照.GUS染色液的配制: 200mmol/L磷酸鈉緩沖液(pH7.0),100mmol/L磷酸鈉緩沖液(pH7.0),10mmol/L Na2EDTA,1mmol/L K3[Fe(CN)6],1mmol/L K4[Fe(CN)6],體積比5% Triton-100,20%甲醇,0.5mg/mL X-Gluc(DMSO助溶).
1.2.3 野生型水稻根系激素處理
將水稻日本晴種子室溫浸種1d后移至37℃暗培養(yǎng).催芽2d,置于水稻培養(yǎng)箱(16h光照/8h黑暗,28℃),營(yíng)養(yǎng)液培養(yǎng)7d,移至分別含有10μmol/L IAA、10μmol/L 2,4-二氖苯氧乙酸(2,4-D)、5μmol/L赤霉素(GA3)、10μmol/L 乙烯(ACC)和未添加激素的營(yíng)養(yǎng)液中處理8h.
1.2.4 轉(zhuǎn)基因株系根長(zhǎng)表型分析
OsNAC2過(guò)表達(dá)和RNAi轉(zhuǎn)基因株系與野生型種子按1.2.3的方法進(jìn)行培養(yǎng).在2d~7d期間,每天取20株水稻進(jìn)行主根長(zhǎng)度的統(tǒng)計(jì).
1.2.5OsNAC2在早期根尖發(fā)育中的表達(dá)和對(duì)IAA的響應(yīng)
按1.2.3方法培養(yǎng)OsNAC2pro∶∶GUS株系,取第2~7d水稻的根進(jìn)行GUS染色觀察,每天取10株進(jìn)行實(shí)驗(yàn).GUS染色方法按1.2.2.
將OsNAC2pro∶∶GUS株系種子按1.2.3的方法培養(yǎng),將一周齡的水稻移至不含激素,及含0.1,1,10,100μmol/L IAA的營(yíng)養(yǎng)液中處理8h.取10株水稻的根進(jìn)行GUS染色.GUS染色方法按1.2.2.
1.2.6 根尖淀粉粒染色
切取水稻1cm根尖浸泡在4% I2-KI染色液(8g KI,4g I2,ddH2O定容至400mL)中,染色5min后取出,加入水合氯醛(4g水合氯醛,1mL甘油,2mL ddH2O)透明,壓片觀察,拍照.
1.2.7 向重力性實(shí)驗(yàn)
將水稻種子經(jīng)過(guò)次氯酸鈉20~30min消毒后,滅菌水清洗3~5次,至無(wú)氣泡為止,種子播于MS培養(yǎng)基上.3d后,轉(zhuǎn)移至大培養(yǎng)皿,垂直培養(yǎng)至第7d后,旋轉(zhuǎn)90°培養(yǎng)2h,再用ImageJ軟件測(cè)量向重力彎曲角度.
為了分析OsNAC2在水稻根中的表達(dá)情況,用含潮霉素的MS培養(yǎng)基,篩選出OsNAC2pro∶∶GUS純合體株系.為進(jìn)一步研究OsNAC2在根中的表達(dá)模式,選取第2天至一周齡OsNAC2pro∶∶GUS株系的根進(jìn)行GUS染色觀察,每天取10株進(jìn)行染色觀察.第3天開(kāi)始,GUS在根尖成熟區(qū)的中柱鞘有表達(dá),至第5天表達(dá)明顯.在第6天和第7天時(shí),發(fā)現(xiàn)GUS在整個(gè)根尖均有表達(dá)(圖1(a)1~6).且發(fā)現(xiàn)OsNAC2在水稻根系的側(cè)根原基及側(cè)根頂端和基部均有表達(dá)(圖1(b)7~9).以上結(jié)果說(shuō)明OsNAC2可能時(shí)序性地參與根的發(fā)育過(guò)程.
圖1 OsNAC2在(a)水稻根部的表達(dá),(b)側(cè)根的表達(dá)Fig.1 OsNAC2 expression (a) in root, (b) in lateral root1~6: 2d~7d根尖GUS染色,n≥10,bar=0.2mm;7~9: 側(cè)根、側(cè)根原基及其頂部和基部,bar=0.5mm.
為研究根中OsNAC2對(duì)不同激素的響應(yīng)情況,將正常水培一周齡的野生型幼苗移到分別含10μmol/L IAA、10μmol/L 2,4-D、5μmol/L GA3、10μmol/L ACC和未添加激素的營(yíng)養(yǎng)液中處理8h.通過(guò)qRT-PCR分析發(fā)現(xiàn)IAA和2,4-D可顯著誘導(dǎo)OsNAC2的表達(dá),表明OsNAC2可能參與生長(zhǎng)素調(diào)節(jié)的水稻根發(fā)育;OsNAC2也受GA3的誘導(dǎo),說(shuō)明OsNAC2也可能參與了GA3調(diào)節(jié)根的發(fā)育;但OsNAC2對(duì)ACC的響應(yīng)不明顯(圖2).
在以上激素表達(dá)譜實(shí)驗(yàn)中,生長(zhǎng)素能顯著誘導(dǎo)OsNAC2的表達(dá).為了研究根尖中OsNAC2對(duì)生長(zhǎng)素濃度的響應(yīng),用OsNAC2pro∶∶GUS株系進(jìn)行實(shí)驗(yàn).將正常水培一周齡的OsNAC2pro∶∶GUS株系移到分別含有0,0.1,1,10,100μmol/L IAA的水稻營(yíng)養(yǎng)液中處理8h,通過(guò)對(duì)其根尖的GUS染色發(fā)現(xiàn),在0.1μmol/L至10μmol/L IAA濃度的處理下,OsNAC2在根尖的誘導(dǎo)表達(dá)量隨IAA濃度的增加而升高;但在100μmol/L IAA濃度下,OsNAC2的誘導(dǎo)量降低(圖3(a)~(e)).說(shuō)明在生長(zhǎng)素調(diào)節(jié)根發(fā)育的過(guò)程中,OsNAC2可能起到了一定的作用,并具有反饋抑制響應(yīng).
圖2 OsNAC2對(duì)不同激素的響應(yīng)Fig.2 The OsNAC2 expression pattern under different hormonesMock為對(duì)照組,未添加激素.Student’s t-test,*P lt; 0.05,***P lt; 0.001. n≥3.
圖3 OsNAC2pro∶∶GUS株系對(duì)不同濃度生長(zhǎng)素的響應(yīng)Fig.3 The GUS analysis of OsNAC2pro∶∶GUS lines treated with different concentrations of auxin(a)~(e)一周齡OsNAC2pro∶∶GUS株系在0,0.1,1,10,100μmol/L IAA處理下根尖GUS染色,bar=1mm.
為研究OsNAC2的功能,對(duì)一周齡的轉(zhuǎn)基因株系進(jìn)行了OsNAC2的表達(dá)量分析.篩選出純合體OsNAC2過(guò)表達(dá)轉(zhuǎn)基因株系ON11和RNAi株系RNAi31(圖4(a),(b)),作為后續(xù)研究.由于OsNAC2pro∶∶GUS株系在根系上的時(shí)序性表達(dá),推測(cè)此基因在水稻根的發(fā)育上起作用.因此,我們測(cè)量了ON11和RNAi31轉(zhuǎn)基因株系在不同天數(shù)下(2~7d)的主根長(zhǎng)度(圖4(c),(d)).結(jié)果顯示,一周齡的RNAi31比WT的主根顯著增長(zhǎng);而ON11比WT的主根顯著變短.結(jié)果表明,OsNAC2在水稻主根發(fā)育上起一定的抑制作用.
表2 ON11中IAA相關(guān)表達(dá)差異基因列表Tab.2 IAA related genes altered in ON11
基于轉(zhuǎn)基因株系表現(xiàn)出不同的主根長(zhǎng)度的表型,便深入探究其內(nèi)在分子機(jī)制.結(jié)合實(shí)驗(yàn)室已有的ON11與WT植株中根的基因芯片數(shù)據(jù)結(jié)果,發(fā)現(xiàn)眾多生長(zhǎng)素代謝相關(guān)基因在二者間具有顯著的表達(dá)變化(表2).通過(guò)qRT-PCR驗(yàn)證(圖5,見(jiàn)第416頁(yè)),發(fā)現(xiàn)在ON11中: 與生長(zhǎng)素響應(yīng)相關(guān)的基因OsIAA9、OsIAA12和OsIAA20明顯下調(diào);GH3家族中編碼吲哚乙酸氨基化合成酶基因OsGH3-1和OsGH3-8明顯上調(diào);與生長(zhǎng)素合成相關(guān)的YUCCA-likegene家族中OsYUCCA2、OsYUCCA4、OsYUCCA6和OsYUCCA7下調(diào),以及生長(zhǎng)素運(yùn)輸基因OsPIN1b、OsPIN1c下調(diào)(圖5).RNAi株系中這些基因表達(dá)量的趨勢(shì)與過(guò)表達(dá)株系相反.依據(jù)基因的功能,可推測(cè): 過(guò)表達(dá)株系中的OsGH3-1和OsGH3-8表達(dá)上升,導(dǎo)致植株體內(nèi)IAA與氨基酸結(jié)合,從而減少游離的IAA;并通過(guò)OsYUCCA2、OsYUCCA4、OsYUCCA6和OsYUCCA7的表達(dá)下降,導(dǎo)致水稻根中生長(zhǎng)素的合成減少.同時(shí),OsNAC2通過(guò)抑制AUX/IAA家族基因OsIAA9、OsIAA12和OsIAA20的表達(dá),影響生長(zhǎng)素的信號(hào)通路.因此,生長(zhǎng)素含量降低且信號(hào)通路受影響,最終造成過(guò)表達(dá)株系的主根變短.
圖4 OsNAC2轉(zhuǎn)基因株系表達(dá)量檢測(cè)及主根長(zhǎng)度的測(cè)量Fig.4 The expression of OsNAC2 in transgenic lines and the measurement of primary root length(a) ON11和RNAi31株系根中OsNAC2表達(dá)量的鑒定,n=3;(b) 一周齡OsNAC2轉(zhuǎn)基因株系根的表型,bar=2cm;(c) 一周齡OsNAC2轉(zhuǎn)基因株系主根長(zhǎng)度測(cè)定;(d) 不同天數(shù)的OsNAC2轉(zhuǎn)基因株系的主根長(zhǎng)度變化,Student’s t-test,*表示Plt;0.05,**表示Plt;0.01,***表示Plt;0.001.n≥10.
圖5 OsNAC2野生型和轉(zhuǎn)基因株系中IAA相關(guān)基因的表達(dá)分析Fig.5 IAA pathway related genes expression in OsNAC2 transgenic lines and WT Student’s t-test,*表示Plt;0.05,**表示Plt;0.01,***表示Plt;0.001,n≥3.
通過(guò)上述的基因芯片數(shù)據(jù)和qRT-PCR發(fā)現(xiàn),與生長(zhǎng)素信號(hào)通路相關(guān)的基因在過(guò)表達(dá)中受到抑制.已有報(bào)道,生長(zhǎng)素信號(hào)通路異常會(huì)影響水稻根尖淀粉粒的發(fā)育[25].因此,對(duì)一周齡的ON11和RNAi31的根尖進(jìn)行淀粉粒染色觀察.與WT根尖中淀粉粒比較,ON11根尖中淀粉粒顯著減少,而RNAi31中顯著增多(圖6).
圖6 OsNAC2轉(zhuǎn)基因株系淀粉粒染色Fig.6 The starch grains dyeing of OsNAC2 transgenic lines根尖淀粉粒染色(1~2: ON11; 3~4: WT;5~6: RNAi31;bar=0.2mm)
研究表明,植物能否正確的響應(yīng)重力信號(hào)的刺激,與生長(zhǎng)素的生物合成、極性運(yùn)輸和信號(hào)傳導(dǎo)聯(lián)系緊密.生長(zhǎng)素響應(yīng)因子AUXIN RESPONSE FACTOR7(ARF7)和ARF19對(duì)向重力性的響應(yīng)有著關(guān)鍵作用[26-28].擬南芥的淀粉體部分缺失突變體acg20和acg27表現(xiàn)出對(duì)重力響應(yīng)減弱[29].由于根尖淀粉粒的發(fā)育與根的向重力性有關(guān),因此進(jìn)行了OsNAC2轉(zhuǎn)基因株系與野生型株系的向重力性反應(yīng)實(shí)驗(yàn).實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),ON11株系向重力彎曲角度小于WT,而RNAi31株系的彎曲角度大于WT(圖7).說(shuō)明OsNAC2會(huì)減弱水稻根尖的向重力感應(yīng),即參與了水稻根的重力感應(yīng)過(guò)程.推測(cè)OsNAC2可能通過(guò)生長(zhǎng)素信號(hào)通路來(lái)調(diào)節(jié)水稻根的向重力感應(yīng).
圖7 不同株系的向重力性反應(yīng)及彎曲角度測(cè)量Fig.7 The gravitropism experiments and curvature measurement of OsNAC2 transgenic lines紅色箭頭指向?yàn)闇y(cè)量的角度,Student’s t-test,*表示Plt;0.05,**表示Plt;0.01,***表示Plt;0.001. n≥6.
生長(zhǎng)素的代謝、轉(zhuǎn)運(yùn)、信號(hào)轉(zhuǎn)導(dǎo)與根系發(fā)育息息相關(guān).在生長(zhǎng)素信號(hào)通路過(guò)程中,AUX/IAA-ARF家族在生長(zhǎng)素信號(hào)通路中起到負(fù)調(diào)節(jié)作用.ARF蛋白在生長(zhǎng)素的濃度較低時(shí)會(huì)受到抑制,下游生長(zhǎng)素響應(yīng)基因無(wú)法表達(dá);而ARF蛋白在生長(zhǎng)素濃度較高時(shí),解除抑制,下游生長(zhǎng)素響應(yīng)基因開(kāi)始表達(dá)[30-31].
在激素表達(dá)譜和OsNAC2pro∶∶GUS株系對(duì)不同濃度生長(zhǎng)素響應(yīng)實(shí)驗(yàn)中,發(fā)現(xiàn)當(dāng)生長(zhǎng)素在一定濃度范圍內(nèi)時(shí),OsNAC2可受到IAA顯著誘導(dǎo);但在100μmol/L生長(zhǎng)素處理下時(shí),其表達(dá)受到抑制(圖3).結(jié)合芯片數(shù)據(jù)分析及生長(zhǎng)素代謝相關(guān)基因qRT-PCR結(jié)果發(fā)現(xiàn),與生長(zhǎng)素相關(guān)基因的表達(dá)在過(guò)表達(dá)株系ON11中受到抑制(圖5).說(shuō)明OsNAC2可能通過(guò)抑制AUX/IAA家族基因的表達(dá),調(diào)節(jié)生長(zhǎng)素通路信號(hào)轉(zhuǎn)導(dǎo),但其具體的影響機(jī)制仍需進(jìn)一步分析.
通過(guò)對(duì)轉(zhuǎn)基因株系表型的鑒定,發(fā)現(xiàn)OsNAC2過(guò)表達(dá)會(huì)導(dǎo)致水稻主根變短(圖4).有研究發(fā)現(xiàn),過(guò)表達(dá)OsYUCCA1的轉(zhuǎn)基因植株IAA水平升高,表現(xiàn)出過(guò)量生產(chǎn)生長(zhǎng)素的表型特征,而反義表達(dá)OsYUCCA1 cDNA的植株則表現(xiàn)出與生長(zhǎng)素不敏感突變體類似的表型[9].在水稻的GH3家族中,OsGH3.1的組成性表達(dá)降低了水稻中生長(zhǎng)素的含量[32],催化過(guò)量的IAA與多種氨基酸結(jié)合來(lái)維持生長(zhǎng)素的體內(nèi)平衡[33].OsGH3-8編碼一個(gè)IAA酰胺合成酶,可將多余的游離IAA與氨基酸結(jié)合,維持游離IAA含量的動(dòng)態(tài)平衡;過(guò)量表達(dá)GH3-8可抑制伸展蛋白的表達(dá)及生長(zhǎng)素的信號(hào)傳導(dǎo),造成植株形態(tài)的異常,如生長(zhǎng)發(fā)育停滯[34].通過(guò)qRT-PCR結(jié)果發(fā)現(xiàn)(圖5),與生長(zhǎng)素合成相關(guān)的YUCCA-likegene家族中的OsYUCCAA2、OsYUCCA4、OsYUCCA6 和OsYUCCA7的表達(dá)量在過(guò)表達(dá)株系ON11中下調(diào),GH3家族中的吲哚乙酸氨基化合成酶OsGH3-1和OsGH3-8上調(diào).這可以推測(cè)出OsNAC2是通過(guò)減少植株體內(nèi)生長(zhǎng)素的合成及降低體內(nèi)游離的IAA含量,從而導(dǎo)致過(guò)表達(dá)株系的主根變短.
生長(zhǎng)素的合成、極性運(yùn)輸和信號(hào)通路與水稻向重力性息息相關(guān)[26].OsNAC2過(guò)表達(dá)株系中,根尖淀粉粒及其向重力性受抑制(圖6,圖7),且過(guò)表達(dá)株系中AUX/IAA家族和YUCCA-likegene家族中一些基因的表達(dá)量明顯受到抑制(圖5).因此,推測(cè)OsNAC2可能通過(guò)抑制生長(zhǎng)素信號(hào)通路和生長(zhǎng)素的合成相關(guān)基因的表達(dá),從而影響水稻根尖淀粉粒發(fā)育和向重力性.
由于影響水稻根發(fā)育的因素眾多,本研究主要在生長(zhǎng)素對(duì)根發(fā)育方面進(jìn)行初步探究.OsNAC2除了可受IAA顯著性誘導(dǎo),也受GA3的誘導(dǎo)(圖2).研究表明生長(zhǎng)素能促進(jìn)赤霉素降解DELLA蛋白,促進(jìn)根的生長(zhǎng),而生長(zhǎng)素運(yùn)輸或信號(hào)通路減弱會(huì)導(dǎo)致DELLA蛋白降解減慢[35].擬南芥中赤霉素缺失突變體gal-3的根變短,是由于赤霉素能促進(jìn)伸長(zhǎng)區(qū)細(xì)胞的伸長(zhǎng)[36]和根系分生組織的細(xì)胞增殖[37].因此,OsNAC2也有可能參與GA代謝通路影響水稻根的生長(zhǎng).這也說(shuō)明植物激素間通過(guò)相互作用來(lái)調(diào)節(jié)植物根的生長(zhǎng).
綜上所述,OsNAC2可能是通過(guò)對(duì)生長(zhǎng)素合成代謝及其信號(hào)通路的影響,從而調(diào)控水稻根的發(fā)育.但OsNAC2直接或者間接作用通路中相關(guān)因子的研究仍需后續(xù)研究加以揭示.
[1] HOCHHOLDINGER F, PARK W J, SAUER M,etal. From weeds to crops: Genetic analysis of root development in cereals [J].TrendsPlantSci, 2004,9(1): 42-48.
[2] 石慶華.大穗型水稻根系生長(zhǎng)特性與產(chǎn)量形成的研究 [J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào),1988,10(1): 52-62.
[3] GE L, CHEN H, JIANG J F,etal. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity [J].PlantPhysiol, 2004,135(3): 1502-1513.
[4] KAMIYA N, NAGASAKI H, MORIKAMI A,etal. Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem [J].ThePlantJournal, 2003,35(4): 429-441.
[5] ZHAO Y, HU Y F, DAI M G,etal. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice [J].PlantCell, 2009,21(3), 736-748.
[6] JIA L Q, ZHANG B T, MAO C Z,etal. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice(OryzasativaL) [J].Planta, 2008,228(1): 51-59.
[7] LI J, ZHU S H, SONG X,etal. A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem [J].PlantCell, 2006,18(2): 340-349.
[8] ZHANG J W, XU L, WU Y R,etal. OsGLU3, a putative membrane-bound endo-1,4-beta-glucanase, is required for root cell elongation and division in rice(OryzasativaL) [J].MolecularPlant, 2012,5(1): 176-186.
[9] YUKO Y, NORIKO K, YOICHI M,etal. Auxin biosynthesis by the YUCCA genes in rice [J].PlantPhysiology, 2007,143(3): 1362-1371.
[10] WOO Y M, PARK H J, SUDI M,etal. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio [J].PlantMolecularBiology, 2007,65(1/2): 125-136.
[11] XU M, ZHU L, SHOU H X,etal. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice [J].PlantandCellPhysiology, 2005,46(10): 1674-1681.
[12] ZHU Z X, LIU Y, LIU S J,etal. A gain-of-function mutation in OsIAA11 affects lateral root development in rice [J].MolecularPlant, 2012,5(1): 154-161.
[13] KITOMI Y, ITO H, HOBO T,etal. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type A response regulator of cytokinin signaling [J].ThePlantJournal, 2011,67(3): 472-484.
[14] WANG X F, HE F F, MA X X,etal. OsCAND1 is required for crown root emergence in rice [J].MolecularPlant, 2011,4(2): 289-299.
[15] LIU G, LI X L, JIN S X,etal. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton [J].PLoSOne, 2014,9(1): e86895.
[16] REDILLAS M CFR, JEONG J S, KIM Y S,etal. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions [J].PlantBiotechnologyJournal, 2012,10(7): 792-805.
[17] SUN L J, ZHANG H J, LI D Y,etal. Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses againstMagnaporthegrisea[J].PlantMolecularBiology, 2013,81(1/2): 41-56.
[18] KUSANO H, ASANO T, SHIMADA H,etal. Molecular characterization of ONAC300, a novel NAC gene specifically expressed at early stages in various developing tissues of rice [J].MolecularGeneticsandGenomics, 2005,272(6): 616-626.
[19] XIE Q, FRUGIS G, COLGAN D,etal.ArabidopsisNAC1 transduces auxin signal downstream of TIR1 to promote lateral root development [J].GenesDev, 2000,14(23): 3024-3036.
[20] XIE Q, GUO H S, DALLMAN G,etal. SINAT5 promotes ubiquitin related degradation of NAC1 to attenuate auxin signals [J].Nature, 2002,419(6903): 167-170.
[21] HE X J, MU R L, CAO W H,etal. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development [J].ThePlantJournal, 2005,44: 903-916.
[22] KIM S G, LEE A K, YOON H K,etal. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid mediated salt signaling inArabidopsisseed germination [J].ThePlantJournal, 2008,55: 77-88.
[23] JEONG S J, KIM Y S, REDILLAS M C F R,etal. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field [J].PlantBiotechnolJ, 2013,11(1): 101-114.
[24] JEONG S J, KIM Y S, BAEK K H,etal. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions [J].PlantPhysiol, 2010,153(1): 185-197.
[25] OTTENSCHLAGER I, WOLFF P, WOLVERTON C,etal. Gravity-regulated differential auxin transport from columella to lateral root cap cells [J].ProcNatiAcadSciUSA, 2003,100(5): 2987-2991.
[26] LI J, DAI X, ZHAO Y. A role for auxin response factor 19 in auxin and ethylene signaling inArabidopsis[J].PlantPhysiol, 2006,140: 899-908.
[27] OKUSHIMA Y, OVERVOORDE P J, ARIMA K,etal. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members inArabidopsisthaliana: Unique and overlapping functions of ARF7 and ARF19 [J].PlantCell, 2005,17: 444-463.
[28] WILMOTH J C, WANG S, TIWARI S B,etal. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation [J].ThePlantJournal, 2005,43(1): 118-30.
[29] KISS J Z, WRIGHT J B, CASPAR T. Gravitropism in roots of intermediate-starch mutants ofArabidopsis[J].PlantPhysiol, 1996,97(2): 237-244.
[30] MOCKAITIS K, ESTELLE M. Auxin receptors and plant development: A new signaling paradigm [J].AnnualReviewofCellandDevelopmentalBiology, 2008,24: 55-80.
[31] JAIN M, KAUR N, GARG R,etal. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice(Oryzasativa) [J].Functionalamp;IntegrativeGenomics, 2006,6(1): 47-59.
[32] DOMINGO C, ANDRéS F, THARREAU D,etal. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice [J].MolecularPlant-MicrobeInteractions, 2009,22(2): 201-210.
[33] ZHAO S Q, XIANG J J, XUE H W,etal. Studies on the rice LEAF INCLINATION1(LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control [J].MolecularPlant, 2013,6(1): 174-187.
[34] DING X H, CAO Y L, HUANG L L,etal. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate and jasmonate independent basal immunity in rice [J].ThePlantCell, 2008,20(1): 228-240.
[35] FU X, HARBERD NP. Auxin promotesArabidopsisroot growth by modulating gibberellin response [J].Nature, 2003,421(6924): 740-743.
[37] ACHARD P, GUSTI A, CHEMINANT S,etal. Gibberellin signaling controls cell proliferation rate inArabidopsis[J].CurrBiol, 2009,19(14): 1188-1193.
OsNAC2TranscriptionFactorRegulatesEarlyRootDevelopmentbyMediatingAuxinMetabolicPathwaysinRice
HEJianmei1,2,3,LüBo1,2,XIDandan1,2,DENGQiming3,MINGFeng1,2
(1.InstituteofPlantBiology,SchoolofLifeSciences,FudanUniversity,Shanghai200438,China;2.StateKeyLaboratoryofGeneticEngineering,FudanUniversity,Shanghai200438,China;3.InstituteofRiceResearch,SichuanAgriculturalUniversity,Chengdu611130,China)
The NAC family is one of the largest families of specific transcription factors in plant, which played a crucial role in plant development and environment stress. In this study, we found that constitutive overexpression ofOsNAC2 in rice(ON11) reduced primary root length during early growth period, meanwhile RNAi transgenic line(RNAi31) has longer primary root length compared with WT. GUS staining showed thatOsNAC2 temporal expressed in root tip. In addition,OsNAC2 was significantly induced by auxin after different hormone treatments. Furthermore, microarray analysis and qRT-PCR revealed that genes related to biosynthesis, metabolism and signaling pathway of auxin varied significantly among transgenic lines ON11, RNAi31 and WT. The starch grain development and gravitropism of root were also restrained in ON11. Taken together, OsNAC2 might regulate the expression of genes in auxin synthetic metabolism and signaling pathways, reduce the auxin concentration, involved in the auxin response pathways, and finally affect the rice root development.
OsNAC2; Indole-3-Acetic Acid; rice; root
0427-7104(2017)04-0411-09
2016-12-07
轉(zhuǎn)基因生物新品種培育重大專項(xiàng)(2016ZX08009-001-008)和國(guó)家自然科學(xué)基金(31471152)
何建美(1991—),女,碩士研究生;明 鳳(通信聯(lián)系人),女,副教授,博士生導(dǎo)師,E-mail: fming@fudan.edu.cn;鄧其明(通信聯(lián)系人),男,副研究員,碩士生導(dǎo)師,E-mail: dengqmsc@163.com.
Q943.3
A