呂 富,聶 慶,呂林蘭,於葉兵,劉 飛,趙衛(wèi)紅
(鹽城工學(xué)院海洋與生物工程學(xué)院,江蘇省海洋灘涂生物化學(xué)與生物技術(shù)重點(diǎn)建設(shè)實(shí)驗(yàn)室,江蘇省灘涂池塘養(yǎng)殖生態(tài)重點(diǎn)實(shí)驗(yàn)室,鹽城 224051)
飼料蛋白水平對雙齒圍沙蠶生長、體組成及養(yǎng)殖底質(zhì)總氮的影響
呂 富,聶 慶,呂林蘭,於葉兵,劉 飛,趙衛(wèi)紅
(鹽城工學(xué)院海洋與生物工程學(xué)院,江蘇省海洋灘涂生物化學(xué)與生物技術(shù)重點(diǎn)建設(shè)實(shí)驗(yàn)室,江蘇省灘涂池塘養(yǎng)殖生態(tài)重點(diǎn)實(shí)驗(yàn)室,鹽城 224051)
以白魚粉為蛋白源,制備6種蛋白水平分別為25%、28%、31%、34%、37%和40%的等能飼料,飼養(yǎng)初始體重為(24.7±0.9)mg的雙齒圍沙蠶(Perinereis aibuhitensis),每種飼料設(shè)3個(gè)重復(fù),每個(gè)重復(fù)100 ind沙蠶,連續(xù)飼養(yǎng)60 d,測定沙蠶生長性能、體組成及養(yǎng)殖底質(zhì)的總氮。結(jié)果表明,雙齒圍沙蠶的存活率不受飼料蛋白水平影響;末均重和特定生長率先隨飼料蛋白水平顯著升高,而飼料系數(shù)和日攝食率則先隨飼料蛋白水平顯著下降,當(dāng)飼料蛋白水平達(dá)到31%以上時(shí)均開始趨于穩(wěn)定;蛋白質(zhì)效率則始終隨飼料蛋白水平升高而顯著下降。沙蠶的粗蛋白先隨飼料蛋白水平顯著升高,當(dāng)飼料蛋白含量達(dá)到31%以上時(shí)趨于穩(wěn)定;體水分及灰分含量隨飼料蛋白水平顯著升高,而體脂含量隨飼料蛋白水平顯著下降。當(dāng)飼料蛋白水平超過34%時(shí),養(yǎng)殖底質(zhì)總氮含量隨飼料蛋白水平顯著升高,并且飼料蛋白水平越高,養(yǎng)殖底質(zhì)總氮的升幅越大。根據(jù)飼料蛋白水平與雙齒圍沙蠶特定生長率的折線方程分析,雙齒圍沙蠶飼料的最適蛋白含量為31.61%。
雙齒圍沙蠶;蛋白水平;生長性能;體組成;底質(zhì)總氮
雙齒圍沙蠶(Perinereis aibuhitensis)隸屬于沙蠶科,圍沙蠶屬,是我國沿海潮間帶多毛類生態(tài)類型的主要代表和優(yōu)勢種類[1]。由于其在醫(yī)療保?。?]、水產(chǎn)養(yǎng)殖及垂釣等方面具有重要的用途,國內(nèi)外市場的需求量非常大。因長期過度捕撈,其自然資源日趨枯竭,遠(yuǎn)遠(yuǎn)無法滿足市場需求。近年來隨著其苗種繁育和養(yǎng)殖技術(shù)的突破,雙齒圍沙蠶迅速成為我國沿海重要的海水養(yǎng)殖經(jīng)濟(jì)動(dòng)物,但目前其人工養(yǎng)殖主要投喂餅粕及其它水產(chǎn)養(yǎng)殖動(dòng)物(如對蝦)的配合飼料,由于這些飼料與雙齒圍沙蠶的營養(yǎng)需求不甚相符,常導(dǎo)致其生長緩慢、餌料轉(zhuǎn)化效率低,不僅養(yǎng)殖成本高,而且對養(yǎng)殖環(huán)境污染大,嚴(yán)重制約了我國雙齒圍沙蠶養(yǎng)殖產(chǎn)業(yè)的發(fā)展壯大。
筆者已經(jīng)對雙齒圍沙蠶飼料脂肪的適宜水平進(jìn)行了研究[3],但目前有關(guān)其飼料蛋白需求的研究尚屬空白。蛋白質(zhì)是動(dòng)物體生命活動(dòng)的物質(zhì)基礎(chǔ),飼料蛋白不僅為水產(chǎn)動(dòng)物提供用于合成機(jī)體蛋白質(zhì)的氨基酸[4],而且也是水產(chǎn)動(dòng)物體內(nèi)代謝活性物質(zhì)如激素、酶和免疫抗體等的主要成分[5]。飼料蛋白水平過低,不能滿足水產(chǎn)動(dòng)物生長需要,而飼料蛋白水平過高則又會(huì)造成蛋白質(zhì)的浪費(fèi),而且多余蛋白質(zhì)代謝產(chǎn)生的氨會(huì)破壞養(yǎng)殖環(huán)境。本實(shí)驗(yàn)研究了不同蛋白水平飼料對雙齒圍沙蠶生長性能、體組成和養(yǎng)殖底質(zhì)總氮的影響,旨在了解和掌握雙齒圍沙蠶飼料的適宜蛋白水平,為研制其專用高效環(huán)保配合飼料提供科學(xué)依據(jù)和指導(dǎo)。
以白魚粉為蛋白源,魚油為脂肪源,玉米淀粉為糖源,制備6種不同蛋白水平(25%、28%、31%、34%、37%和40%)的等脂等能飼料,具體成分及組成見表1。固體原料均單獨(dú)粉碎過80目篩,稱量配料并將微量組分逐步放大混合,使用實(shí)驗(yàn)室科研用小型混合機(jī)(SJF-30,中國水產(chǎn)科學(xué)研究院漁業(yè)機(jī)械儀器研究所)混合,混合過程中逐漸添加氯化膽堿(溶于蒸餾水中)和魚油,全部添加完成后再繼續(xù)混合15 min,然后使用實(shí)驗(yàn)室科研用小型制粒機(jī)(SLP-45,中國水產(chǎn)科學(xué)研究院漁業(yè)機(jī)械儀器研究所)在90~100℃條件下制成直徑1 mm、長1 mm的顆粒飼料,晾干至含水量10%以下,用自封袋包裝貯存在4℃冰箱中待用。
實(shí)驗(yàn)所用雙齒圍沙蠶為本實(shí)驗(yàn)研究團(tuán)隊(duì)采用同一批受精卵在鹽度24的過濾消毒海水中孵化培育而成的大規(guī)格沙蠶苗種,小心從泥土中挖出,置于鹽度24的潔凈海水中,排空腸道,挑選無傷殘,初始體重(initial average weight,IAW)為(24.7±0.9)mg的沙蠶個(gè)體 1 800 ind用于飼料蛋白水平試驗(yàn)。
取灘涂潮間帶土壤用自來水反復(fù)淘洗去除其中的鹽分、有機(jī)質(zhì)和雜物,曬干后粉碎過孔徑1.65 mm的篩網(wǎng),并置于60℃條件下烘烤8 h殺滅蟲卵,將土壤分別置于61 cm×41 cm×25 cm的聚乙烯槽中,土層厚10 cm,用鹽度24的過濾消毒海水充分浸泡土壤,然后排去海水,使土壤含飽和水,共制作18個(gè)沙蠶養(yǎng)殖槽。
每個(gè)養(yǎng)殖槽中放養(yǎng)100 ind沙蠶,隨機(jī)分為6組,每組3個(gè)重復(fù),分別投喂上述6種蛋白水平的飼料。每天分別于8∶00和19∶00時(shí)各投餌1次,投餌量分別為沙蠶鮮重的1%~2%和2%~3%,投餌時(shí)分別稱取上述6種飼料均勻?yàn)⑷敫黟B(yǎng)殖槽中,同時(shí)向養(yǎng)殖槽中噴灑100~120 mL淡水補(bǔ)充蒸發(fā)的水分,并濕潤軟化顆粒飼料,投餌1.5~2 h后收集殘餌。飼養(yǎng)期間室內(nèi)光照周期為14∶10(光照時(shí)間 5∶30-19∶30),養(yǎng)殖槽中土壤溫度變化范圍維持在25~28℃。養(yǎng)殖實(shí)驗(yàn)在鹽城工學(xué)院灘涂底棲生物飼養(yǎng)實(shí)驗(yàn)室進(jìn)行,連續(xù)飼養(yǎng)60 d。
1.3.1 樣品采集及生產(chǎn)性能計(jì)算
飼養(yǎng)實(shí)驗(yàn)結(jié)束后,停止飼喂24 h,小心挖出各養(yǎng)殖槽中的全部沙蠶,置于鹽度為24的潔凈海水中,排空腸道,吸干體表水分稱重記錄,計(jì)算各試驗(yàn)組沙蠶的末均重(final average weight,F(xiàn)AW)、存活率(survival rate,SR)、特定生長率(specific growth ratio,SGR)、日攝食率(daily feed intake,DFI)、餌料系數(shù) (feed conversion ratio,F(xiàn)CR)和蛋白質(zhì)效率(protein efficiency ratio,PER),具體計(jì)算公式如下:
存活率SR(%)=100×Nf/Ni
特定生長率SGR(%/d)=100×(Ln Wf-Ln Wi)/d
日攝食率 DFI(%·d-1) =100 × (F/ABW/d)
飼料系數(shù) FCR=F/(Wf-Wi)
蛋白質(zhì)效率 PER=(Wf-Wi)/(F×P)式中:Nf為實(shí)驗(yàn)?zāi)┥承Q的數(shù)量,Ni為實(shí)驗(yàn)初沙蠶的數(shù)量;Wf為實(shí)驗(yàn)?zāi)┥承Q重(g),Wi為實(shí)驗(yàn)初沙蠶重(g);d為飼養(yǎng)天數(shù)(d);F為攝入的飼料干重(g);P為干飼料蛋白質(zhì)含量(%);ABW為實(shí)驗(yàn)?zāi)┥承Q重和實(shí)驗(yàn)初沙蠶重的平均值(g)=(Wf+Wi)/2。
1.3.2 飼料營養(yǎng)和沙蠶體組成測定及計(jì)算
根據(jù)AOAC[8]的方法測定飼料營養(yǎng)和沙蠶體成分。將樣品在105℃條件下烘干至恒重,計(jì)算干物質(zhì)或水分含量;然后分別取一定量干物質(zhì)樣品采用凱氏定氮法測定樣品含氮量,再乘以6.25得樣品粗蛋白含量;采用索氏抽提法測定粗脂肪含量;采用550℃馬弗爐焚燒法測定灰分含量;采用酸堿消煮法測定飼料中粗纖維含量。
1.3.3 養(yǎng)殖底質(zhì)總氮測定
沙蠶全部挖取后,將各養(yǎng)殖槽中的養(yǎng)殖底質(zhì)攪拌混勻,每槽各取100 g底質(zhì),在105℃烘干至恒重后,參照袁靜等[9]的方法測定養(yǎng)殖底質(zhì)中的總氮。
原始數(shù)據(jù)經(jīng)Excel 2007初步整理后,采用SPSS 17.0軟件(SPSS Inc.USA)中的單因素方差分析(One-Way ANOVA)對數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,若達(dá)到顯著差異,則進(jìn)行 Duncan’s多重比較。數(shù)據(jù)用平均值±標(biāo)準(zhǔn)誤(Mean±SE,n=3)形式表示,P<0.05認(rèn)為差異顯著。
圖1 飼料蛋白水平與特定生長率關(guān)系的折線模型分析Fig.1 Broken-linemodel analysis of the relationship between SGR and dietary protein level
由表2可知,飼料蛋白水平對雙齒圍沙蠶的存活率無顯著影響(P>0.05),但對雙齒圍沙蠶的生長、日攝食率、飼料系數(shù)和蛋白質(zhì)效率均有顯著影響(P<0.05)。雙齒圍沙蠶的末均重和特定生長率隨飼料蛋白水平升高表現(xiàn)為先上升后平穩(wěn)的趨勢,其特定生長率與飼料蛋白的關(guān)系符合折線方程如圖1所示,在本實(shí)驗(yàn)條件下,當(dāng)雙齒圍沙蠶的生長達(dá)到極大值時(shí),其飼料的最適蛋白含量為31.61%;而飼料系數(shù)和日攝食率則隨飼料蛋白水平升高表現(xiàn)為先下降,當(dāng)飼料蛋白水平達(dá)到31%以上時(shí)則開始維持平穩(wěn)的態(tài)勢;蛋白質(zhì)效率則隨飼料蛋白水平升高而顯著下降。
飼料蛋白水平對雙齒圍沙蠶的體水分、粗蛋白、粗脂肪和灰分含量均有顯著影響(P<0.05),具體如表3所示。隨飼料蛋白水平升高,沙蠶體水分升高,其中飼料蛋白水平為40%時(shí)沙蠶的體水分含量顯著高于飼料蛋白水平為25%時(shí);沙蠶的粗蛋白先隨飼料蛋白水平升高而顯著升高,當(dāng)飼料蛋白含量達(dá)到31%以上時(shí),其體蛋白不再升高而趨于穩(wěn)定;粗脂肪水平隨飼料蛋白水平升高而顯著下降,而其灰分含量則隨飼料蛋白水平升高不斷上升,飼料蛋白水平為40%時(shí)沙蠶的灰分含量顯著高于飼料蛋白水平為25%和28%時(shí)。
飼料蛋白水平對雙齒圍沙蠶養(yǎng)殖底質(zhì)總氮的影響如圖2所示,飼料蛋白水平在25%~31%范圍內(nèi),雙齒圍沙蠶的養(yǎng)殖底質(zhì)總氮無顯著差異;當(dāng)飼料蛋白水平升高至34%,其養(yǎng)殖底質(zhì)總氮含量顯著高于飼料蛋白水平為25%時(shí),與飼料蛋白水平為28%和31%的底質(zhì)總氮相比略有升高,但差異不顯著;當(dāng)飼料蛋白水平的含量超過34%時(shí),養(yǎng)殖底質(zhì)總氮隨飼料蛋白水平上升而急劇升高,且飼料蛋白水平從37%到40%時(shí)的底質(zhì)總氮的升幅(變化斜率)遠(yuǎn)大于飼料蛋白水平從34%到37%時(shí)的底質(zhì)總氮的升幅。
圖2 飼料蛋白水平對養(yǎng)殖底質(zhì)總氮的影響Fig.2 Effects of dietary protein level on the total nitrogen of cultural substances注:圖柱無相同上標(biāo)字母表示差異顯著(P<0.05)Note:Cylindrical not sharing a common letter are significantly different(P<0.05)
表2 飼料蛋白水平對雙齒圍沙蠶生長性能和飼料利用的影響(平均值±標(biāo)準(zhǔn)誤)Tab.2 Effects of dietary p rotein level on grow th perform ance and feed utilization of P.aibuhitensis(m ean±SE)
表3 飼料蛋白水平對雙齒圍沙蠶體成分的影響(平均值±標(biāo)準(zhǔn)誤)Tab.3 Effects of dietary protein level on body composition of P.aibuhitensis(mean±SE)
蛋白質(zhì)是水產(chǎn)動(dòng)物配合飼料中最昂貴也是對水產(chǎn)動(dòng)物生長影響至關(guān)重要的組分,因此水產(chǎn)動(dòng)物的適宜蛋白需要量一直是水產(chǎn)配合飼料研究的首要課題。由于沙蠶人工規(guī)模化養(yǎng)殖起步晚,當(dāng)前還沒有任何多毛類飼料蛋白的相關(guān)研究報(bào)道。本研究結(jié)果表明,飼料蛋白水平在25%~40%范圍內(nèi),雙齒圍沙蠶的存活率無顯著差異;其特定生長率與飼料蛋白水平之間的關(guān)系符合折線模型,即先隨飼料蛋白水平升高而顯著升高,當(dāng)飼料蛋白水平達(dá)到31.61%時(shí),其生長率不再隨蛋白水平上升,而是維持在較平穩(wěn)的水平,這 與 花 鱸 (Lateolabrax japonicus)[10]、泥 鰍(Misgurnus anguillicaudatus)[11]、澳 洲 銀 鱸(Bidyanus bidyanus)[12]和星斑川鰈(Platichthys stellatus)[13]等一些水產(chǎn)動(dòng)物的生長與飼料蛋白間的關(guān)系相似,而與雜交鱘(Acipenser baerii♀ ×A.Gueldenstaedtii♂ )[14]、達(dá) 氏 鱘 (Acipenser dabryanus)[15]、 草 魚 (Ctenopharyngodon idellus)[16]和方格星蟲(Sipunculus nudus)[17]等的生長與飼料蛋白水平之間的關(guān)系符合二次曲線模型不同。分屬這兩種模型的水產(chǎn)動(dòng)物對飼料蛋白的代謝與耐受能力可能不同,符合折線模型的水產(chǎn)動(dòng)物對飼料蛋白的代謝和耐受能力相對較強(qiáng),當(dāng)飼料蛋白超過最適水平時(shí),只是造成蛋白的浪費(fèi)而不會(huì)抑制生長;而符合二次曲線模型的水產(chǎn)動(dòng)物當(dāng)飼料蛋白超過最適水平時(shí),不僅造成飼料蛋白浪費(fèi)而且會(huì)不利于生長,這可能與高蛋白引起其機(jī)體生理機(jī)能紊亂有關(guān)。
一些研究發(fā)現(xiàn)攝食率受飼料中能量水平的影響,如石斑魚(Epinephelus coioides)[18]和軍曹魚(Rachycentron canadum)[19]的攝食率隨著飼料中能量水平的升高而逐漸下降。本實(shí)驗(yàn)中,飼喂不同蛋白含量的等能飼料,隨著飼料中粗蛋白含量的增加,雙齒圍沙蠶的攝食率也呈下降的趨勢,當(dāng)飼料蛋白達(dá)到31%以上時(shí)趨于穩(wěn)定,說明雙齒圍沙蠶攝食首先要盡可能滿足蛋白質(zhì)的需要。這 與 星 斑 川 鰈[13]和 舌 齒 鱸 (Dicentrarchus labrax)[20]攝食率與飼料中的蛋白水平相關(guān)而非與能量水平相關(guān)的結(jié)果相似。隨著飼料粗蛋白含量的增加,餌料系數(shù)不斷下降,當(dāng)?shù)鞍姿竭_(dá)到機(jī)體最佳生長需求時(shí)便趨于穩(wěn)定,這與花鱸[10]、泥鰍[11]、澳洲銀鱸[12]和星斑川鰈[13]飼料系數(shù)與飼料蛋白水平間的規(guī)律相似。但對達(dá)氏鱘[15]、草魚[16]、金頭鯛(Spqrus aurata)[21]和日本沼蝦(Macrobrachium nipponense)[22]的研究報(bào)道表明,餌料系數(shù)下降到蛋白水平滿足最佳生長效果后,便開始上升。本研究表明蛋白質(zhì)效率隨飼料蛋白水平升高而下降,這與KIM等[23]對牙鲆(Paralichthys olivaceus)的研究結(jié)果一致。SANTIAGO等[24]研究認(rèn)為由于等能的高蛋白水平飼料含有的非蛋白能量不足,會(huì)使部分飼料蛋白被作為能量消耗,從而導(dǎo)致蛋白質(zhì)效率下降。
本研究結(jié)果表明,雙齒圍沙蠶的體蛋白隨飼料蛋白水平表現(xiàn)為先上升后平穩(wěn)的趨勢,當(dāng)飼料蛋白含量小于31%時(shí)沙蠶體蛋白隨飼料蛋白水平增加而升高,當(dāng)飼料蛋白水平達(dá)到31%以上時(shí)沙蠶的體蛋白即保持平穩(wěn)態(tài)勢,不再隨飼料蛋白增加而升高。這與陳壯等[10]、YANG等[12]、丁立云等[13]及 KIM等[23]分別對花鱸、澳洲銀鱸、星斑川鰈和牙鲆的研究結(jié)論相似。但也有一些水產(chǎn)動(dòng)物如胡子鯰(Ictalurus punctatus)[25]、條紋鱸(Morone saxatilis)[26]和棕鱒(Salmo trutta)[27]等的體蛋白含量與飼料蛋白水平無相關(guān)性。ZEITLER等[27]認(rèn)為這種差異可能與水產(chǎn)動(dòng)物的種類、養(yǎng)殖環(huán)境、飼料組成、飼養(yǎng)方法等有關(guān)。本研究中,雙齒圍沙蠶的粗脂肪含量隨飼料蛋白質(zhì)水平的增加呈逐漸下降的趨勢,這與一些水產(chǎn)動(dòng)物如花鱸[10]、星斑川鰈[13]、方格星蟲[17]和東北六須鯰的研究結(jié)果相似??赡茉蚴怯捎诘鞍踪|(zhì)水平較低的飼料中碳水化合物含量較高,這些水產(chǎn)動(dòng)物攝食碳水化合物較高的飼料時(shí)會(huì)將未被作為能量消耗的碳水化合物轉(zhuǎn)變?yōu)橹痉e存于體內(nèi)。雙齒圍沙蠶的體水分變化與其體脂肪變化相反,表現(xiàn)為隨飼料蛋白升高逐漸升高,筆者研究雙齒圍沙蠶適宜飼料脂肪水平時(shí)也發(fā)現(xiàn)其體水分與體脂肪負(fù)相關(guān)[3],石斑魚[18]、軍曹魚[19]和美國紅魚(Sciaenops ocellatus)[30]的體水分和體脂肪也呈現(xiàn)負(fù)相關(guān),本研究結(jié)果與其規(guī)律一致。此外,本研究還發(fā)現(xiàn),雙齒圍沙蠶的灰分含量隨飼料蛋白水平升高而升高,這可能與高蛋白飼料本身含有更多的灰分及礦質(zhì)元素有關(guān),本實(shí)驗(yàn)以魚粉為唯一蛋白源,蛋白水平高的飼料中魚粉用量多,而魚粉中含有較高的灰分及鈣、磷等。
水產(chǎn)養(yǎng)殖過程中,底質(zhì)中的總氮主要來源于養(yǎng)殖動(dòng)物的排泄和糞便及飼料和殘餌,除此以外,死亡個(gè)體和養(yǎng)殖環(huán)境中的硝化反應(yīng)也會(huì)增加底質(zhì)中的總氮含量。但本實(shí)驗(yàn)采用無蓄水飽和濕土方法養(yǎng)殖,避免餌料浸泡于水中而導(dǎo)致氮溶解釋放到環(huán)境中,并且投餌1.5~2 h后及時(shí)收集殘餌,因此可以忽略餌料及殘餌生成的氮。本實(shí)驗(yàn)中,各處理組均有少量的個(gè)體死亡(無顯著差異),由于死亡的沙蠶個(gè)體都在洞穴中,無法確切知道何時(shí)死亡及死亡的個(gè)體規(guī)格,因此無法計(jì)算死亡個(gè)體對底質(zhì)總氮的影響。雙齒圍沙蠶除了攝食飼料外,還會(huì)吞食底質(zhì)中泥土吸收利用其中的有機(jī)質(zhì),其對底質(zhì)中有機(jī)質(zhì)的利用能力很強(qiáng),生產(chǎn)中常利用雙齒圍沙蠶處理凈化其它水產(chǎn)動(dòng)物的殘餌和糞便[31-32],因此死亡個(gè)體的有機(jī)質(zhì)大部分也會(huì)被活沙蠶重新利用,由此可見本實(shí)驗(yàn)中底質(zhì)總氮主要來源于沙蠶的糞便和代謝排泄。本研究結(jié)果發(fā)現(xiàn),當(dāng)飼料蛋白水平超過34%時(shí),養(yǎng)殖底質(zhì)中總氮含量隨飼料蛋白水平升高而顯著上升。此種現(xiàn)象表明,當(dāng)飼料蛋白水平達(dá)到34%時(shí)已經(jīng)超過雙齒圍沙蠶的適宜需求,超過機(jī)體生長構(gòu)建需要的氨基酸在脫氨基作用下,含氮部分生成氨氮排出體外釋放到環(huán)境中,當(dāng)飼料中超過需求的蛋白質(zhì)越多,排泄到環(huán)境中的氮就越多。
綜上所述,在本實(shí)驗(yàn)條件下,飼料中粗蛋白水平為31.61%時(shí),不僅可使初始體重為(24.7±0.9)mg的雙齒圍沙蠶獲得最佳的生長效果,而且其轉(zhuǎn)化利用效率高,對養(yǎng)殖環(huán)境的污染低。因此,今后在雙齒圍沙蠶養(yǎng)殖中應(yīng)盡快使用飼料蛋白水平為31.61%左右的沙蠶專用配合飼料替代那些高蛋白的餅粕及對蝦配合飼料。
[1] 吳寶玲,孫瑞平,楊德漸.中國近海沙蠶科研究[M].北京:海洋出版社,1981:185-192.WU B L,SUN R P,YANG D J.Study on nereidae in China offshore[M].Beijing:Ocean Press,1981:185-192.
[2] PAN W,LIU X,GE F,et al.Perinerin,a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis Grube and its partial characterization[J].Journal of Biochemistry,2004,135(3):297-304.
[3] LV F,LIU F,YU Y B,et al.Effects of dietary lipid levels on growth,body composition and antioxidants of clamworm (Perinereis aibuhitensis)[J].Aquaculture Reports,2017,6(C):1-7.
[4] KIM KW,WANG X J,BAISC.Optimum dietary protein level for maximum growth of juvenile olive flounder Paralichthys olivaceus[J].Aquaculture Research,2002,33(9):673-679.
[5] LEE SM,PARK C S,BANG IC.Dietary protein requirement of young Japanese flounder Paralichthys olivaceus fed isocaloric diets[J].Fisheries Science,2002,68(1):158-164.
[6] GóMEZ-REQUENI P, BEDOLLA-CáZARES F,MONTECHIA C,et al.Effects of increasing the dietary lipid levels on the growth performance,body composition and digestive enzyme activities of the teleost pejerrey(Odontesthes bonariensis) [J].Aquaculture,2013,416(416-417):15-22.
[7] CUZON G,GUILLAUME J.Advances in world aquaculture[M].USA:World Aquaculture Society,1997:51-70.
[8] HOROWITZW,LATIMER GW.Official methods of analysis of AOAC International[M].18th edition,Gaithersburg Md,2006.
[9] 袁 靜,季平揚(yáng),袁 藝.修正的凱氏法測定土壤中的總氮[J].環(huán)境科學(xué)與管理,2009,34(2):143-146.YUAN J,JIP Y,YUAN Y.Determination of total nitrogen in soil by modified Kjeldahl Method[J].Environmental Science and Management,2009,34(2):143-146.
[10] 陳 壯,梁萌青,鄭珂珂,等.飼料蛋白水平對鱸魚生長、體組成及蛋白酶活力的影響[J].漁業(yè)科學(xué)進(jìn)展,2014,35(2):51-59.CHEN Z,LIANGM Q,ZHENG K K,etal.Impact of dietary protein level on growth performance,body composition and protease activity of juvenile Lateolabrax japonicus[J].Progress in Fishery Science,2014,35(2):51-59.
[11] 葉文娟,韓 冬,朱曉鳴,等.飼料蛋白水平對泥鰍幼魚生長和飼料利用的影響[J].水生生物學(xué)報(bào),2014,38(3):571-575.YEW J,HAN D,ZHU X M,et al.Effect of dietary protein level on growth and feed utilization of juvenile Misgurnus anguillicaudatus[J].Acta Hydrobiologica Sinica,2014,38(3):571-575.
[12] YANG SD,LIOU CH,LIU FG.Effects of dietary protein level on growth performance,carcass composition and ammonia excretion in juvenile silver perch(Bidyanusbidyanus)[J].Aquaculture,2002,213(1):363-372.
[13] 丁立云,張利民,王際英,等.飼料蛋白水平對星斑川鰈幼魚生長、體組成及血漿生化指標(biāo)的影響[J].中國水產(chǎn)科學(xué),2010,17(6):1285-1292.DING L Y,ZHANG LM,WANG JY,etal.Effects of dietary protein level on growth performance,body composition and plasma biochemistry indices of juvenile starry flounder,Platichthys stellatus[J].Journal of Fishery Sciences of China,2010,17(6):1285-1292.
[14] GUO Z Q,ZHU X M,LIU J S,et al.Effects of dietary protein level on growth performance,nitrogen and energy budget of juvenile hybrid sturgeon,Acipenser baerii♀ × A.gueldenstaedtii♂[J].Aqutculture,2012(338-341):89-95.
[15] 張 磊,危起偉,張書環(huán),等.飼料蛋白水平對達(dá)氏鱘幼魚生長性能、體組成、消化酶活性以及血液生化指標(biāo)的影響[J].淡水漁業(yè),2016,46(6):79-85.ZHANG L,WEIQW,ZHANG SH,et al.Effects of dietary protein level on growth performance,body composition,digestive enzyme activities and blood biochemical parameters of juvenile Acipenser dabryanus[J].Freshwater Fisheries,2016,46(6):79-85.
[16] 李 彬,梁旭方,劉立維,等.飼料蛋白水平對大規(guī)格草魚生長、飼料利用和氮代謝相關(guān)酶活性的影響[J].水生生物學(xué)報(bào),2014,38(2):233-240.LI B,LIANG X F,LIU L W,et al.Effects of dietary protein levels on growth,feed utilization and the enzymes activity on nitrogen metabolism of grass carp (Ctenopharyngodon idellus) [J]. Acta Hydrobiologica Sinica,2014,38(2):233-240.
[17] 張 琴,童萬平,董蘭芳,等.飼料蛋白水平對方格星蟲稚蟲生長和體組成的影響[J].漁業(yè)科學(xué)進(jìn)展,2012,33(1):86-92.ZHANG Q,TONGW P,DONG L F,et al.Effects of dietary protein level on growth performance and body composition of juvenile peanut worm,Sipunculus nudus Linnaeus[J].Progress in Fishery Science,2012,33(1):86-92.
[18] LUO Z,LIU Y J,MAIK S,et al.Effect of dietary lipid level on growth performance,feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating net cages[J].Aquaculture International,2005,13(3):257-269.
[19] WANG J T,LIU Y J,TIAN L X,et al.Effect of dietary lipid level on growth performance,lipid deposition,hepatic lipogenesis in juvenile cobia Rachycentron canadum[J].Aquaculture,2005,249(1-4):439-447.
[20] PERESH,OLIVA-TELES A.Effect of dietary lipid level on growth performance and feed utilization by European sea bass juveniles(Dicentrarchus labrax)[J].Aquaculture,1999,179(1-4):325-334.
[21] JOSEM V,F(xiàn)ERNANDEZ-PALACIOSH,MARJE H E,et al.The effects of varying dietary protein level on the growth,feed efficiency,protein utilization and body composition of gilthead sea bream fry[J].Fisheries Science,1996,62(4):620-623.
[22] 謝國駟,蔡永祥,徐維娜,等.飼料蛋白水平對日本沼蝦生長、消化酶和免疫酶的影響[J].江蘇農(nóng)業(yè)學(xué)報(bào),2007,23(6):612-617.XIE G S,CAI Y X,XU W N,et al.Effects of dietary protein levels on growth,digestive enzyme activities and immune enzyme activities of Macrobrachium nipponense[J].Journal of Jiangsu Agricultural Sciences,2007,23(6):612-617.
[23] KIM K W,WANG X J,BAISC.Reevaluation of the dietary protein requirement of Japanese flounder Paralichthys olivaceus[J].Journal of the World Aquaculture Society,2003,34(2):133-139.
[24] SANTIAGO C B,REYES Q S.Optimum dietary protein level of growth of big bead carp(Aristchthyes nobilis)fry in static water system[J].Aquaculture,1991,93(2):155-165.
[25] PAGE JW,ANDREWS JW.Interaction of dietary levels of protein and energy on channel catfish(Ictalurus punctatus)[J].Journal of Nutrition,1973,103(9):1339-1346.
[26] MILLIKIN M R.Effect of dietary protein concentration on the growth,feed efficiency and body composition of age-0 striped bass[J].Transactions of the American Fisheries Society,1982,111(3):373-378.
[27] ARZEL J,METAILLER R,KERLEGUER C,et al.The protein requirement of brown trout(Salmo trutta)fry[J].Aquaculture,1995,130(94):67-68.
[28] ZEITLER M H,KIRCHGESSNER M,SCHWARZ F J.Effects of different and energy supplies on carcass composition of carp(Cyprinus carpio L.)[J].Aquaculture,1984,36(1-2):37-48.
[29] 孫 麗,郭貴良,閆先春,等.東北六須鯰對蛋白質(zhì)的最適需求量[J].飼料工業(yè),2009,30(12):33-35.SUN L,GUO G L,YAN X C,et al.The optimal demand for proteins in the northeast catfish(Silurus soldatovi)[J].Feed Industry,2009,30(12):33-35.
[30] SERRANO JA,NEPATIPOUR G R,GATLIN D M.Dietary protein requirement of the red drum(Sciaenops ocellatus)and relative use of dietary carbohydrate and lipid[J].Aquaculture,1992,101(3-4):283-291.
[31] YANG D Z,CAO CC,WANGG,etal.The growth study of Perinereis aibuhitensis in airlift recirculating aquaculture system[J].The Open Biotechnology Journal,2015,9(1):143-149.
[32] 徐永健,盧光明,葛奇?zhèn)?雙齒圍沙蠶對圍塘養(yǎng)殖沉積物氮磷含量的影響[J].水產(chǎn)學(xué)報(bào),2011,35(1):88-95.XU Y J,LU G M,GE Q W.Removing POM of sediment by Perinereis aibuhitensis Grube in earth pond[J].Journal of Fisheries of China,2011,35(1):88-95.
Effects of dietary protein level on grow th performance,body composition of Perinereis aibuhitensis and total nitrogen in cultural substances
LV Fu,NIE Qing,LV Lin-lan,YU Ye-bing,LIU Fei,ZHAOWei-hong
(Jiangsu Key Laboratory of Biochemistry and Biotechnology of MarineWetland and Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province,College of Marine and Bioengineering,Yancheng Institute of Technology,Yancheng 224051,China)
The clamworm Perinereis aibuhitensis,a commercially important marine benthic polychaetes in intertidal zones,is in the greatest demand in domestic and foreign markets.Due to over-harvesting and deteriorated environment,the natural resource of P.aibuhitensis has been exhausted gradually and can not meetmarket demands.With the development ofmodern breeding technology,P.aibuhitensis has become an important aquacultural species in the coastal areas of China.The optimal level of dietary protein in diets is important for the growth of aquatic animals and maintenance of good aquacultural environment.However,to date,there has been no reports on specific protein feed demand of P.aibuhitensis.The purpose of this study is to estimate the optimal dietary protein level for P.aibuhitensis to provide scientific basis and guidance for the developmentof its special,efficientand environmental-friendly compound feed.The P.aibuhitensis larvae used were obtained from one batch of fertilized eggs hatched in seawater(salinity 24‰).The larvaewere dug out from sediments and placed in clean seawater(salinity 24‰)to empty their guts.Finally,1 800 healthy individualswith an average weight of(24.7±0.9)mg were selected and randomly distributed to 18 polyethylene tanks(61 cm×41 cm×25 cm,culture tanks)with soil for feeding experiments.The soil in each culture tank was 10 cm thick,and the soil was collected from the intertidal zone and washed with tap water to remove salts,organicmatter and other impurities and then immersed with seawater(salinity 24‰)to become water-saturated soil.The white fishmealwas used as only protein source to formulate six isoenergetic dietswith various protein levels(25%,28%,31%,34%,37%and 40%).The larvae were fed twice daily(8∶00 am and 19∶00 pm),each diethad 3 replicates.The feeding amountwas equal to 1% -2%and 2% -3%of the body weight,respectively.While feeding,100-120 ml of fresh water was spread on the surface of the soil to replenish the evaporated water and soften the feed.After 1.5-2 hours,the feed residue was cleaned up.The light period was 14 hours:10 hours(light:dark),and the temperature wasmaintained at25-28℃.After60 days of culture,the growth performance,body composition of the clamworms and total nitrogen in cultural substance were studied.The results showed that there was no significant difference in survival rate(SR)of clamworms among six treatments(P>0.05).With increasing dietary protein from 25%to 31%,the final average weight(FAW)and specific growth rate(SGR)were significantly improved,whearas daily feed intake(DFI)and feed conversion ratio(FCR)decreased significantly(P<0.05).Protein efficiency ratio(PER)decreased significantly with increasing dietary protein levels(P<0.05).Crude protein of clamworms upgraded significantly when dietary protein levels increased from 25%to 31%and then kept stable(P<0.05).Moisture and ash of clamworms elevated significantly with the increase in dietary protein level(P<0.05).Crude fat content of clamworms showed a reverse trend compared to body moisture content.Total nitrogen in cultural substances increased significantly when the dietary protein exceeded 34%,and the higher the dietary protein content,the greater the increasing extend of cultural substances total nitrogen.According to the broken-line model analysis based on SGR and dietary protein level,it is indicated that dietary protein requirement for clamworms is 31.61%.
Perinereis aibuhitensis;growth performance;body composition;substance total nitrogen
1004-2490(2017)06-0665-09
S 968.9
A
2017-04-28
江蘇省農(nóng)業(yè)科技支撐項(xiàng)目(BE2014346);江蘇省蘇北科技專項(xiàng)(BN2015121)
呂 富(1971-),男,江蘇東臺(tái)人,副教授,在讀博士,主要從事水產(chǎn)健康養(yǎng)殖及營養(yǎng)與飼料研究。E-mail:lvfuycit@163.com