任 駒,李四川,李 航,陳培鋒,夏惠軍,周桂勇,彭 杰
(1.西南技術(shù)物理研究所,成都 610041;2.中國(guó)人民解放軍 駐209所軍事代表室, 成都 610041; 3.華中科技大學(xué) 光學(xué)與電子信息學(xué)院,武漢 430074)
基于雙軸錐鏡的環(huán)形激光束整形
任 駒1,李四川2,李 航3,陳培鋒3,夏惠軍1,周桂勇1,彭 杰1
(1.西南技術(shù)物理研究所,成都 610041;2.中國(guó)人民解放軍 駐209所軍事代表室, 成都 610041; 3.華中科技大學(xué) 光學(xué)與電子信息學(xué)院,武漢 430074)
為了改善非穩(wěn)腔高能激光系統(tǒng)的光束質(zhì)量,提高發(fā)射光學(xué)系統(tǒng)口徑的利用率,采用新型的可用于光學(xué)非穩(wěn)腔輸出環(huán)形光束的光學(xué)整形方法,通過在激光腔外的光路上增加光學(xué)元件對(duì)輸出的環(huán)形激光束進(jìn)行了整形變換。在理論分析的基礎(chǔ)上,設(shè)計(jì)并加工了基于雙軸錐鏡的光束整形裝置,針對(duì)非穩(wěn)腔高能激光器輸出的環(huán)形光束進(jìn)行了整形實(shí)驗(yàn),取得了與理論分析一致的數(shù)據(jù)。結(jié)果表明,采用雙軸錐鏡裝置整形后的光束比原始光束具有更好的光束質(zhì)量,光束束腰直徑由45mm減小為32mm,光束質(zhì)量因子M2由14減小到11.8。該方法用于光學(xué)非穩(wěn)腔輸出環(huán)形光束整形變換具有可行性。
激光光學(xué);環(huán)形光束;光束整形;軸錐鏡
獲得高功率、高光束質(zhì)量的激光光束一直是激光領(lǐng)域探索的熱點(diǎn)。光學(xué)非穩(wěn)腔憑借其高的橫模鑒別能力、可控的衍射輸出耦合和大的模體積等優(yōu)勢(shì),成為激光研究中獲得高功率高光束質(zhì)量激光光束的首選腔型[1-3]。但由于常規(guī)非穩(wěn)腔輸出光束通常為環(huán)形,光束的遠(yuǎn)場(chǎng)特性較差,聚焦后焦斑能量由中心向外逐步擴(kuò)散,中心點(diǎn)的能量密度較低;另外,由于環(huán)形光束的遮攔比問題,相比同樣功率(能量)密度的實(shí)心光束,需要更大口徑的光學(xué)系統(tǒng),增加了強(qiáng)激光系統(tǒng)中跟瞄、發(fā)射系統(tǒng)的制造成本及結(jié)構(gòu)重量。這些缺陷嚴(yán)重限制了非穩(wěn)腔激光器的實(shí)際推廣應(yīng)用。
為解決傳統(tǒng)光學(xué)非穩(wěn)腔環(huán)形光束輸出帶來的問題,國(guó)內(nèi)外研究者提出了許多解決方案。ZUCKER等人[4]提出徑向可變反射率非穩(wěn)腔,采用逐步透射的輸出方式消除“硬邊”效應(yīng)以達(dá)到基模運(yùn)轉(zhuǎn)。KUPRENYUK等人[5]提出了90°束轉(zhuǎn)動(dòng)激光器的概念。MINEEV等人[6]采用平板波導(dǎo)非穩(wěn)腔改善光束質(zhì)量。LUO等人[7-8]采用內(nèi)外圓錐面反射鏡相結(jié)合的方式設(shè)計(jì)了針對(duì)多模橫流CO2激光器的環(huán)形光束整形系統(tǒng)。這些方案雖然解決了傳統(tǒng)共焦腔環(huán)形輸出的問題,但同時(shí)也引入了新的問題,如加工困難、調(diào)節(jié)復(fù)雜、功率低等限制因素[9]。
針對(duì)以上方案存在的問題及當(dāng)前激光系統(tǒng)大口徑、大能量的特點(diǎn),結(jié)合近期一些新型的光束整形技術(shù)[10-11],在綜合考慮加工和裝配可行性的基礎(chǔ)上,設(shè)計(jì)了一種可以裝配于激光腔外的基于雙軸錐鏡的透射式環(huán)形光束整形裝置。
軸錐鏡是一種很重要的光學(xué)器件,在各種需要特殊光束的領(lǐng)域具有重要的應(yīng)用[12-20]。雙軸錐鏡環(huán)形光束整形裝置由兩個(gè)軸錐鏡組成,如圖1所示。兩個(gè)軸錐鏡具有相同的錐頂角,其錐頂相對(duì)且同軸裝配。由圖1可以看出,垂直于軸錐鏡底面入射的光線分別經(jīng)兩個(gè)軸錐鏡折射后,光線的出射方向與入射方向一致,即該整形裝置不改變光線的傳輸方向,而是將入射光線沿徑向平移,使光束在保持傳播方向不改變的前提下靠近光軸,將環(huán)形空心激光束轉(zhuǎn)變?yōu)榻茖?shí)心的激光束。對(duì)于沿光軸方向入射的平行平面波,該裝置具有等光程特性,即輸出光束仍舊為平面波。兩軸錐鏡之間的距離可以調(diào)節(jié)用以改變輸出光束的直徑。
Fig.1 Schematic diagram of annular laser beam reshaping based on dual axicons
對(duì)于沿光軸方向入射的平行平面波,設(shè)入射環(huán)形光束的內(nèi)環(huán)半徑為ri,1,外環(huán)半徑為ri,2,經(jīng)雙軸錐鏡整形后出射環(huán)形光束的內(nèi)環(huán)半徑為ro,1,外環(huán)半徑為ro,2。在入射光束中取一半徑為ri、厚度為dri的環(huán)形微元光束,對(duì)應(yīng)的出射環(huán)形微元光束半徑為ro,厚度為dro。由圖1的幾何關(guān)系可以得到:
設(shè)入射光束為均勻分布的軸對(duì)稱環(huán)形光束,其振幅為E0,則半徑ri對(duì)應(yīng)的入射面光場(chǎng)相對(duì)分布為Ei(ri):
設(shè)出射光場(chǎng)分布為Eo(ro),忽略雙軸錐鏡對(duì)光的衰減,根據(jù)能量守恒原則,有:
根據(jù)(1)式~(4)式可得:
圖2描述了平頂環(huán)形光束經(jīng)雙軸錐鏡裝置變換前后的光場(chǎng)分布。由圖中可以看出,在ro,2 Fig.2 Beam field distribution of flat annular beams before and after shaping by dual axicons 實(shí)際的非穩(wěn)腔激光束并非平面波,但在靠近束腰處,瑞利長(zhǎng)度范圍內(nèi),其波面可近似為平面。雙軸錐鏡整形裝置的長(zhǎng)度遠(yuǎn)小于激光器出射光的瑞利長(zhǎng)度,因此,在理論分析時(shí),可以將其光束作為平面波處理。 為了驗(yàn)證雙軸錐鏡對(duì)環(huán)形激光束的整形效果,利用自行加工裝配的雙軸錐鏡光束整形裝置進(jìn)行了實(shí)驗(yàn)。兩個(gè)軸錐鏡由K9玻璃加工而成,口徑60mm,錐角120°,表面鍍1.06μm增透膜。兩個(gè)軸錐鏡錐尖相對(duì)裝配在一個(gè)鋁合金鏡筒中保持同軸,其間距可根據(jù)光束整形需求進(jìn)行調(diào)節(jié)。系統(tǒng)有效通光口徑為56mm。 實(shí)驗(yàn)光路如圖3所示。所采用的激光器為非穩(wěn)腔高能激光器。激光器輸出的環(huán)形光束經(jīng)光楔兩次反射衰減至較低的能量,經(jīng)雙軸錐鏡裝置整形后輸出,照射到反射屏上形成光斑。在雙軸錐鏡裝置后方加入透鏡可以將光束聚焦至反射屏上形成會(huì)聚光斑。透鏡焦距為5m。采用Spiricon的SP620U光束分析儀對(duì)經(jīng)過雙軸錐鏡裝置整形的激光束進(jìn)行分析。光束分析儀采集反射屏上的光斑,測(cè)量光斑參量。 Fig.3 Schematic diagram of beam reshaping experiment 實(shí)驗(yàn)結(jié)果如圖4和圖5所示。圖4為沒有加入透鏡時(shí),激光器在不同放電電壓下,輸出的光束經(jīng)過雙軸錐鏡裝置整形前后的光斑分布。圖4a和圖4b為沒有經(jīng)過整形的原始激光束光斑分布;圖4c和圖4d為經(jīng)過雙軸錐鏡裝置整形的激光束光斑分布。由圖中可以看出,經(jīng)過整形后,光斑中心空心區(qū)域減小,光斑直徑減小,光斑能量分布更加集中,能量密度增大。實(shí)驗(yàn)中采用功率通量法作為評(píng)價(jià)光束質(zhì)量的標(biāo)準(zhǔn)。由光束分析儀測(cè)得的原始光斑直徑為45mm,變換后光斑直徑為32mm。 Fig.4 Intensity distribution of beam before and after reshaping by dual axicons Fig.5 Intensity distribution of the converged beam before and after reshaping by dual axicon a—original beam b—transformed beam 圖5為經(jīng)過5m焦距透鏡會(huì)聚的激光束在反射屏上的光斑分布圖像。原始光束會(huì)聚光斑直徑為2.1mm,經(jīng)過雙軸錐鏡變換后會(huì)聚的光斑直徑為2.5mm。由此可以得到基于功率通量法的光束遠(yuǎn)場(chǎng)發(fā)散角θ: 式中,d為會(huì)聚光斑直徑,f為透鏡焦距。得到原始光束遠(yuǎn)場(chǎng)發(fā)散角為0.42mrad,變換后光束遠(yuǎn)場(chǎng)發(fā)散角為0.5mrad。 由實(shí)驗(yàn)數(shù)據(jù)可以計(jì)算出基于功率通量法的光束質(zhì)量因子: 式中,w(0)為基于功率通量法得到的光束在束腰處的直徑,原始束腰直徑為45mm,變換后束腰直徑為32mm。計(jì)算得到變換前后的光束質(zhì)量因子M2分別為14和11.8。 通過對(duì)雙軸錐鏡光束整形方法進(jìn)行理論分析,證明了其用于光學(xué)非穩(wěn)腔輸出環(huán)形光束整形變換的可行性。設(shè)計(jì)加工了基于雙軸錐鏡的光束整形裝置,針對(duì)當(dāng)前可用的非穩(wěn)腔高能激光器輸出的環(huán)形光束進(jìn)行了整形實(shí)驗(yàn)。結(jié)果表明,采用雙軸錐鏡裝置整形后,輸出環(huán)形光束的遮攔比減小,光束的能量分布向光軸集中,光束束腰直徑由45mm減小為32mm,而其遠(yuǎn)場(chǎng)發(fā)散角由0.42mrad增大為0.5mrad,光束質(zhì)量因子M2由14減小到11.8。因此,變換后的光束比原始環(huán)形光束具有更好的光束質(zhì)量。 [1] SEIGMAN A E. Unstable optical resonators for laser applications[J]. Proceeding of the IEEE, 1965, 53(3): 277-287. [2] SEIGMAN A E. Modes in unstable resonators and lens waveguides[J]. IEEE Journal of Quantum Electronics, 1967, 3(4): 156-163. [3] SEIGMAN A E. Unstable optical resonators[J]. Applied Optics, 1974, 13(2): 353-367. [4] ZUCKER H. Optical resonators with variable reflectivity mirrors[J]. Bell System Technical Journal, 1970, 49(9): 2349-2376. [5] KUPRENYUK V N, SEMENOV V E, SMIRNOVA L D. Wave-approximation calculation ofan unstable resonator with field rotation[J]. IEEE Soviet Journal of Quantum Electronics, 1983, 13(12): 1613-1617. [6] MINEEV A P, NEFEDOV S M, PASHININ P P,etal. RF excited planar CO2laser with hybrid waveguide-unstable resonator cavities[J]. Proceedings of the SPIE, 1999, 3638:35-42. [7] LUO X. Investigation on the propagation and transformation and beam control of high-power lasers [D]. Wuhan: Huazhong University of Science and Technology, 2011: 57-78(in Chinese). [8] LIU Zh X. Research to the reconstruction approach for central dark region of annular-beam output of optical unstable resonator [D]. Wuhan: Huazhong University of Science and Technology, 2013: 22-25(in Chinese). [9] ZIZZO C, ARNONE C, CALI C,etal. Fabrication and characterization of tuned Gaussian mirror for the visible and the near infrared[J]. Optics Letters, 1988, 13(5): 342-344. [10] LOU Y Y, ZHENG X L, ZHANG Sh C,etal. Flat-top beams spatial shaping with digital micromirror device[J]. Laser Technology, 2016, 40(6): 916-920(in Chinese). [11] SANJIV K T, SATYA R M, SURJYA P R. Generation of a variable-diameter collimated hollowlaser beam using metal axicon mirrors[J]. Optical Engineering, 2011, 50(1): 014001. [12] WU Zh W. Bottle beam with adjustable size generated by a frustum and axicon system[J]. Laser Technology, 2014, 38(5): 655-659(in Chinese). [13] LI Sh M, WANG Y, HU A J,etal. A method of forming annular pump light[J]. Laser Technology, 2015, 39(5): 621-624(in Chinese). [14] WEI M D, SHIAO W L, LIN Y T. Adjustable generation of bottle and hollow beams using an axicon[J]. Optics Communications, 2005, 248(1/3): 7-14. [15] XIE Z, ARMBRUSTER V, GROSJEAN T. Axicon on a gradient index lens (AXIGRIN): integrated optical bench for Bessel beam generation from a point-like source[J]. Applied Optics, 2014, 53(26): 6103-6106. [16] JENS B, MATTHIAS C W, ULRIKE W. Fast and robust piezoelectric axicon mirror[J]. Optics Letters, 2014, 39(15): 4631-4634. [17] GOLUB I, CHEBBI B, SHAW D,etal. Characterization of a refractive logarithmic axicon[J]. Optics Letters, 2010, 35(16): 2828-2830. [18] CHEBBI B, GOLUB I, BREYGIN P. Characterization of a refractive linear axicon with distant depth of field and no central blocking[J]. Applied Optics, 2013, 52(35): 8572-8575. [19] WOJNOWSKI D, JANKOWSKA E, MASAJADA J,etal. Surface profilometry with binary axicon-vortex and lens-vortex optical elements[J]. Optics Letters, 2014, 39(1): 119-122. [20] BRUNNE J, WAPLER M C, WALLRABE U. Fast and robust piezoelectric axicon mirror[J]. Optics Letters, 2014, 39(15): 4631-4634. Annularlaserbeamreshapingbasedondualaxicons RENJu1,LISichuan2,LIHang3,CHENPeifeng3,XIAHuijun1,ZHOUGuiyong1,PENGJie1 (1.Southwest Institute of Technical Physics, Chengdu 610041, China; 2.Military Representive Office in No.209 Institute, People’s Liberation Army of China, Chengdu 610041; 3.School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China) In order to improvelaser beam quality of unstable cavity high energy laser systems and the utilization of the aperture of a transmitting optical system, a new optical shaping method for the annular beam was proposed. Optical elements were added to the light path outside the laser cavity to shape the output of annular laser beam. On the basis of theoretical analysis, beam shaping devices based on dual axicons were designed and fabricated. The shaping experiments were carried out for the annular beam from an unstable cavity high energy laser. The data was obtained and was consistent with theoretical analysis.The results show that, the beam after shaping by using dual axicons has better beam quality than that of the original beam. Waist diameter decreases from 45mm to 32mm.M2factor reduces from 14 to 11.8. The method is feasible for the shaping and transformation of the annular beam from an unstable resonator. laser optics; annular beam; beam reshaping; axicon 1001-3806(2018)01-0104-04 任 駒(1981-),男,博士,高級(jí)工程師,現(xiàn)主要從事激光參量測(cè)試技術(shù)的研究。 E-mail:renju1981@126.com 2017-03-15; 2017-03-27 O436 A 10.7510/jgjs.issn.1001-3806.2018.01.0202 實(shí) 驗(yàn)
3 結(jié) 論