国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

兒茶素類化合物的抗結(jié)核活性研究進展

2017-12-27 02:55:06陳思元張文宏王菲菲
微生物與感染 2017年6期
關(guān)鍵詞:類化合物兒茶素抗結(jié)核

陳思元,張文宏,王菲菲

1. 復旦大學基礎(chǔ)醫(yī)學院病原生物學系,上海200032; 2. 復旦大學附屬華山醫(yī)院感染科,上海 200040

兒茶素類化合物的抗結(jié)核活性研究進展

陳思元1,張文宏2,王菲菲1

1. 復旦大學基礎(chǔ)醫(yī)學院病原生物學系,上海200032; 2. 復旦大學附屬華山醫(yī)院感染科,上海 200040

近年來,耐多藥結(jié)核病(multidrug-resistant tuberculosis,MDR-TB)的出現(xiàn)及人類免疫缺陷病毒(human immunodeficiency virus,HIV)與結(jié)核分枝桿菌合并感染日益增多,使結(jié)核病的防治面臨更加嚴峻的挑戰(zhàn),人們急需開發(fā)新型抗結(jié)核藥物及天然低毒的輔助治療藥物。綠茶中的兒茶素類化合物具有多種生物活性,對多種疾病有一定的輔助療效。多項研究顯示,兒茶素類化合物也具有抗結(jié)核活性,其機制包括抑制二氫葉酸還原酶活性、影響分枝菌酸及細胞壁的合成、下調(diào)富含色氨酸天冬氨酸的膜蛋白(tryptophan-aspartate containing coat protein,TACO)基因表達以抑制結(jié)核分枝桿菌的胞內(nèi)寄生,降低氧化應(yīng)激水平,下調(diào)結(jié)核分枝桿菌85B蛋白和宿主腫瘤壞死因子α(tumor necrosis factor α,TNF-α)表達,從而改善炎癥水平。有研究顯示,喝綠茶可降低結(jié)核分枝桿菌感染風險,兒茶素類化合物可輔助治療結(jié)核病并與抗結(jié)核藥物有協(xié)同治療作用,但目前對其作用機制的研究還不夠深入,需進一步探討。

兒茶素類;表沒食子兒茶素沒食子酸酯;抗結(jié)核

綠茶作為世界范圍內(nèi)流行的一種飲品,具有多種公認的生物活性[1],對癌癥、糖尿病、帕金森病、阿爾茨海默癥、腦卒中(中風)、肥胖均有一定的輔助治療作用[2-4]。目前普遍認為,綠茶的這種輔助治療作用與綠茶中茶多酚的主要成分兒茶素類化合物有關(guān)。兒茶素最初由兒茶得名,是一種黃烷醇型黃酮化合物。兒茶素類化合物包括兒茶素(catechin,C)、表兒茶素(epicatechin,EC)及表沒食子兒茶素(epigallocatechin,EGC)這3種游離型兒茶素;還有兩種酯化的沒食子酸:表兒茶素沒食子酸酯(epicatechin gallate,ECG)和表沒食子兒茶素沒食子酸酯(epigallocatechin gallate,EGCG)。兒茶素類化合物占新鮮茶葉干重的30%~40%[5],其中活性最強的EGCG占兒茶素類化合物總量的50%~80%[6]。

近年來,耐多藥結(jié)核病(multidrug-resistant tuberculosis,MDR-TB)及人類免疫缺陷病毒(human immunodeficiency virus,HIV)與結(jié)核分枝桿菌合并感染日益增多,使結(jié)核病的診治面臨新的挑戰(zhàn),人們急需開發(fā)新型抗結(jié)核藥物及輔助治療藥物,包括具有抗炎、抗氧化、抑菌作用的天然藥物。多項研究顯示,兒茶素類化合物具有抗結(jié)核作用。一項隨機對照試驗顯示,EGCG可用于抗結(jié)核輔助治療,縮短痰菌陰轉(zhuǎn)時間,促進患者恢復[7]。另一項研究顯示,增加喝茶量與降低患結(jié)核病風險呈明顯量-效關(guān)系。不同種類茶葉中,綠茶的抗結(jié)核活性最強,飲用綠茶可降低結(jié)核分枝桿菌感染風險并預防結(jié)核病[8]。本文就兒茶素類化合物中主要活性成分EGCG的抗結(jié)核作用及機制進行綜述。

1 EGCG能直接殺滅結(jié)核分枝桿菌

1.1 EGCG抑制二氫葉酸還原酶(dihydrofolate reductase,DHFR)活性

DHFR是葉酸代謝通路中一個很重要的酶,由dfrA基因編碼,在生物生長發(fā)育和增殖中有重要作用[9]。很多病原菌含有DHFR,抑制DHFR可達到抑菌效果。DHFR抑制劑如甲氨蝶呤(methotrexate,MTX)已成功用于治療多種感染性疾病。結(jié)核分枝桿菌(Mycobacteriumtuberculosis,M.tuberculosis)中也含有DHFR,抑制DHFR活性可抑制其生長和繁殖,因此DHFR可作為篩選新型抗結(jié)核藥物的作用靶點。有研究發(fā)現(xiàn),茶多酚有抗分枝桿菌的活性[10],其機制可能是抑制DHFR活性。一項研究將某些植物素分子包括兒茶素、EC、EGCG與標準抗結(jié)核分枝桿菌DHFR的靶向藥物甲氧芐啶(trimethoprim,TMP)和MTX通過計算機模擬分子對接進行對比,構(gòu)造出分子結(jié)構(gòu)模型,發(fā)現(xiàn)這些植物素分子中EGCG與MTX(圖1~2)在DHFR內(nèi)的結(jié)合模式相似。進一步采用MM-GBSA(molecular mechanics combined with generalised Born and solvent-accessible surface area solvation)測量鍵結(jié)合能,來衡量植物素分子和抗結(jié)核藥物與蛋白質(zhì)相互作用形成的所有共價和非共價鍵的鍵能總和,以MM-GBSA分數(shù)表示。EGCG在這些植物素分子中得分最高,但低于MTX,表明MTX比EGCG與靶蛋白具有更高的結(jié)合能力。作者同時做了全細胞實驗來評價EGCG的生物活性,測定植物素對MTB H37Rv的最小抑菌濃度(minimum inhibitory concentration,MIC)和DHFR活性。在所選的植物素分子中,EGCG顯示出最強的抑菌活性,且抑制DHFR活性與分子對接實驗結(jié)果呈良好的線性相關(guān),即與靶向藥物在靶蛋白內(nèi)的結(jié)合模式相似度越高,MM-GBSA的分數(shù)越高,抑制DHFR活性的能力就越強。該實驗同時測定了EGCG與一線抗結(jié)核藥物乙胺丁醇(ethambutol,EMB)和二線抗結(jié)核藥物對氨基水楊酸(para-aminosalicylic acid,PAS)抗結(jié)核作用的協(xié)同效應(yīng),發(fā)現(xiàn)EGCG能降低PAS 的MIC,與其有良好的協(xié)同作用[11]。

圖1EGCG的分子結(jié)構(gòu)式

Fig.1MolecularstructureofEGCG

圖2MTX的分子結(jié)構(gòu)式

Fig.2MolecularstructureofMTX

因此,DHFR是抗結(jié)核藥物的重要作用靶點,EGCG可作為DHFR抑制劑來抑制結(jié)核分枝桿菌的生長,也可作為抗結(jié)核協(xié)同治療的輔助藥物。

1.2 EGCG影響細胞壁完整性

結(jié)核分枝桿菌細胞壁十分獨特,由肽聚糖、阿拉伯半乳糖和分枝菌酸構(gòu)成。其中肽聚糖和阿拉伯半乳糖由共價鍵連接,分枝菌酸覆蓋在其表面。分枝菌酸是結(jié)核分枝桿菌抵抗胞外物質(zhì)的保護屏障,可阻礙抗結(jié)核藥物進入細胞內(nèi)。一項研究表明,將恥垢分枝桿菌(Mycobacteriumsmegmatis)mc2155與EGCG在LB培養(yǎng)基中共培養(yǎng),用高效液相色譜法和液相色譜儀-質(zhì)譜儀分析EGCG的組成和結(jié)構(gòu),并用電鏡觀察mc2155的細胞外膜結(jié)構(gòu)。結(jié)果顯示,當EGCG的濃度為20 μg /mL時,大多數(shù)EGCG在LB培養(yǎng)基中轉(zhuǎn)化為同分異構(gòu)體,其作用于mc2155 18 h后,mc2155的細胞外膜結(jié)構(gòu)出現(xiàn)改變,細胞壁變得粗糙且完整性遭到破壞。由此可見,EGCG的同分異構(gòu)體可破壞分枝桿菌的細胞壁,破壞程度與EGCG濃度相關(guān)[12]。也有文獻證實EGCG可抑制多種微生物生長,推斷其機制大多與破壞細胞壁和細胞膜有關(guān)[13-16]。EGCG能抑制與分枝菌酸生物合成相關(guān)的脂烯?;d體蛋白還原酶(inhibitor for enoyl reductase,InhA)的活性,干擾分枝菌酸的生物合成,導致細胞壁合成出現(xiàn)障礙,細胞壁的完整性被破壞,藥物更易進入細胞內(nèi),使結(jié)核分枝桿菌對抗結(jié)核藥物更加敏感[17-18]。

因此,EGCG很有可能成為更好的抗結(jié)核預防用藥,但還需進一步的臨床試驗證明其與其他抗結(jié)核藥物聯(lián)合應(yīng)用的價值。

1.3 EGCG通過抑制InhA活性而抑制分枝菌酸的合成

脂肪酸是所有生物必不可少的能量來源之一,對結(jié)核分枝桿菌來說更為重要。結(jié)核分枝桿菌包含兩種脂肪酸合酶(fatty acid synthase,F(xiàn)AS)[19-20],即Ⅰ型[21]和Ⅱ型FAS[22-23]。結(jié)核分枝桿菌應(yīng)用這兩種FAS系統(tǒng)合成分枝桿菌特有的分枝菌酸,此長鏈脂肪酸是分枝桿菌細胞壁的主要成分。因為分枝菌酸對分枝桿菌的生存至關(guān)重要,所以分枝菌酸合成途徑中的每個酶都可作為研究新藥的靶點[19-20]。兩種FAS系統(tǒng)在結(jié)構(gòu)上明顯不同,其中Ⅱ型FAS已被證實為一個很好的抗菌靶點[22-24]。Ⅱ型FAS鏈延長循環(huán)中的第4步由InhA(inhA基因編碼)催化,InhA可催化NADH依賴的反-2-烯?;舅徭湹倪€原反應(yīng),使其雙鍵飽和[22-26]。研究表明,一線抗結(jié)核藥物異煙肼(isoniazid,INH)的作用靶點之一就是InhA,所以INH可抑制分枝菌酸合成,破壞結(jié)核分枝桿菌細胞壁,從而起殺菌作用。有研究表明,兒茶素也可作為該酶的抑制劑,其中EGCG活性最高。EGCG能可逆地結(jié)合NADH位點或其附近,干擾NADH與InhA結(jié)合;同時可提高廣譜抗菌劑三氯生對InhA的親和力而增強三氯生的抑制作用,反過來三氯生也可增強EGCG對InhA的親和力[17-18]。因此,EGCG具有抑制結(jié)核分枝桿菌生長的潛在生物活性。

2 EGCG能促進宿主的抗結(jié)核免疫反應(yīng)

2.1 EGCG可下調(diào)巨噬細胞中富含色氨酸天冬氨酸的膜蛋白(tryptophan-aspartate containing coat protein,TACO)基因轉(zhuǎn)錄,促進吞噬體成熟

巨噬細胞吞噬結(jié)核分枝桿菌后形成吞噬體,吞噬體需與一系列含有殺菌劑和抑菌劑的小泡及溶酶體經(jīng)胞內(nèi)途徑融合,才能成熟并殺滅病原體[27],因此吞噬體與溶酶體相融合是殺滅病原體的前提。研究表明,結(jié)核分枝桿菌感染后有一系列機制阻止吞噬體與溶酶體結(jié)合,其中一種與誘導TACO表達有關(guān)[28]。TACO是一種富含色氨酸和天冬氨酸的膜蛋白,也稱作Coronin-1。TACO在吞噬過程中由細胞膜獲得,并持續(xù)存在于攜帶分枝桿菌的吞噬體周圍[29-30]。TACO滯留于包含有結(jié)核分枝桿菌的吞噬體周圍,阻斷吞噬體的融合過程,導致結(jié)核分枝桿菌不被吞噬體殺滅而在胞內(nèi)持續(xù)存活。

特異性蛋白1(specificity protein 1,SP1)是一種DNA結(jié)合蛋白,可與目標基因啟動子區(qū)的Sp1反應(yīng)元件相結(jié)合來提高目標基因的轉(zhuǎn)錄[31]。有研究表明,EGCG作為Sp1依賴基因的負向調(diào)節(jié)因子,可阻斷此過程[32]。另一項研究表明,TACO基因啟動子存在SP1結(jié)合序列,EGCG對TACO基因的下調(diào)呈劑量依賴性,TACO基因下調(diào)后可抑制結(jié)核分枝桿菌在細胞內(nèi)生存[28]。該研究證實了EGCG通過阻斷SP1與目標基因TACO啟動子的結(jié)合來下調(diào)TACO的表達,從而解除了TACO對吞噬體成熟的抑制,增強了吞噬體殺滅胞內(nèi)結(jié)核分枝桿菌的能力,且呈劑量依賴性。因此,推測EGCG可能在抗結(jié)核分枝桿菌感染中發(fā)揮重要作用。

2.2 綠茶提取物可作為抗氧化劑降低宿主的氧化應(yīng)激水平

結(jié)核分枝桿菌是胞內(nèi)寄生菌,可在巨噬細胞中增殖,觸發(fā)巨噬細胞產(chǎn)生自由基,而其自身不被自由基損傷。在結(jié)核病炎癥反應(yīng)過程中,巨噬細胞吞噬病原體時消耗大量的氧,引起呼吸爆發(fā),產(chǎn)生大量的活性氧和活性氮,導致高水平的氧化應(yīng)激[33]。茶葉中的茶多酚可清除各系統(tǒng)中產(chǎn)生的活性氧自由基,保護細胞不被自由基損傷[34]。一項研究顯示,未加工綠茶中的兒茶素可降低抗酸桿菌(acid-fast bacilli,AFB)陽性肺結(jié)核患者中氧化應(yīng)激的效應(yīng)。此研究從200例新診斷的AFB陽性肺結(jié)核患者中隨機挑出100例作為試驗組,每例接受兒茶素500 μg和抗結(jié)核治療;另外100例作為對照組,每例接受淀粉500 μg和抗結(jié)核治療。在治療前和治療后的1個月和4個月,分別測定兩組患者血樣品中的氧化應(yīng)激水平。檢測指標包括自由基:脂質(zhì)過氧化(lipid peroxidation,LPO)、一氧化氮(nitric oxide,NO);酶抗氧化劑:過氧化氫酶、谷胱甘肽過氧化物酶、超氧化物歧化酶(superoxide dismutase,SOD);非酶抗氧化劑:總巰基、還原型谷胱甘肽(glutathion,GSH)。結(jié)果顯示,與對照組相比,試驗組LPO明顯降低而NO顯著升高,過氧化氫酶和谷胱甘肽過氧化物酶明顯降低而SOD明顯升高,總巰基水平顯著降低而GSH水平顯著升高。該研究結(jié)果表明,兒茶素可輔助治療結(jié)核病,在控制肺結(jié)核患者的氧化應(yīng)激水平中起一定作用[35]。

2.3 EGCG下調(diào)結(jié)核分枝桿菌85B抗原和宿主腫瘤壞死因子α(tumor necrosis factor α,TNF-α)的表達,減輕結(jié)核炎癥反應(yīng)

機體感染結(jié)核分枝桿菌后,巨噬細胞被誘導產(chǎn)生活性氧,導致宿主TNF-α上調(diào)表達,而TNF-α上調(diào)結(jié)核分枝桿菌 85B抗原表達,85B抗原進一步提升宿主TNF-α水平,由此形成一個正反饋環(huán)路[36-37]。TNF-α雖然是介導巨噬細胞殺滅結(jié)核分枝桿菌的最重要細胞因子,但同時介導免疫損傷,從而加重結(jié)核的病理性進展[38]。一項研究顯示,EGCG能劑量依賴性地下調(diào)結(jié)核分枝桿菌 85B抗原和宿主TNF-α mRNA表達,同時改善單核細胞內(nèi)GSH和γ干擾素(interferon γ, IFN-γ)水平。EGCG不導致細胞壞死和凋亡,只抑制特定炎性因子的表達和分泌,此過程通過核因子κB(nuclear factor κB,NF-κB)信號通路介導[39]。

3 結(jié)語

目前,結(jié)核病的發(fā)病率有回升趨勢,抗結(jié)核化療還存在諸多弊端。世界衛(wèi)生組織(World Health Organization,WHO)數(shù)據(jù)顯示,2015年全世界估計有48萬人罹患MDR-TB,外加10萬人對利福平耐藥。印度、中國、俄羅斯的病例占45%,估計其中 9.5% 為廣泛耐藥結(jié)核病(extensively drug-resistant tuberculosis,XDR-TB)[40]。一線抗結(jié)核藥物對耐藥結(jié)核的療效很差,尋找新型抗結(jié)核藥物顯得極其迫切。此外,現(xiàn)用的一線及二線抗結(jié)核藥物均有一定程度的不良反應(yīng),如異煙肼可導致周圍神經(jīng)炎、中樞神經(jīng)系統(tǒng)中毒及肝臟毒性,利福平可導致胃腸道不適、肝臟損傷、皮疹和發(fā)熱,因此人們渴望能尋找到一種天然低毒的藥物以減少不良反應(yīng)的發(fā)生。

兒茶素類化合物有著公認的生物活性,安全性好[41],已證實對癌癥、糖尿病、帕金森病、阿爾茨海默癥、腦卒中、結(jié)核、肥胖有一定的輔助治療效果[42],因此兒茶素類化合物很有可能用于抗結(jié)核治療或輔助治療[43]。兒茶素類化合物治療結(jié)核病有許多優(yōu)點:第一,可降低結(jié)核分枝桿菌感染風險,結(jié)核高危人群(如發(fā)展中國家)可通過喝綠茶來預防結(jié)核病;第二,兒茶素類化合物尤其是EGCG,其與一線、二線抗結(jié)核藥物存在協(xié)同作用,可作為輔助治療,提高抗結(jié)核藥物的療效,并降低藥物毒性反應(yīng),減少肝腎損傷;第三,EGCG的應(yīng)用可縮短結(jié)核病患者的痰菌陰轉(zhuǎn)時間,減少結(jié)核分枝桿菌在人群中的傳播;第四,可降低氧化應(yīng)激水平,不僅可改善結(jié)核病患者肺部病灶炎癥反應(yīng),還可清除機體其他組織和器官中的自由基,減輕自由基損傷。因此,應(yīng)進一步加強對兒茶素類化合物抗結(jié)核作用機制的研究及在更廣泛人群中驗證其臨床作用。總之,兒茶素類化合物或其半合成衍生物很有希望成為抗結(jié)核治療的輔助手段。在人群中推廣飲用綠茶,尤其是結(jié)核病高發(fā)地區(qū)如發(fā)展中國家,可降低結(jié)核病發(fā)病率,對其防治起重要作用。

[1] Siddiqui IA, Asim M, Hafeez BB, Adhami VM, Tarapore RS, Mukhtar H. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer [J]. FASEB J, 2011, 25(4): 1198-1207.

[2] Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate [J]. Cancer Res, 2006, 66(5): 2500-2505.

[3] Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions [J]. Crit Rev Food Sci Nutr, 2003, 43(1): 89-143.

[4] Shankar S, Ganapathy S, Hingorani SR, Srivastava RK. EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer [J]. Front Biosci, 2008, 13: 440-452.

[5] de Mejia EG, Ramirez-Mares MV, Puangpraphant S. Bioactive components of tea: cancer, inflammation and behavior [J]. Brain Behav Immun, 2009, 23(6): 721-731.

[6] Pae M, Wu D. Immunomodulating effects of epigallocatechin-3-gallate from green tea: mechanisms and applications [J]. Food Funct, 2013, 4(9): 1287-1303.

[7] Honarvar MR, Eghtesadi S, Gill P, Jazayeri S, Vakili MA, Shamsardekani MR, Abbasi A. The effect of green tea extract supplementation on sputum smear conversion and weight changes in pulmonary TB patients: a randomized controlled trial [J/OL]. Med J Islam Repub Iran, 2016, 30: 381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972068/pdf/mjiri-30-381.pdf.

[8] Chen M, Deng J, Li W, Lin D, Su C, Wang M, Li X, Abuaku BK, Tan H, Wen SW. Impact of tea drinking upon tuberculosis: a neglected issue [J]. BMC Public Health, 2015, 15: 515. doi: 10.1186/s12889-015-1855-6.

[9] Berman EM, Werbel LM. The renewed potential for folate antagonists in contemporary cancer chemotherapy [J]. J Med Chem, 1991, 34(2): 479-485.

[10] Zignol M, Hosseini MS, Wright A, Weezenbeek CL, Nunn P, Watt CJ, Williams BG, Dye C. Global incidence of multidrug-resistant tuberculosis [J]. J Infect Dis, 2006, 194(4): 479-485.

[11] Raju A, Degani MS, Khambete MP, Ray MK, Rajan MG. Antifolate activity of plant polyphenols against Mycobacterium tuberculosis [J]. Phytother Res, 2015, 29(10): 1646-1651.

[12] Sun T, Qin B, Gao M, Yin Y, Wang C, Zang S, Li X, Zhang C, Xin Y, Jiang T. Effects of epigallocatechin gallate on the cell-wall structure of Mycobacterial smegmatis mc2155 [J]. Nat Prod Res, 2015, 29(22): 2122-2124.

[13] Ikigai H, Nakae T, Hara Y, Shimamura T. Bactericidal catechins damage the lipid bilayer [J]. Biochim Biophys Acta, 1993, 1147(1): 132-136.

[14] Yoda Y, Hu ZQ, Zhao WH, Shimamura T. Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate [J]. J Infect Chemother, 2004, 10(1): 55-58.

[15] Lewis KC, Selzer T, Shahar C, Udi Y, Tworowski D, Sagi I. Inhibition of pectin methyl esterase activity by green tea catechins [J]. Phytochemistry, 2008, 69(14): 2586-2592.

[16] Bikels-Goshen T, Landau E, Saguy S, Shapira R. Staphylococcal strains adapted to epigallocathechin gallate (EGCG) show reduced susceptibility to vancomycin, oxacillin and ampicillin, increased heat tolerance, and altered cell morphology [J]. Int J Food Microbiol, 2010, 138(1-2): 26-31.

[17] Sharma SK, Kumar G, Kapoor M, Surolia A. Combined effect of epigallocatechin gallate and triclosan on enoyl-ACP reductase of Mycobacterium tuberculosis [J]. Biochem Biophys Res Commun, 2008, 368(1): 12-17.

[18] Banerjee T, Sharma SK, Surolia N, Surolia A. Epigallocatechin gallate is a slow-tight binding inhibitor of enoyl-ACP reductase from Plasmodium falciparum [J]. Biochem Biophys Res Commun, 2008, 377(4): 1238-1242.

[19] Schroeder EK, De Souza N, Santos DS, Blanchard JS, Basso LA. Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis [J]. Curr Pharm Biotechnol, 2002, 3(3): 197-225.

[20] Bhatt A, Molle V, Besra GS, Jacobs WR Jr, Kremer L. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development [J]. Mol Microbiol, 2007, 64(6): 1442-1454.

[21] Smith S, Witkowski A, Joshi AK. Structural and functional organization of the animal fatty acid synthase [J]. Prog Lipid Res, 2003, 42(4): 289-317.

[22] Rock CO, Cronan JE. Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis [J]. Biochim Biophys Acta, 1996, 1302(1): 1-16.

[23] Surolia N, Surolia A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum [J]. Nat Med, 2001, 7(2): 167-173.

[24] Payne DJ. The potential of bacterial fatty acid biosynthetic enzymes as a source of novel antibacterial agents [J]. Drug News Perspect, 2004, 17(3): 187-194.

[25] Lu YJ, Zhang YM, Rock CO. Product diversity and regulation of type II fatty acid synthases [J]. Biochem Cell Biol, 2004, 82(1): 145-155.

[26] Oliveira JS, Vasconcelos IB, Moreira IS, Santos DS, Basso LA. Enoyl reductases as targets for the development of anti-tubercular and anti-malarial agents [J]. Curr Drug Targets, 2007, 8(3): 399-411.

[27] Desjardins M, Huber LA, Parton RG, Griffiths G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus [J]. J Cell Biol, 1994, 124(5): 677-688.

[28] Anand PK, Kaul D, Sharma M. Green tea polyphenol inhibits Mycobacterium tuberculosis survival within human macrophages [J]. Int J Biochem Cell Biol, 2006, 38(4): 600-609.

[29] Ferrari G, Langen H, Naito M, Pieters J. A coat protein on phagosomes involved in the intracellular survival of mycobacteria [J]. Cell, 1999, 97(4): 435-447.

[30] Gatfield J, Pieters J. Essential role for cholesterol in entry of mycobacteria into macrophages [J]. Science, 2000, 288(5471): 1647-1650.

[31] Boisclair YR, Brown AL, Casola S, Rechler MM. Three clustered Sp1 sites are required for efficient transcription of the TATA-less promoter of the gene for insulin-like growth factor-binding protein-2 from the rat [J]. J Biol Chem, 1993, 268(33): 24892-24901.

[32] Ren F, Zhang S, Mitchell SH, Butler R, Young CY. Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells [J]. Oncogene, 2000, 19(15): 1924-1932.

[33] Reddy YN, Murthy SV, Krishna DR, Prabhakar MC. Role of free radicals and antioxidants in tuberculosis patients [J]. Indian J Tuberc, 2004, 51: 213-218.

[34] Guleria RS, Jain A, Tiwari V, Misra MK. Protective effect of green tea extract against the erythrocytic oxidative stress injury during Mycobacterium tuberculosis infection in mice [J]. Mol Cell Biochem, 2002, 236(1-2): 173-181.

[35] Agarwal A, Prasad R, Jain A. Effect of green tea extract (catechins) in reducing oxidative stress seen in patients of pulmonary tuberculosis on DOTS Cat I regimen [J]. Phytomedicine, 2010, 17(1): 23-27.

[36] Hasan N, Yusuf N, Toossi Z, Islam N. Suppression of Mycobacterium tuberculosis induced reactive oxygen species (ROS) and TNF-alpha mRNA expression in human monocytes by allicin [J]. FEBS Lett, 2006, 580(10): 2517-2522.

[37] Islam N, Kanost AR, Teixeira L, Johnson J, Hejal R, Aung H, Wilkinson RJ, Hirsch CS, Toossi Z. Role of cellular activation and tumor necrosis factor-alpha in the early expression of Mycobacterium tuberculosis 85B mRNA in human alveolar macrophages [J]. J Infect Dis, 2004, 190(2): 341-351.

[38] Bekker LG, Moreira AL, Bergtold A, Freeman S, Ryffel B, Kaplan G. Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent [J]. Infect Immun, 2000, 68(12): 6954-6961.

[39] Fatima Z,Hameed S,Islanm N. Epigallocatechin-3-gallate(EGCG),a green tea polyphenol suppresses bacilli-induced augmented expression of Mycobacterium tuberculosis 85B and proinflammatory TNF-α in human monocytes [J/OL]. Int J Sci Res Public, 2012, 2 (2). http://www.ijsrp.org/research_paper_feb2012/ijsrp-feb-2012-56.pdf.

[40] World Health Organization.Global tuberculosis report 2016 [R/OL].Geneva: WHO,2016. http://www.who.int/tb/publications/global_report/en.

[41] Dekant W, Fujii K, Shibata E, Morita O, Shimotoyodome A. Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements [J]. Toxicol Lett, 2017, 277: 104-108.

[42] Telli E, Gen? H, Tasa BA, Sinan ?zalp S, Tansu Koparal A. In vitro evaluation of combination of EGCG and Erlotinib with classical chemotherapeutics on JAR cells [J]. In Vitro Cell Dev Biol Anim, 2017, 53(7): 651-658.

[43] Dey D, Ray R, Hazra B. Antimicrobial activity of pomegranate fruit constituents against drug-resistant Mycobacterium tuberculosis and β-lactamase producing Klebsiella pneumoniae [J]. Pharm Biol, 2015, 53(10): 1474-1480.

s. ZHANG Wenhong, E-mail: zhangwenhong@fudan.edu.cn; WANG Feifei, E-mail: wangfeifei@ fudan.edu.cn

Catechinsshowpotentanti-tuberculosisactivity

CHEN Siyuan1, ZHANG Wenhong2, WANG Feifei1

1.DepartmentofMedicalMicrobiologyandParasitology,SchoolofBasicMedicalSciences,FudanUniversity,Shanghai200032,China; 2.DepartmentofInfectiousDiseases,HuashanHospital,FudanUniversity,Shanghai200040,China

In recent years, the emergence of multidrug-resistant tuberculosis (MDR-TB) and the increase of co-infection of human immunodeficiency virus (HIV) and tuberculosis have led to more severe challenges in the prevention and treatment of tuberculosis. It is urgent to develop new anti-tuberculosis drugs and natural adjuvant therapy with low toxicity. The catechins in green tea have a variety of biological activities, and have shown a certain adjuvant therapeutic effect on many diseases. Studies have shown that catechins also have anti-tuberculosis activities, and the mechanisms include inhibition of dihydrofolate reductase, affecting mycolic acid and cell wall synthesis, down-regulation of tryptophan-aspartate containing coat protein (TACO) gene expression to inhibit the growth of intracellularMycobacteriumtuberculosis, reducing oxidative stress, down-regulation ofMycobacteriumtuberculosis85B and tumor necrosis factor α (TNF-α) levels to alleviate the inflammation. It is also proved that drinking green tea can reduce the susceptibility to tuberculosis, and catechins can be an adjuvant therapy of tuberculosis and have a synergistic effect with anti-tuberculosis drugs. However, the anti-tuberculosis mechanisms of catechins are unclear, and more trials are needed to confirm the anti-tuberculosis activity of catechins.

Catechins; Epigallocatechin gallate; Anti-tuberculosis

國家自然科學基金(81401711)

張文宏,王菲菲

2017-05-31)

敬請關(guān)注《微生物與感染》微信公眾號

猜你喜歡
類化合物兒茶素抗結(jié)核
超高效液相色譜法測定茶葉中的兒茶素
抗結(jié)核藥物不良反應(yīng)376例分析
保健酒中非法添加一種西地那非類化合物的確證
中成藥(2018年12期)2018-12-29 12:26:08
一鍋法合成苯并噁唑類化合物
貴州夏枯草的抗結(jié)核化學成分研究
新型環(huán)磷腈類化合物的合成
合成化學(2015年1期)2016-01-17 08:55:47
鏈霉菌CPCC 203702中抗結(jié)核分枝桿菌活性次級代謝產(chǎn)物的分離與鑒定
主要高危人群抗結(jié)核治療不良反應(yīng)發(fā)生情況分析
石巖楓中兩個新的木脂素類化合物
全甲基化沒食子兒茶素沒食子酸酯的制備
迭部县| 上饶县| 玛多县| 武强县| 浦城县| 外汇| 晴隆县| 通许县| 洮南市| 墨竹工卡县| 屏山县| 凤台县| 清河县| 旌德县| 陆川县| 阜康市| 正蓝旗| 建德市| 桦南县| 德兴市| 万年县| 霍邱县| 永清县| 武川县| 怀安县| 天水市| 博客| 汕尾市| 新营市| 铜川市| 微山县| 洛浦县| 万盛区| 龙岩市| 旅游| 嘉善县| 巴青县| 长海县| 应城市| 尉氏县| 商丘市|