胡躍平
【摘要】數(shù)學證明題對于學生邏輯思維能力的培養(yǎng)有著重要的作用.雖然說學生對于數(shù)學證明題的重要性都有一定的認識,但是,在實際的學習過程中,還存在著解題錯誤較多的問題,本文計劃對初中數(shù)學證明題解題錯誤原因和糾錯方式進行一定的分析,這對提高數(shù)學證明題解題正確率有一定的借鑒意義.
【關(guān)鍵詞】證明題;解題;原因
數(shù)學證明題對于學生來講,具有非常重要的作用,它的價值主要有:能夠使學生更加清晰的了解數(shù)學知識;訓練學生的思維能力;提高學生的溝通能力;幫助學生發(fā)現(xiàn)新的知識點等.由此可以發(fā)現(xiàn),數(shù)學證明題對于學生邏輯思維能力的培養(yǎng)有著重要的作用.但是,在實際的學習過程中,還存在著解題錯誤較多的問題,對初中數(shù)學證明題解題錯誤和糾錯方式進行一定的探討,這對提高數(shù)學證明題解題正確率有一定的借鑒意義.
一、初中數(shù)學證明題解題常見錯誤分析
(一)文字命題及實際應(yīng)用問題解決的典型錯誤
題目某廠工人要測量河兩岸相對的兩點A,B的距離,先在AB的垂線BF上取C,D兩點,使CD=BC,再過點D作BF的垂線DE,使點A,C,E在同一條直線上(如圖1所示),這時測得DE的長就是AB的長.寫出已知和求證,并進行證明.
該題目其實就是讓學生利用全等三角形解決實際問題,并且能夠根據(jù)實際來構(gòu)建三角形,然后再根據(jù)題目要求,結(jié)合圖形,利用證明的方式,來解決實際問題.在這個題目當中,其實,已經(jīng)給出了具體的圖形,和已知條件,對于大部分的學生來講,寫出正確答案并不算困難.但是,在求證AB=DE的時候,很多的學生并不能夠詳細地羅列出已知條件,或者是憑借自己的主觀想象來寫出條件.如下是一種典型的錯誤解答方式,學生混淆了題設(shè)和結(jié)論,錯誤的將原本的結(jié)論AB=DE當作是已知條件,這也就導致了整個題目的證明錯誤.
已知BC=CD,求證AC=CE.
∵BC=CD,∴∠D=∠B=90°.
∵DE∥AB,∠ACB=∠BCD,∴AB=DE.
∵BC=CD,AB=DE,∴△ABC≌△CDE.
∵△ABC≌△CDE且BC=CD,AB=DE,∴AC=CE.
(二)邏輯推理方面的典型錯誤與歸因
數(shù)學證明題最重要的是考查學生的邏輯推理能力,其在這方面最典型的錯誤有:
1.循環(huán)論證
這是學生在解答證明題的時候常見的一種錯誤,這主要指的是利用證明題本身或者其等價命題作為依據(jù),但是,其實從本質(zhì)上來說,題目本身并沒有給予相應(yīng)的條件來證明.例如,題目:
如圖2所示,在△ABC中,D是AB邊上一點,DF交AC于點E,DE=FE,AE=CE,AB與CF有什么位置關(guān)系?請說明理由.
這道題目大多數(shù)的學生都能夠解答正確,但是,仍然有部分學生會出現(xiàn)不同的錯誤,其中,最典型的一種錯誤就是循環(huán)論證.在如下,這名學生就是直接將AD=CF作為了已知條件,而沒有對題目本身所隱含的條件進行深度挖掘.
解:∵DE=FE,AE=CE,∴AD=CF.
∵AD=CF,DE=FE,AE=CE,∴△ADE≌△CEF.
∵∠AED與∠CEF是對頂角,∴AD∥CF.
∵AD與AB是同一直線,∴AB∥CF.
2.偷換命題
這也是學生在解答證明題的時候經(jīng)常會出現(xiàn)的一個錯誤,也就是對命題本身的理解錯誤,錯誤的利用了另外一個命題.
二、糾正初中數(shù)學證明題錯誤的建議
(一)學生邏輯思維能力的培養(yǎng)
證明題一般包括兩個部分,一種是被肯定的對象,另外一種則是被否定或者被肯定的性質(zhì).換句話說前者其實就是條件,后者則是結(jié)論.這樣就能夠使學生從本質(zhì)上來分析所出的證明題目.例如,等腰三角形兩個底角角度相同.其中,等腰三角形底角是被肯定的條件,角度相同則是被肯定的性質(zhì).所以這個題目的條件是等腰三角形的兩個底角;結(jié)論是底角角度相同.只有不斷加強學生邏輯思維能力的培養(yǎng),才能夠使學生更快更準確的辨別這些問題,從而提高解題的正確率.
(二)證明過程的書寫要求必須要明確
在日常聯(lián)系過程中,應(yīng)當讓學生對每一步的解答進行注解,使學生能夠更加清晰的了解每一步的論據(jù)是什么,直到學生養(yǎng)成一定寫作習慣,才可以逐步的消除這些步驟.通過這些注解,學生能夠更快的發(fā)現(xiàn)解題過程中所可能出現(xiàn)的錯誤.另外,還需要注意的是公式、符號、字母與課程標準要求的一一對應(yīng),避免出現(xiàn)書寫錯誤的出現(xiàn).
(三)提高練習質(zhì)量
適當?shù)木毩暎軌驈娀瘜W生記憶,鞏固學生知識,培養(yǎng)解題技巧.需要注意的是,我們要盡量避免題海戰(zhàn)術(shù),加強全面的重點練習.教師可以選擇一些一題多解的代表性題目,讓學生充分發(fā)揮主觀能動性,從不同的角度來理解題目,讓他們大膽地尋找不同的解題方法.提高練習質(zhì)量,強化學生解題技巧,是提高證明題解答正確率的有效途徑.
【參考文獻】
[1]丁小紅.探析數(shù)學錯解的原因與對策[J].語數(shù)外學習(數(shù)學教育),2013(2):111.
[2]張國寶.淺談初中數(shù)學的學習方法與對策[J].學周刊,2016(1):61.
[3]張偉品.淺談初中數(shù)學教學中的變式訓練[J].學周刊,2016(1):51.endprint