国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

嵌巖樁嵌巖段的巖石極限側(cè)阻力系數(shù)

2018-01-08 09:19魯先龍乾增珍楊文智鄭衛(wèi)鋒
土木建筑與環(huán)境工程 2018年6期
關(guān)鍵詞:抗壓強(qiáng)度

魯先龍 乾增珍 楊文智 鄭衛(wèi)鋒

摘 要:嵌巖樁在巖土工程中已得到廣泛應(yīng)用,但如何準(zhǔn)確計(jì)算嵌巖段樁的極限側(cè)阻力仍是工程設(shè)計(jì)人員面臨的重要課題。收集整理了不同時(shí)期、不同地區(qū)、不同巖石強(qiáng)度和不同嵌巖條件下開展的145個(gè)嵌巖樁豎向下壓承載力試驗(yàn)成果,主要包括嵌巖段巖石類型及其單軸抗壓強(qiáng)度、嵌巖樁的直徑與嵌巖深度、嵌巖段樁的極限側(cè)阻力等。定義嵌巖段樁的極限側(cè)阻力和巖石單軸抗壓強(qiáng)度的比值為嵌巖樁嵌巖段巖石極限側(cè)阻力系數(shù),分析了樁徑、嵌巖深度、嵌巖深徑比和巖石強(qiáng)度對(duì)嵌巖段極限側(cè)阻力和巖石極限側(cè)阻力系數(shù)的影響規(guī)律,建立了嵌巖段巖石極限側(cè)阻力系數(shù)與巖石單軸抗壓強(qiáng)度之間的擬合關(guān)系式,給出了不同可靠度水平下巖石側(cè)極限阻力系數(shù)取值。

關(guān)鍵詞: 嵌巖樁;極限側(cè)阻力系數(shù);嵌巖深徑比;抗壓強(qiáng)度

中圖分類號(hào):TU411

?文獻(xiàn)標(biāo)志碼:A? 文章編號(hào):1674-4764(2018)06-0029-10

Analysis on ultimate side shear resistance factor of

piles socketed into rocks

Lu Xianlong1,Qian Zengzhen2,Yang Wenzhi1,Zheng Weifeng1

(1.China Electric Power Research Institute, Beijing 100192, P. R. China;

2.School of Engineering and Technology, China University of Geosciences, Beijing 100083, P. R. China)

Abstract:Rock-socket pile foundations have been widely used in engineering practices. It is important to determine the ultimate side shear resistance of the piles socketed into rock for designers. In this study, the results of 145 compression load tests were collected to examine several issues related to the bearing capacity behavior of rock-socket piles. All these load test results were representative since they were carried out worldwide, on different rock types and rock-socket conditions, for a long time period. Using these available load test case history data, the socketed rock type of piles, diameter and embedment depth of socketed piles, uniaxial compressive strength of rock in nature, and the ultimate bearing side resistances were collected. The ratio of ultimate side shear resistance to unconfined compressive strength of the rock was denoted as the ultimate side shear resistance factor of the piles socketed into rocks. Effects of pile diameter, rocked depth, ratio of rock rocketed depth to diameter, and the unconfined compressive strength of the rock on ultimate side shear resistance and the influential factors were evaluated. Empirical relationships between the ultimate side shear resistance factor and the unconfined compressive strength are suggested, and based on the statistical results, the specific design recommendations for the ultimate side shear resistance factor are provided.

Keywords:rock-socket pile; ultimate side shear resistance factor; ratio of pile rocketed depth to diameter;? compressive strength

嵌巖樁是大型建(構(gòu))筑物的主要基礎(chǔ)型式,已在工程中得到了廣泛應(yīng)用,主要用于承受上部結(jié)構(gòu)的下壓或上拔荷載。對(duì)抗壓和抗拔嵌巖樁,嵌巖段樁的側(cè)阻力通常都占總承載力較大比例。嵌巖樁荷載傳遞是樁 土 巖相互作用的復(fù)雜過程。目前,學(xué)術(shù)界和工程界普遍認(rèn)為,嵌巖樁抗壓承載力主要由基巖上覆土層的樁側(cè)阻力、嵌巖段樁側(cè)阻力和樁端阻力3部分組成。這在中國(guó)相關(guān)規(guī)范[1-4] 給出的嵌巖樁承載力設(shè)計(jì)計(jì)算方法中均得到體現(xiàn)。嵌 巖樁抗拔承載力主要由基巖上覆土層樁側(cè)阻力和嵌巖段樁側(cè)阻力2部分組成。通常采用折減系數(shù),對(duì)土層和巖層抗壓極限側(cè)阻力進(jìn)行折減。如文獻(xiàn)[5]建議該折減系數(shù)為0.7。因此,研究嵌巖樁嵌巖段樁測(cè)極限側(cè)阻力及巖石極限側(cè)阻力系數(shù)對(duì)嵌巖樁的抗壓和抗拔承載性能都具有重要的理論和工程意義。

目前,抗壓嵌巖樁承載力計(jì)算主要是經(jīng)驗(yàn)和半經(jīng)驗(yàn)公式,經(jīng)驗(yàn)參數(shù)較多。以中國(guó)現(xiàn)行行業(yè)標(biāo)準(zhǔn)《建筑樁基技術(shù)規(guī)范》(JGJ 94—2008)[1] 為例,其采用嵌巖段側(cè)阻和端阻綜合系數(shù)乘以相應(yīng)巖石飽和單軸抗壓強(qiáng)度的方法,計(jì)算得到嵌巖樁嵌巖段下壓極限承載力。該方法簡(jiǎn)單且工程意義明確,便于工程設(shè)計(jì)使用[6] 。然而,嵌巖段側(cè)阻和端阻綜合系數(shù)取值存在一定局限性。首先,側(cè)阻力系數(shù)與端阻力系數(shù)來源不同,側(cè)阻力系數(shù)來源于假定側(cè)阻力分布模式的計(jì)算結(jié)果,而端阻力系數(shù)則來源于試驗(yàn)數(shù)據(jù)的統(tǒng)計(jì)結(jié)果。其次,綜合系數(shù)中側(cè)阻力系數(shù)僅按照軟質(zhì)巖和硬質(zhì)巖2大檔次取值,缺少進(jìn)一步細(xì)劃分,難以充分體現(xiàn)巖性差異。因此,迫切需要收集更多嵌巖樁試驗(yàn)數(shù)據(jù),對(duì)嵌巖樁嵌巖段巖石極限側(cè)阻力和巖石極限側(cè)阻力系數(shù)進(jìn)行分析,也為相關(guān)設(shè)計(jì)規(guī)范的完善提供參考。

收集了在不同時(shí)期、不同地區(qū)、不同巖石強(qiáng)度和不同嵌巖條件下所完成的145個(gè)嵌巖樁豎向下壓承載力試驗(yàn)成果,分析了樁徑、嵌巖深度、嵌巖深徑比和巖石強(qiáng)度等因素對(duì)嵌巖樁嵌巖段樁側(cè)極限側(cè)阻力及巖石極限側(cè)阻力系數(shù)的影響規(guī)律,建立了嵌巖段巖石極限側(cè)阻力系數(shù)與巖石單軸抗壓強(qiáng)度之間的擬合關(guān)系式?;诮y(tǒng)計(jì)分析結(jié)果,給出了不同可靠度水平下嵌巖樁嵌巖段巖石極限阻力系數(shù)的取值,可為嵌巖樁極限側(cè)阻力計(jì)算提供借鑒。

1 數(shù)據(jù)收集與整理

1.1 數(shù)據(jù)收集

試驗(yàn)資料來源于34篇文獻(xiàn)[7-40] ,共145個(gè)嵌巖樁豎向下壓承載力試驗(yàn)成果,主要包括嵌巖段巖石類型、嵌巖段樁的直徑 d 與嵌巖深度 h ?r、巖石天然單軸抗壓強(qiáng)度 σ ?c及嵌巖段樁的極限側(cè)阻力 q ?s等。相關(guān)文獻(xiàn)作者及發(fā)表時(shí)間如表1所示。全部嵌巖樁嵌巖段下壓承載力試驗(yàn)結(jié)果列于表2。

當(dāng)前,學(xué)者們通常定義嵌巖段樁的極限側(cè)阻力 q ?s和巖石單軸抗壓強(qiáng)度 σ ?c之間的比值為嵌巖樁嵌巖段巖石極限側(cè)阻力系數(shù),記為 ξ ?s,即

ξ ?s = ?q ?s/ σ ?c (1)

根據(jù)表2試驗(yàn)結(jié)果,按式(1)得到各試驗(yàn)基礎(chǔ)嵌巖段巖石極限側(cè)阻力系數(shù) ξ ?s值,結(jié)果也列于表2。

文獻(xiàn)中的試驗(yàn)工作是不同時(shí)期、不同地區(qū)學(xué)者在不同巖石類型與強(qiáng)度、不同樁端嵌巖條件下完成的,作者對(duì)嵌巖樁的極限側(cè)阻力測(cè)試方法、極限承載力的確定原則也不盡相同。分析中均直接采用原文獻(xiàn)結(jié)果,這種分析方法得到的研究結(jié)論應(yīng)更具有一般性。

1.2 數(shù)據(jù)整理與分析

表2結(jié)果表明,不同巖性中嵌巖樁抗壓承載力差異主要由嵌巖段巖體性質(zhì)和樁端嵌巖特征的不同引起。樁端嵌巖特征主要包括樁徑、嵌巖深度、嵌巖深徑比。表2中嵌巖段巖石主要包括頁(yè)巖、泥灰?guī)r、安山巖、泥巖、砂巖、花崗巖、石灰?guī)r、粉砂巖、凝灰?guī)r、輝綠巖等多種類型。中國(guó)《工程巖體分級(jí)標(biāo)準(zhǔn)》(GB/T 50218-2014)[41] 指出,影響嵌巖段巖體性質(zhì)的因素主要是巖石物理力學(xué)性質(zhì)、構(gòu)造發(fā)育情況、承受的荷載(工程荷載和初始應(yīng)力)、應(yīng)力應(yīng)變狀態(tài)、幾何邊界條件、水的賦存狀態(tài)等。在這些因素中,巖石堅(jiān)硬程度則是反映巖體基本特性的一個(gè)重要因素。此外,學(xué)者們和工程界也都是采用嵌巖樁嵌巖段巖石極限側(cè)阻力系數(shù)乘以巖石單軸抗壓強(qiáng)度計(jì)算得到嵌巖樁嵌巖段樁側(cè)巖石極限側(cè)力。因此,為便于分析,根據(jù)表2試驗(yàn)成果,并參考《巖土工程勘察規(guī)范》(GB 50021—2001)(2009版)[42] 中巖石堅(jiān)硬程度分類規(guī)定,根據(jù) σ ?c的大小不同,將試驗(yàn)數(shù)據(jù)分為5組: σ ?c≤5 MPa,5 MPa< σ ?c≤15 MPa,15 MPa< σ ?c≤30 MPa,30 MPa< σ ?c≤60 MPa和 σ ?c>60 MPa。 據(jù)此分析嵌巖段巖體性質(zhì)對(duì)嵌巖段樁極限側(cè)阻力及巖石極限側(cè)阻力系數(shù)的影響規(guī)律。各分組的試驗(yàn)樣本量分別為40、49、23、22和11。

文獻(xiàn)[42]中巖石堅(jiān)硬程度按巖石飽和單軸抗壓強(qiáng)度 f rk 大小進(jìn)行劃分,而本文引用文獻(xiàn)中的巖石強(qiáng)度 σ ?c均為巖石天然單軸抗壓強(qiáng)度,這是二者的不同。采用根據(jù) σ ?c大小進(jìn)行試驗(yàn)數(shù)據(jù)分組的方法,主要是便于問題分析與成果對(duì)比。

2 嵌巖段樁的極限側(cè)阻力及巖石極限

側(cè)阻力系數(shù)影響因素????? 2.1 樁徑

圖1和圖2分別為嵌巖段樁的極限側(cè)阻力和嵌巖段巖石極限側(cè)阻力系數(shù)隨樁徑的變化規(guī)律。

從圖1和圖2可看出,嵌巖段樁的極限側(cè)阻力及嵌巖段巖石極限側(cè)阻力系數(shù)隨樁徑變化均具有較大的離散性,二者之間無明顯的相關(guān)性。Williams等的試驗(yàn)也表明[28] ,當(dāng)樁徑大于150 mm時(shí),樁徑對(duì)嵌巖樁的極限側(cè)阻力影響可忽略不計(jì)??赡茉?yàn)椋呵稁r樁嵌巖段樁側(cè)阻力主要靠樁 巖間相對(duì)位移發(fā)揮,但巖體發(fā)揮極限側(cè)阻所需的相對(duì)位移較小,對(duì)破碎砂質(zhì)粘土巖和細(xì)砂巖約4 mm,完整細(xì)砂巖約3 mm,完整石灰?guī)r和花崗巖≤2 mm[43] 。由于樁 巖間極限側(cè)阻發(fā)揮所需的相對(duì)位移主要與巖體類別有關(guān),從而使得嵌巖段巖石極限側(cè)阻力與樁徑之間的相關(guān)性不強(qiáng)。

2.2 嵌巖深度

嵌巖深度是嵌巖樁設(shè)計(jì)的重要參數(shù)之一,直接關(guān)系嵌巖樁設(shè)計(jì)的安全性和經(jīng)濟(jì)性。嵌巖深度過大,雖然安全可靠,但施工難度大、費(fèi)用高。反之,嵌巖深度過小,若樁端巖層性質(zhì)差,嵌巖樁承載力和沉降可能不滿足上部結(jié)構(gòu)要求。

圖3和圖4分別給出了嵌巖段樁的極限側(cè)阻力和巖石極限側(cè)阻力系數(shù)隨嵌巖深度變化規(guī)律。

圖3和圖4表明,嵌巖段樁的極限側(cè)阻力和嵌巖段巖石極限側(cè)阻力系數(shù)隨嵌巖深度的變化都具有一定離散性,但總體隨嵌巖深度的增加而減小。這與Rowe等[44] 研究結(jié)論一致。即在一定嵌巖深度范圍內(nèi),增加嵌巖深度可提高嵌巖樁承載力,但超過某一深度后,增加嵌巖深度對(duì)單樁承載力幾乎沒有影響,嵌巖樁存在最佳嵌巖深度,這也與中國(guó)學(xué)者對(duì)嵌巖深度普遍看法一致[44-49] ,即嵌巖樁存在最佳嵌巖深度,可使嵌巖段樁側(cè)阻力和樁端阻力發(fā)揮最為協(xié)調(diào)和充分。

2.3 嵌巖深徑比

圖5為嵌巖段樁的極限側(cè)阻力隨嵌巖深徑比 h ?r/ d 的變化規(guī)律。結(jié)果表明,嵌巖段樁的極限側(cè)阻力總體隨嵌巖深徑比的增大而減小。中國(guó)學(xué)者對(duì)嵌巖樁最佳嵌巖深徑比取值的研究結(jié)論也不一致。黃求順[45] 認(rèn)為嵌巖樁最佳嵌巖深徑比為3,而劉興遠(yuǎn)等[46] 認(rèn)為一律將嵌巖深徑比等于3作為最佳嵌巖深度不合理,應(yīng)根據(jù)樁端所嵌入巖體狀態(tài)確定。明可前[47] 通過試驗(yàn)認(rèn)為最佳嵌巖深徑比為4。許錫賓等[48] 認(rèn)為硬質(zhì)巖和軟質(zhì)巖最佳嵌巖深徑比分別取3和5較合理。

圖6為采用雙對(duì)數(shù)坐標(biāo)軸繪制的嵌巖段巖石極限側(cè)阻力系數(shù)隨嵌巖深徑比變化規(guī)律。中國(guó)樁基規(guī)范[1] 中巖石極限側(cè)阻力系數(shù)與巖石強(qiáng)度、嵌巖深徑比有關(guān)。圖6中也給出了中國(guó)樁基規(guī)范中嵌巖段巖石極限側(cè)阻力系數(shù)隨嵌巖深徑比的變化曲線。

從圖6可看出,對(duì)極軟巖和軟巖( σ ?c≤15 MPa),規(guī)范取值總體偏小,而對(duì)較硬巖和硬巖( σ ?c>30 MPa),規(guī)范取值又總體偏大。同時(shí),圖6中相同和不同巖石強(qiáng)度下,嵌巖段巖石極限側(cè)阻力系數(shù)與嵌巖深徑比之間無明顯的相關(guān)性。然而,中國(guó)樁基規(guī)范[1] 中,不論是極軟巖和軟巖,還是較硬巖和硬巖,嵌巖段巖石極限側(cè)阻力系數(shù)取值與嵌巖深徑比相關(guān),且隨嵌巖深徑比增加均略有下將,這顯然不盡合理。

2.4 巖石強(qiáng)度

學(xué)者們都是將嵌巖段樁的極限側(cè)阻力和巖石單軸抗壓強(qiáng)度聯(lián)系在一起。這既表明嵌巖段樁的極限側(cè)阻力和巖石單軸抗壓強(qiáng)度之間有較好的相關(guān)性。學(xué)者們多采用 q ?s= b ( σ ?c)0.50 擬合嵌巖段樁的極限側(cè)阻力 q ?s和巖石單軸抗壓強(qiáng)度 σ ?c之間關(guān)系,不同學(xué)者之間系數(shù) b 的取值不同,如表3所示。

根據(jù)表2數(shù)據(jù),可得到嵌巖段樁的極限側(cè)阻力隨巖石單軸抗壓強(qiáng)度變化如圖7所示。圖7給出了表3中不同系數(shù) b 所對(duì)應(yīng)的嵌巖段樁側(cè)極限阻力和巖石單軸抗壓強(qiáng)度的變化曲線。為便于進(jìn)一步比較,將圖7采用雙對(duì)數(shù)坐標(biāo)軸表示,結(jié)果如如圖8所示。

圖7和圖8均表明,嵌巖段樁的極限側(cè)阻力隨巖石單軸抗壓強(qiáng)度增加而增加,可采用式(2)擬合。

q ?s=0.436( σ ?c)0.32 ?(2)

圖9給出了按表2數(shù)據(jù)得到的嵌巖樁巖石極限側(cè)阻力系數(shù)隨巖石單軸抗壓強(qiáng)度的變化規(guī)律。

圖9中巖石極限側(cè)阻力系數(shù) ξ ?s隨巖石單軸抗壓強(qiáng)度 σ ?c增加而下將, ξ ?s和 σ ?c間可采用式(3)擬合。

ξ ?s =0.436(σ ?c )-0.68 ?(3)

顯然,式(3)與按照式(1)、式(2)計(jì)算結(jié)果一致。

3 巖石極限側(cè)阻力系數(shù)的取值建議

中國(guó)現(xiàn)行樁基規(guī)范[1] 中嵌巖段巖石極限阻力系數(shù)的取值與巖石強(qiáng)度、嵌巖深徑比和成樁工藝有關(guān)。但如前所述,樁徑、嵌巖深度及嵌巖深徑比對(duì)嵌巖段巖石極限側(cè)阻力系數(shù)影響并不顯著。巖石強(qiáng)度是影響嵌巖段巖石極限側(cè)阻力系數(shù)的主要因素。

根據(jù)表2結(jié)果,對(duì) σ ?c≤5 MPa、5 MPa< σ ?c≤15 MPa、15 MPa< σ ?c≤30 MPa和30 MPa< σ ?c≤60 MPa各分組的巖石極限側(cè)阻力系數(shù)進(jìn)行統(tǒng)計(jì)分析,結(jié)果如表4。總的規(guī)律是巖石強(qiáng)度愈高, ξ ?s愈低。

圖10為不同巖石強(qiáng)度分組條件下,嵌巖段巖石極限側(cè)阻力系數(shù)的累積分布曲線,其橫軸為巖石極限側(cè)阻力系數(shù) ξ ?s值,縱軸為小于某 ξ ?s值數(shù)據(jù)個(gè)數(shù)所占的百分比。

根據(jù)圖10所示的極限側(cè)阻力系數(shù)累積分布曲線,得到不同巖石強(qiáng)度條件下,具有給定保證概率的嵌巖段巖石極限側(cè)阻力系數(shù) ξ ?s取值。若以 ξ ?s小于某一數(shù)值的數(shù)據(jù)個(gè)數(shù)百分比為90%,則由此確定的 ξ ?s值將具有90%的保證概率,結(jié)果如表4所示。

4 結(jié)論

根據(jù)不同時(shí)期完成的145個(gè)嵌巖樁承載力試驗(yàn)成果,分析了樁徑、嵌巖深度、嵌巖深徑比和巖石強(qiáng)度對(duì)嵌巖樁嵌巖段樁的極限側(cè)阻力和巖石側(cè)極限阻力系數(shù)的影響規(guī)律,主要結(jié)論如下:

1)巖石強(qiáng)度是影響巖石極限側(cè)阻力系數(shù)的最主要因素,可采用 ξ ?s=0.436( σ ?c)-0.68 擬合嵌巖段巖石極限側(cè)阻力系數(shù)與巖石天然單軸抗壓強(qiáng)度之間的關(guān)系。嵌巖樁嵌巖段巖石極限側(cè)阻力系數(shù)與樁徑間無顯著相關(guān)性。相同巖石條件下,巖石極限側(cè)阻力系數(shù)總體上隨嵌巖深度增加呈下將趨勢(shì),但二者之間相關(guān)性不顯著。

2)嵌巖段樁的極限側(cè)阻力總體上隨嵌巖深徑比增大而減小。嵌巖段巖石極限側(cè)阻力系數(shù)與嵌巖深徑比間無顯著相關(guān)性。中國(guó)現(xiàn)行樁基規(guī)范中,巖石極限側(cè)阻力系數(shù)取值與嵌巖深徑比相關(guān),且隨嵌巖深徑比增加而減小,顯然并不合理。此外,中國(guó)樁基規(guī)范對(duì)極軟巖和軟巖的巖石極限側(cè)阻力系數(shù)取值總體偏小,而較硬巖和硬巖的取值又總體偏大。

3)針對(duì)巖石天然單軸抗壓強(qiáng)度 σ ?c分組( σ ?c≤5 MPa,5 MPa< σ ?c≤15 MPa,15 MPa< σ ?c≤30 MPa,30 MPa< σ ?c≤60 MPa)所推薦的巖石極限側(cè)阻力系數(shù)的均值及具有90%保證概率的巖石極限側(cè)阻力系數(shù)取值,可作為不同可靠度水平下的工程設(shè)計(jì)依據(jù)。

參考文獻(xiàn):

[1] ???建筑樁基技術(shù)規(guī)范: JGJ 94—2008 [S]. 北京:中國(guó)建筑工業(yè)出版社,2008.

Technical code for building pile foundations: JGJ 94-2008 [S]. Beijing: China Architecture and Building Press, 2008. (in Chinese)

[2] ??鐵路橋涵地基和基礎(chǔ)設(shè)計(jì)規(guī)范:TB 10002.5—2005 [S]. 北京:中國(guó)鐵道出版社,2005.

Code for design on subsoil and foundation of railway bridge and culvert: TB 10002.5-2005 [S]. Beijing: China Railway Publishing House, 2005. (in Chinese)

[3] ??公路橋涵地基與基礎(chǔ)設(shè)計(jì)規(guī)范:JTG D63—2007 [S]. 北京:人民交通出版社,2007.

Code for design of ground base and foundation of highway bridges and culverts: JTG D63-2007 [S]. Beijing: China Communications Press, 2007. (in Chinese)

[4] ??港口工程樁基規(guī)范:JTS 167—4—2012 [S]. 北京:人民交通出版社,2012.

Code for pile foundation of harbor engineering: JTS 167-4-2012 [S]. Beijing: China Communications Press, 2012. (in Chinese)

[5] ?AASHTO. ??Standard specifications for highway bridges[S]. American Association of State Highway and Transportation Officials, Washington, D.C.,1996.

[6] ??王衛(wèi)東,吳江斌,王向軍.嵌巖樁嵌巖段側(cè)阻和端阻綜合系數(shù)研究[J]. 巖土力學(xué), 2015, 36(Sup 2):289-295.

WANG W D, WU J B, WANG X J. Study of comprehensive coefficient of shaft/tip resistance for rock-socketed piles [J]. Rock and Soil Mechanics, 2015, 36(Sup 2):289-295. (in Chinese)

[7] ?MASON ?R? C. Transmission of high loads to primary foundations by large diameter shafts [C]// Proceedings of ASCE Convention, ASCE, New York, 1960.

[8] ?THORBURN ?S. Large diameter piles founded on bedrock [C]// Symposium on Large Bored Piles, Institution of Civil Engineers, London, 1966:120-129.

[9] ?MATICH ?M A J, KOZICHI P. Some load tests on drilled cast-in-place concrete caissons [J]. Canadian Geotechnical Journal, 1967, 4(4): 367-375.

[10] ?SEYCHUCK ?J L. Load tests on bedrock [J]. Canadian Geotechnical Journal, 1970, 7(4): 464-469.

[11] ?OSTERBERG ?J O, GILL S A. Load transfer mechanism for piers socketed in hard soils or rock [C]// Proceedings of 9th Candian Rock Mechanics Symposium, 1973:235-262.

[12] ?DAVIS ?A? G. Contribution to discussion IV, rocks. [C]// Proceedings of Cambridge Conference on Settlement of Structure, 1974:757-759.

[13] ?BUTTLING ?S. Estimates of shaft and end loads in piles in chalk using strain gauge instrumentation [J]. Géotechnique, 1976, 26: 133-147.

[14] ?ROSENBERG ?P, JOURNEAUX N L. Friction and end bearing tests on bed-rock for high capacity socket design [J]. Canadian Geotechnical Journal, 1976, 13(3): 324-333.

[15] ?WEBB ?D L. The behaviour of bored piles in weathered diabase [J]. Géotechnique, 1976, 26: 63-72.

[16] ?WILSON ?L C. Tests of bored and driven piles in cretaceous mudstone at Port Elizabeth, South Africa [J]. Géotechnique, 1976, 26: 5-12.

[17] ?VOGAN ?R W. Friction and end bearing tests on bedrock for high capacity socket design: Discussion [J]. Canadian Geotechnical Journal, 1977, 14(1): 156-158.

[18] ?PELLS ?P J N, DOUGLAS D J, RODWAY B T, et al. Design loadings for foundations on shale and sandstone in the Sydney region [R].? University of Sydney, Sydney, Australia, 1978.

[19] ?HORVATH ?R G, KENNEY T C. Shaft resistance of rock socketed drilled piers [C]// Proceedings on Deep Foundations, ASCE, New York, 1979:182-214.

[20] ?JOHNSTON ?I W, DONALD I B. Final report on rock socket pile tests [R].? Department of Civil Engineering, Monash University, Melbourne, Australia, 1979.

[21] ?HORVATH ?R G, TROW W A, KENNEY T C. Results of tests to determine shaft resistance of rock-socketed drilled piers [C]// Proceedings of International Conference on Structure Foundations on Rock, 1980.

[22] ?PELLS ?P J N, ROWE R K, TURNER R M. An experimental investigation into side shear for socketed piles in sandstone [C]// Proceedings of International Conference on Structural Foundations Rock, Sydney, 1980.

[23] ?THORNE ?C P. The capacity of piers drilled into rock [C]// Proceedings of International Conference on Structural Foundations on Rock, Sydney, 1980.

[24] ?WEBB ?D L, DAVIES P. Ultimate tensile loads of bored piles socketed into sandstone rock [C] // Proceedings of International Conference on Structural Foundations on Rock, Sydney, 1980.

[25] ?WILLIAMS ?A F. The design and performance of piles socketed into weak rock [D]. Monash University, Melbourne, 1980.

[26] ?WILLIAMS ?A F, ERVINM C. The design and performance of cast-in-situ piles in extensively jointed silurian mudstone [C]//Proceedings of 3rd Australian-New Zealand Conference on Geomechanics, Wellington, 1980.

[27] ?WILLIAMS ?A F, DONALD I B, CHIU H K. Stress distributions in rock socketed piles [C]//Proceedings of International Conference on Structural Foundations on Rock, Sydney, 1980.

[28] ?WILLIAMS ?A F, PELLS P J N. Side resistance rock sockets in sandstone, mudstone, and shale [J]. Canadian Geotechnical Journal, 1981, 18(4):502-513.

[29] ?HORVATH ?R G, KENNEY T C, KOZICKI P. Methods of improving the performance of drilled piers in weak rock [J]. Canadian Geotechnical Journal, 1983, 20(4), 758-772.

[30] ?LAM ?T S K, YAU J H W, PREMCHITT J. Side resistance of a rock-socketed caisson [J]. Hong Kong Engineer, 1991, 2: 17-28.

[31] ?MCVAY ?M C, TOWNSEND F C, WILLIAMS R C. Design of socketed drilled shafts in limestone [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1992, 118(10): 1626-1637.

[32] ?LEUNG ?C F. Case studies of rock-socketed piles[J]. Geotechnical Engineering, 1996, 27: 51-67.

[33] ?CARRUBBA ?P. Skin friction of large-diameter piles socketed into rock [J]. Canadian Geotechnical Journal, 1997, 34(2): 230-240.

[34] ?WALTER ?D J, BURWASH W J, MONTGOMERY R A. Design of large-diameter drilled shafts for Northumberland Strait bridge project [J]. Canadian Geotechnical Journal, 1997, 34(4), 580-587.

[35] ?GUNNICK ?B, KIEHNE C. Pile bearing in Burlington limestone? [C]// Proceedings of Transportation Conference, 1998: 145-148.

[36] ?LONG ?M. Skin friction for piles socketed in hard rock? [C]// Proceedings of the International Conference on Geotechnical and Geological Engineering (GeoEng 2000), Melbourne, Australia, 2000.

[37] ?ZHAN ?C Z, YIN J H. Field static load tests on drilled shaft founded on or socketed into rock [J]. Canadian Geotechnical Journal, 2000, 37(6): 1283-1294.

[38] ?NG ?C W W, YAU T L Y, LI? J H M, et al. Side resistance of larger diameter bored piles socketed into decomposed rocks [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(8): 642-657.

[39] ?CASTELLI ?R J, FAN K. O-cell test results for drilled shafts in marl and limestone? [C]// Proceedings of International Deep Foundations Congress, 2002:807-823.

[40] ?GORDON ?B B, HAWK J L, MCCONELL O T. Capacity of drilled shafts for the proposed susquehanna river bridge [C]// Proceedings of ASCE Geosupport Conference, 2004:96-109.

[41] ??工程巖體分級(jí)標(biāo)準(zhǔn):GB/T 50218—2014 [S]. 北京:中國(guó)計(jì)劃出版社,2014.

Standard for engineering classification of rock mass: GB 50021—2001 [S]. Beijing: China Planning Press, 2014. (in Chinese)

[42] ??巖土工程勘察規(guī)范:GB 50021—2001 [S]. 北京:中國(guó)建筑工業(yè)出版社,2009.

Code for investigation of geotechnical engineering: GB 50021—2001 [S]. Beijing: China Architecture and Building Press, 2008. (in Chinese)

[43] ??劉金礪.樁基礎(chǔ)設(shè)計(jì)與計(jì)算[M].北京:中國(guó)建筑工業(yè)出版社,1990:85-95.

LIU J L. Design and calculation of pile foundations [M]. Beijing: China Architecture and Building Press, 1990:85-95. (in Chinese)

[44] ?ROWE ?R K, ARMITAGE H H. Theoretical solutions for axial deformation of drilled shifts in rock [J]. Canadian Geotechnical Journal, 1987, 24(1): 114-125.

[45] ??黃求順.嵌巖樁承載力的試驗(yàn)研究[C]//中國(guó)建筑學(xué)會(huì)地基基礎(chǔ)學(xué)術(shù)委員會(huì)論文集,太原,山西高校聯(lián)合出版杜,1992: 47-52.

HUANG Q S. Load tests on bearing capacity of rock socketed piles [C]//Proceedings of the Chinese Academy of Architecture Foundation, Taiyuan: Shanxi United University Press, 1992: 47-52.(in Chinese)

[46] ??劉興遠(yuǎn),鄭穎人,林文修.關(guān)于嵌巖樁理論研究的幾點(diǎn) 認(rèn)識(shí)[J]. 巖土工程學(xué)報(bào),1998,20(5):118-119.

LIU X Y, ZHENG Y R, LIN W X. Some understanding on the theories of rock socketed pile foundations[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 118-119. (in Chinese)

[47] ??明可前.嵌巖樁受力機(jī)理分析[J].巖土力學(xué),1998,19(1):65-69.

MING K Q. Analysis of bearing mechanism of soeketed pile [J]. Rock and Soil Mechanics, 1998, 19(1): 65-69. (in Chinese)

[48] ??許錫賓, 周亮, 劉濤. 大直徑嵌巖樁單樁承載性能的有限元分析[J]. 重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 29(6): 942-946.

XU X B, ZHOU L, LIU T. Finite element analysis on load-bearing properties of large diamter rock-socketed single pile [J]. Journal of Chongqing Jiaotong University (Natural Science), 2010, 29(6): 942-946. (in Chinese)

[49] ??張忠苗. 軟土地基超長(zhǎng)嵌巖樁的受力性狀[J]. 巖土工程學(xué)報(bào), 2001, 23(5):552-556.

ZHANG Z M. The endurance of super-long piles in soft soil [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 552-556. (in Chinese)

[50] ?REESE ?L C, O'NEILL M W. Drilled shafts: Construction procedures and design methods :Publication No. ADSC-TL-4 [R].? International Association of Foundation Drilling, Federal Highway Administration, Washington, D.C., 1988.

[51] ?ZHANG ?L, EINSTEIN H H. End bearing capacity of drilled shafts in rock [R]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(7): 574-584.

猜你喜歡
抗壓強(qiáng)度
測(cè)量不確定度在水泥檢測(cè)中的應(yīng)用
基于SPSS回歸分析的鋰渣混凝土抗壓強(qiáng)度預(yù)測(cè)模型
氣泡輕質(zhì)土應(yīng)力應(yīng)變特性及耐久性研究
多次凍融循環(huán)對(duì)瀝青混合料性能影響研究
HCSA膨脹劑摻量對(duì)大摻量粉煤灰混凝土抗壓強(qiáng)度和抗碳化性能影響的研究
半剛性材料抗裂性能試驗(yàn)研究
建筑垃圾與尾礦用于道路基層降低工程造價(jià)試驗(yàn)研究
不同養(yǎng)護(hù)濕度和時(shí)間對(duì)水泥砂漿強(qiáng)度影響的試驗(yàn)研究
含泥土雜質(zhì)再生混凝土的抗壓強(qiáng)度試驗(yàn)研究
嘉峪关市| 当阳市| 龙胜| 乌什县| 河南省| 五大连池市| 安图县| 甘泉县| 龙川县| 西贡区| 利津县| 灵川县| 班戈县| 乐都县| 时尚| 伊金霍洛旗| 项城市| 东明县| 杨浦区| 满城县| 皮山县| 句容市| 离岛区| 靖西县| 华安县| 诏安县| 云林县| 重庆市| 松滋市| 如东县| 峨眉山市| 界首市| 冕宁县| 博客| 凌海市| 长汀县| 彭泽县| 苍梧县| 嘉禾县| 浦北县| 道孚县|