国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

生物降解秧盤(pán)及播種量對(duì)機(jī)插水稻秧苗素質(zhì)及產(chǎn)量的影響

2018-01-09 00:56史鴻志朱德峰張玉屏張義凱朱從樺陳惠哲
關(guān)鍵詞:平盤(pán)秧盤(pán)播量

史鴻志,朱德峰,張玉屏,向 鏡,張義凱,朱從樺,武 輝,陳惠哲

?

生物降解秧盤(pán)及播種量對(duì)機(jī)插水稻秧苗素質(zhì)及產(chǎn)量的影響

史鴻志,朱德峰,張玉屏,向 鏡,張義凱,朱從樺,武 輝,陳惠哲※

(中國(guó)水稻研究所/水稻生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,杭州 310006)

為探明生物降解秧盤(pán)稀播育秧、帶盤(pán)機(jī)插的生產(chǎn)適用性,以秈型雜交稻中浙優(yōu)8號(hào)和秈粳型雜交稻甬優(yōu)538為材料,普通平盤(pán)作對(duì)照,研究了生物降解秧盤(pán)不同播種量(30,50,70和90 g/盤(pán))育秧對(duì)機(jī)插水稻秧苗素質(zhì)、機(jī)插特性與產(chǎn)量的影響。結(jié)果表明,生物降解秧盤(pán)育秧顯著提高出苗率(<0.05),且播種量越低,出苗率越高,中浙優(yōu)8號(hào)30 g/盤(pán)處理的出苗率較普通平盤(pán)育秧高20.57個(gè)百分點(diǎn)。生物降解秧盤(pán)采用上毯下缽設(shè)計(jì),所育秧苗根系獨(dú)立成缽狀,白根多且粗壯,其平均根直徑較普通平盤(pán)寬8.63%,且盤(pán)根力均大于100 N,滿(mǎn)足機(jī)插對(duì)秧塊成毯的要求。同時(shí),可帶盤(pán)按缽精準(zhǔn)機(jī)插,中浙優(yōu)8號(hào)30 g/盤(pán)處理的漏秧率僅7.78%,較普通平盤(pán)機(jī)插低6.67個(gè)百分點(diǎn)。生物降解秧盤(pán)處理結(jié)實(shí)率和千粒重略低于普通平盤(pán),群體穎花量則高于后者,最終產(chǎn)量較普通平盤(pán)機(jī)插略高。綜合育秧、機(jī)插效果及產(chǎn)量表現(xiàn),生物降解秧盤(pán)育秧播種量以70 g/盤(pán)為宜。因此,生物降解秧盤(pán)帶盤(pán)機(jī)插可發(fā)揮稀播培育壯秧優(yōu)勢(shì),提高機(jī)插質(zhì)量,有助于雜交稻少本稀植、充分發(fā)揮增產(chǎn)潛力。

農(nóng)作物;機(jī)械化;播種;水稻;機(jī)插;生物降解秧盤(pán);秧苗素質(zhì);產(chǎn)量

0 引 言

隨著農(nóng)村勞動(dòng)力轉(zhuǎn)移和老齡化,中國(guó)水稻生產(chǎn)正逐步向輕簡(jiǎn)化、機(jī)械化作業(yè)轉(zhuǎn)型[1-3]。提高水稻生產(chǎn)機(jī)械化水平,實(shí)現(xiàn)全程機(jī)械化,是當(dāng)前中國(guó)水稻生產(chǎn)技術(shù)變革的關(guān)鍵。目前中國(guó)水稻生產(chǎn)綜合機(jī)械化水平較低,種植機(jī)械化是其中的“瓶頸”環(huán)節(jié)[4-6]。機(jī)插秧以培育標(biāo)準(zhǔn)化壯秧與機(jī)械精確移栽,并配套高產(chǎn)高效農(nóng)藝,相對(duì)更符合國(guó)情,是多數(shù)稻區(qū)種植機(jī)械化的基本方向[7]。

機(jī)插秧包括育秧和機(jī)插2個(gè)關(guān)鍵環(huán)節(jié),其中育秧為保證秧塊成毯和降低漏秧率,播種密度極大,苗間競(jìng)爭(zhēng)激烈,導(dǎo)致所育秧苗素質(zhì)較差[7-8]。因秧苗較弱,機(jī)插每穴本數(shù)又過(guò)多,不利于雜交稻壯稈大穗優(yōu)勢(shì)的發(fā)揮,使得雜交稻機(jī)插難以高產(chǎn)穩(wěn)產(chǎn)[7]。此外,由于雜交稻制種產(chǎn)量低,其種子價(jià)格是常規(guī)稻種子的5~10倍,導(dǎo)致育秧成本較高[9]。在中國(guó),雜交稻種植面積占到了水稻總種植面積50%~60%,實(shí)現(xiàn)雜交稻機(jī)插意義重大[10-11]。已有研究表明,降低播種量雖可顯著提高秧苗素質(zhì),但低播量下秧塊成毯性差,機(jī)插漏秧率高,大田基本苗不足,不利于實(shí)現(xiàn)高產(chǎn)[9,12-17]。低播量下如何保證秧塊成毯、降低漏秧率,從而培育壯秧,實(shí)現(xiàn)雜交稻少本稀植,已成為雜交稻機(jī)插中亟待解決的問(wèn)題。中國(guó)水稻研究所和河南青源天仁生物技術(shù)公司開(kāi)展產(chǎn)學(xué)研合作,以聚乳酸(PLA)生物基塑料為原料,結(jié)合上毯下缽設(shè)計(jì),研制開(kāi)發(fā)了生物降解秧盤(pán),通過(guò)培育壯秧,帶盤(pán)機(jī)插,為雜交稻稀播機(jī)插提供了一種新的思路。本研究采用生物降解秧盤(pán)育秧,設(shè)置不同播種量,以普通平盤(pán)為對(duì)照,研究生物降解秧盤(pán)的農(nóng)藝適用性,以期為雜交稻機(jī)插提供參考。

1 材料與方法

1.1 試驗(yàn)地點(diǎn)及供試材料

試驗(yàn)于2016年在中國(guó)水稻研究所富陽(yáng)試驗(yàn)基地(30°5′N(xiāo),119°55′E)進(jìn)行。該區(qū)位于長(zhǎng)江三角洲南翼,屬中緯度亞熱帶季風(fēng)性氣候區(qū),年平均溫度16.1 ℃,無(wú)霜期為230 d,年日照時(shí)數(shù)為1 995 h,年平均降水量為1 501 mm。試驗(yàn)地土質(zhì)為黏性水稻土,冬閑。0~20 cm土層有機(jī)質(zhì)含量為27.2 g/kg,堿解氮232.7 mg/kg,速效磷20.5 mg/kg,速效鉀136.9 mg/kg。

供試品種為秈型雜交稻中浙優(yōu)8號(hào)和秈粳型雜交稻甬優(yōu)538,中浙優(yōu)8號(hào)由中國(guó)水稻研究所提供,甬優(yōu)538由寧波種子公司提供。生物降解秧盤(pán)由河南青源天仁生物技術(shù)公司提供,規(guī)格為58 cm×28 cm×2.8 cm(長(zhǎng)×寬×高),每盤(pán)648個(gè)缽穴。普通平盤(pán)采用市售大小一致的塑料硬盤(pán)。

1.2 試驗(yàn)設(shè)計(jì)

設(shè)置2種秧盤(pán)類(lèi)型,分別為生物降解秧盤(pán)和普通平盤(pán),記為BS和CS。播種量設(shè)置4個(gè)水平,分別為30、50、70和90 g/盤(pán)(以干種子質(zhì)量計(jì)),記為D30、D50、D70和D90。育秧時(shí)每處理播9盤(pán),隨機(jī)排列,2品種合計(jì)144盤(pán)。采用常規(guī)泥漿育秧,5月25日播種,秧齡為19天,6月13日機(jī)插。機(jī)插時(shí)生物降解秧盤(pán)帶盤(pán)機(jī)插,普通平盤(pán)取秧塊機(jī)插。大田采用裂區(qū)設(shè)計(jì),其中秧盤(pán)類(lèi)型為主區(qū),播種量為副區(qū),小區(qū)面積為30 m2,3次重復(fù),行株距為30 cm×18 cm,大田四周地膜包梗,排灌分開(kāi)。試驗(yàn)氮肥(純氮)施入量為180 kg/hm2,按基肥、蘗肥、穗肥=5∶3∶2分別施入。磷肥施過(guò)磷酸鈣450 kg/hm2,一次性作為基肥施入。鉀肥施氯化鉀112.5 kg/hm2,一次性作穗肥施入。分蘗肥在機(jī)插后第7 d施入,穗肥在倒4葉葉齡期施入。苗期淺水勤灌,分蘗末期排水曬田,堅(jiān)持多次輕曬的原則。拔節(jié)到成熟期采用濕潤(rùn)灌溉,干濕交替。其他管理措施統(tǒng)一按高產(chǎn)栽培要求實(shí)施。

1.3 測(cè)定項(xiàng)目與方法

1.3.1 出苗率

在播種后第9天每處理調(diào)查出苗數(shù),采用專(zhuān)門(mén)的查苗器(尺寸15 cm×6 cm),計(jì)數(shù)查苗器內(nèi)的秧苗。出苗率=出苗數(shù)/種子數(shù)×100%。

1.3.2 秧苗形態(tài)

在移栽前1天,每處理切取8 cm×8 cm秧塊,洗凈后選取有代表性秧苗30株,測(cè)定其株高、葉齡、莖基寬和葉面積;并分為地上部和根系,105 ℃殺青30分鐘,80 ℃烘干至恒質(zhì)量,稱(chēng)其質(zhì)量。其中,秧苗重高比=秧苗地上部干質(zhì)量/秧苗株高。

1.3.3 秧苗根系特征

在移栽前1天,每處理選取代表性秧苗3株,使用掃描儀(Epson V700,China)對(duì)秧苗根系進(jìn)行數(shù)字化掃描,再使用與掃描儀配套的根系分析系統(tǒng)軟件WinRHIZO PRO 2013(Regent Instrument Inc., Canada)分析根系特征參數(shù)。3次重復(fù)。

1.3.4 盤(pán)根力

在移栽前1天,取標(biāo)準(zhǔn)秧塊(58 cm×28 cm),一端固定,另一端用夾板夾緊后,用數(shù)顯拉力計(jì)水平向外拉秧塊,秧塊斷裂時(shí)的拉力即為盤(pán)根力(單位:牛頓)。并對(duì)秧塊成毯效果進(jìn)行評(píng)價(jià),秧塊不能成毯記為差,勉強(qiáng)成毯記為一般,秧塊抖動(dòng)不散、成毯效果好記為良。

1.3.5 機(jī)插漏秧率

機(jī)插第2天,每小區(qū)隨機(jī)選取3行,每行30叢,調(diào)查每叢機(jī)插苗數(shù)和漏插叢數(shù)。其中,漏插指機(jī)插后插穴內(nèi)無(wú)秧苗。漏秧率=漏插叢數(shù)/調(diào)查總叢數(shù)×100%。

1.3.6 產(chǎn)量及其構(gòu)成

在成熟期每小區(qū)調(diào)查60穴,計(jì)算有效穗數(shù),并實(shí)收核產(chǎn)。取代表性3穴調(diào)查每穗粒數(shù)、結(jié)實(shí)率和千粒質(zhì)量。

1.4 數(shù)據(jù)計(jì)算與統(tǒng)計(jì)分析

數(shù)據(jù)統(tǒng)計(jì)分析采用Microsoft Excel 2016和DPS 7.05軟件;Duncan新復(fù)極差法進(jìn)行差異顯著性檢驗(yàn);Origin 2017軟件制圖。

2 結(jié)果與分析

2.1 生物降解秧盤(pán)育秧對(duì)出苗率的影響

由圖1所示,除中浙優(yōu)8號(hào)普通平盤(pán)育秧外,出苗率隨播量減少均呈顯著增加趨勢(shì)(<0.05),其中以生物降解秧盤(pán)30 g/盤(pán)處理出苗率最高,中浙優(yōu)8號(hào)和甬優(yōu)538分別達(dá)到了91.08%和87.76%。播量為30和50 g/盤(pán)時(shí),隨播量增加,中浙優(yōu)8號(hào)中生物降解秧盤(pán)出苗率下降11.64個(gè)百分點(diǎn),普通平盤(pán)下降10.22個(gè)百分點(diǎn),甬優(yōu)538則分別下降了8.53個(gè)百分點(diǎn)和17.6個(gè)百分點(diǎn)。2種秧盤(pán)比較,中浙優(yōu)8號(hào)生物降解秧盤(pán)30和50 g/盤(pán)處理的出苗率顯著高于普通平盤(pán)(<0.05),分別高20.57個(gè)百分點(diǎn)和19.15個(gè)百分點(diǎn),而甬優(yōu)538兩種秧盤(pán)差異不顯著(>0.05)。播量為70和90 g/盤(pán)時(shí),隨播量增加出苗率下降不顯著,2種秧盤(pán)間差異也不顯著,中浙優(yōu)8號(hào)出苗率在58.96%~64.64%間,甬優(yōu)538出苗率在61.24%~67.49%間??梢?jiàn),稀播條件下(特指30 g/盤(pán),下同)生物降解秧盤(pán)育秧有利于提高出苗率。

注:不同小寫(xiě)字母表示不同處理間差異達(dá)到5%顯著水平。

2.2 生物降解秧盤(pán)育秧對(duì)秧苗素質(zhì)的影響

2.2.1 秧苗形態(tài)

由表1可知,隨播量增加,秧苗株高、葉齡、莖基寬、葉面積、根數(shù)、地上部干質(zhì)量、根干質(zhì)量和重高比總體上呈降低趨勢(shì)。以生物降解秧盤(pán)為例,中浙優(yōu)8號(hào)90 g/盤(pán)處理的莖基寬、葉面積、根數(shù)、地上部干質(zhì)量、根干質(zhì)量和重高比較30 g/盤(pán)處理分別下降21%、25%、17%、36%、24%和37%,甬優(yōu)538中則分別下降16%、40%、32%、32%、25%和14%。不同秧盤(pán)間,生物降解秧盤(pán)所育秧苗的平均株高顯著高于普通平盤(pán),而平均根數(shù)和平均根干質(zhì)量則表現(xiàn)出低于普通平盤(pán)的趨勢(shì),除中浙優(yōu)8號(hào)中根數(shù)差異極顯著外,其他差異都不顯著(>0.05)。莖基寬差異不顯著(>0.05),葉齡、葉面積、地上部干質(zhì)量和重高比在2品種中表現(xiàn)不一。稀播條件下,中浙優(yōu)8號(hào)中生物降解秧盤(pán)所育秧苗的株高、莖基寬、地上部干質(zhì)量、根干質(zhì)量和重高比顯著高于普通平盤(pán)(<0.05),甬優(yōu)538中生物降解秧盤(pán)所育秧苗的株高顯著高于普通平盤(pán),而根干質(zhì)量和重高比顯著低于普通平盤(pán)(<0.05)??梢?jiàn),稀播有利于優(yōu)化秧苗形態(tài),生物降解秧盤(pán)所育秧苗形態(tài)與普通平盤(pán)無(wú)顯著差異,中浙優(yōu)8號(hào)在稀播條件下使用生物降解秧盤(pán)育秧優(yōu)于使用普通平盤(pán)。

表1 不同秧盤(pán)和播量育秧的秧苗形態(tài)

注:BS表示生物降解秧盤(pán);CS表示普通平盤(pán);D30、D50、D70和D90分別表示播量30、50、70和90 g/盤(pán);S表示秧盤(pán);D表示播量;同列不同小寫(xiě)字母表示相同品種中不同處理間差異達(dá)到5%顯著水平;*和**分別表示在0.05和0.01水平上差異顯著。ns表示在0.05水平上差異不顯著,下同。

Note: BS means biodegradable seedling tray. CS means carpet seedling tray. D30, D50, D70and D90mean that the sowing rates are 30, 50, 70 and 90 g/tray, respectively. S means seedling tray. D means sowing rate. Different lowercase letters in a column indicate significant difference at 0.05 level among different treatments in the same cultivar.*and**mean significant differences at 0.05 and 0.01 probability levels, respectively. ns means no significant differences at 0.05 levels, the same as below.

2.2.2 秧苗根系特征

由表2可知,隨著播量增加,秧苗根長(zhǎng)度、根表面積和根體積均呈顯著下降趨勢(shì),根直徑變化不明顯。以生物降解秧盤(pán)為例,中浙優(yōu)8號(hào)90 g/盤(pán)處理的根長(zhǎng)度、根表面積和根體積分別較30 g/盤(pán)處理減少了27%、35%和48%,甬優(yōu)538中則分別減少了57%、58%和59%,秧苗根系生物量顯著減少。不同秧盤(pán)間,生物降解秧盤(pán)所育秧苗的平均根長(zhǎng)度、根表面積和根體積均低于普通平盤(pán),甬優(yōu)538中差異極顯著,而中浙優(yōu)8號(hào)中差異不顯著。就平均根直徑而言,生物降解秧盤(pán)顯著高于普通平盤(pán),平均比普通平盤(pán)寬8.63%,中浙優(yōu)8號(hào)中生物降解秧盤(pán)處理的平均根直徑較普通平盤(pán)寬9.03%,甬優(yōu)538同比寬8.23%。試驗(yàn)中發(fā)現(xiàn)生物降解秧盤(pán)所育秧苗的根系獨(dú)立成缽狀,白根多,而普通平盤(pán)所育秧苗的根系盤(pán)結(jié)交錯(cuò),根黃,老根多(見(jiàn)圖2)??梢?jiàn),稀播有利于增加秧苗根系生物量,擴(kuò)大根系的營(yíng)養(yǎng)吸收面積;生物降解秧盤(pán)所育秧苗根系相對(duì)獨(dú)立、短粗、根白,吸收營(yíng)養(yǎng)物質(zhì)的能力相對(duì)較強(qiáng)。

表2 不同秧盤(pán)和播量育秧的秧苗根系特征

圖2 不同秧盤(pán)育秧秧苗根系比較(甬優(yōu)538,70 g/盤(pán))

2.3 生物降解秧盤(pán)的機(jī)插特性

2.3.1 盤(pán)根力

由表3可知,供試品種在生物降解秧盤(pán)育秧的條件下,各播量處理盤(pán)根力都超過(guò)了100 N,滿(mǎn)足起秧、運(yùn)秧和裝秧過(guò)程中對(duì)秧塊結(jié)構(gòu)性的要求。而普通平盤(pán)在稀播條件下成毯性差,幾乎不能起秧,中浙優(yōu)8號(hào)在70 g/盤(pán)、甬優(yōu)538在50 g/盤(pán)以上時(shí)成毯才能滿(mǎn)足機(jī)插要求。

表3 不同秧盤(pán)和播量育秧的盤(pán)根力

2.3.2 漏秧率

隨播量增加,2種秧盤(pán)育秧的機(jī)插漏秧率均呈下降趨勢(shì)(圖3)。30 g/盤(pán)播量處理機(jī)插漏秧率最高,中浙優(yōu)8號(hào)中生物降解秧盤(pán)和普通平盤(pán)的機(jī)插漏秧率分別達(dá)到了7.78%和14.44%,甬優(yōu)538中也分別達(dá)到了18.33%和15.56%,均超過(guò)5%的機(jī)插漏秧率要求上限[8]。當(dāng)播量達(dá)到90 g/盤(pán)時(shí),各處理的機(jī)插漏秧率都控制在5%以?xún)?nèi)。不同秧盤(pán)間,2品種表現(xiàn)略有不同。中浙優(yōu)8號(hào)中,除90 g/盤(pán)時(shí)2種秧盤(pán)差異不大外,30、50和70 g/盤(pán)生物降解秧盤(pán)的機(jī)插漏秧率分別比普通平盤(pán)低6.67、3.17和1.11個(gè)百分點(diǎn)。甬優(yōu)538中,生物降解秧盤(pán)處理的機(jī)插漏秧率高于普通平盤(pán)處理,除70 g/盤(pán)外差異并不明顯。以上結(jié)果表明,稀播條件下,機(jī)插漏秧率普遍超過(guò)5%,中浙優(yōu)8號(hào)中生物降解秧盤(pán)機(jī)插較普通平盤(pán)機(jī)插漏秧率顯著降低。

圖3 不同秧盤(pán)和播量機(jī)插的漏秧率

2.4 生物降解秧盤(pán)機(jī)插對(duì)水稻產(chǎn)量及其構(gòu)成因素的影響

由表4可知,2品種中生物降解秧盤(pán)機(jī)插平均產(chǎn)量均略高于普通平盤(pán)。生物降解秧盤(pán)機(jī)插的平均穗數(shù)小于普通平盤(pán),而平均每穗粒數(shù)高于后者。體現(xiàn)在平均群體穎花量上,生物降解秧盤(pán)機(jī)插高于普通平盤(pán)。平均結(jié)實(shí)率和平均千粒質(zhì)量則小于普通平盤(pán),除中浙優(yōu)8號(hào)中結(jié)實(shí)率差異不顯著外(>0.05),其他差異顯著(<0.05)。隨播量增加,產(chǎn)量呈先升后降的趨勢(shì)?;久绾退霐?shù)均呈上升趨勢(shì),基本苗不同播量間差異顯著,但穗數(shù)總體上差異不明顯。中浙優(yōu)8號(hào)中不同播量間每穗粒數(shù)差異不顯著(>0.05),而甬優(yōu)538中差異顯著,以生物降解秧盤(pán)70 g/盤(pán)處理最高,達(dá)到每穗367.98粒。群體穎花量上,2品種均以生物降解秧盤(pán)70 g/盤(pán)處理最高,中浙優(yōu)8號(hào)和甬優(yōu)538分別達(dá)到49 059.76×104和68 486.07×104個(gè)/hm2。對(duì)群體穎花量與產(chǎn)量作相關(guān)性分析,相關(guān)系數(shù)為0.88,達(dá)到極顯著水平。結(jié)實(shí)率和千粒重變化規(guī)律則不明顯。秧盤(pán)與播量間互作極顯著(<0.01),以生物降解秧盤(pán)70 g/盤(pán)處理產(chǎn)量最高,中浙優(yōu)8號(hào)和甬優(yōu)538分別達(dá)到了10.23和11.44 t/hm2。可見(jiàn),生物降解秧盤(pán)機(jī)插的平均群體穎花量比普通平盤(pán)機(jī)插高,但結(jié)實(shí)率和千粒重低,最終表現(xiàn)為生物降解秧盤(pán)機(jī)插產(chǎn)量略高于普通平盤(pán)機(jī)插。稀播條件下,雖然水稻群體自我調(diào)節(jié)作用能在一定程度上彌補(bǔ)基本苗的不足,但穗數(shù)依然偏低,導(dǎo)致群體穎花量較少,穗粒結(jié)構(gòu)不協(xié)調(diào),限制了雜交稻產(chǎn)量潛力的發(fā)揮。

表4 不同秧盤(pán)和播量機(jī)插水稻的產(chǎn)量及其構(gòu)成因素

3 討 論

3.1 水稻生物降解秧盤(pán)機(jī)插適應(yīng)性

機(jī)插秧由于盤(pán)根成毯的需要,播種密度極大,秧苗生長(zhǎng)空間狹小,導(dǎo)致器官發(fā)育不充分,秧苗素質(zhì)較差[7]。對(duì)雜交稻機(jī)插而言,充分利用其分蘗力強(qiáng)和大穗優(yōu)勢(shì),就需少本稀植,育秧時(shí)降低播量,但低播量下就會(huì)出現(xiàn)秧塊成毯差和漏秧率高等問(wèn)題[9,12,15-16]。本研究使用生物降解秧盤(pán)育秧,實(shí)現(xiàn)帶盤(pán)機(jī)插,播量不再成為制約秧塊成毯的因素,稀播條件下能夠滿(mǎn)足機(jī)插對(duì)秧塊結(jié)構(gòu)性的要求。而普通平盤(pán)育秧依靠高播量盤(pán)根成毯,稀播條件下秧苗成毯差,幾乎不能起秧。生物降解秧盤(pán)采用上毯下缽的設(shè)計(jì),通過(guò)調(diào)節(jié)插秧機(jī)取秧量,可實(shí)現(xiàn)機(jī)插按缽精確取秧栽插。本研究發(fā)現(xiàn)中浙優(yōu)8號(hào)使用生物降解秧盤(pán)育秧,其機(jī)插漏秧率明顯低于使用普通平盤(pán)育秧,30 g/盤(pán)時(shí)生物降解秧盤(pán)的漏秧率比普通平盤(pán)低6.67個(gè)百分點(diǎn)。但稀播條件下,漏秧率仍普遍超過(guò)5%。因此,需通過(guò)精量勻播,提高秧苗成苗率和均勻度,適當(dāng)增大插秧機(jī)取秧面積,將機(jī)插漏秧率控制在5%以下,以滿(mǎn)足機(jī)插要求[7,13-14,18-19]。

3.2 水稻生物降解秧盤(pán)育秧秧苗的生長(zhǎng)特點(diǎn)

利用生物降解秧盤(pán)帶盤(pán)機(jī)插,使降低播量培育壯秧成為可能。眾多研究表明,降低育秧播量可改善秧苗生長(zhǎng)生態(tài)環(huán)境,提高秧苗素質(zhì),增強(qiáng)秧齡彈性,并提高秧苗栽后相對(duì)生長(zhǎng)率[9,13,16-17,20-26]。本試驗(yàn)中,稀播可提高出苗率,綜合優(yōu)化秧苗形態(tài),并能提高秧苗根系生物量,擴(kuò)大營(yíng)養(yǎng)吸收面積。稀播條件下生物降解秧盤(pán)的出苗率明顯高于普通平盤(pán),但秧苗形態(tài)兩者并無(wú)顯著差異。插秧機(jī)在機(jī)插過(guò)程中會(huì)對(duì)秧苗造成傷害,導(dǎo)致機(jī)插后秧苗會(huì)有一周左右的生長(zhǎng)停滯[27-28]。生物降解秧盤(pán)所育秧苗的根系在缽?fù)胫斜P(pán)結(jié),形成相對(duì)獨(dú)立的缽苗,機(jī)插時(shí)按缽取秧栽插,對(duì)根系傷害較小,利于水稻栽后早生快發(fā)[29-30]。再者,生物降解秧盤(pán)所育秧苗的根系較普通平盤(pán)粗短、根白,說(shuō)明其根系吸收營(yíng)養(yǎng)物質(zhì)的能力相對(duì)較強(qiáng)[9]。

3.3 水稻生物降解秧盤(pán)機(jī)插產(chǎn)量及適宜播量

播量不僅影響秧苗素質(zhì),還通過(guò)影響基本苗和漏秧率來(lái)影響水稻大田生長(zhǎng)和產(chǎn)量[17]。本研究中,生物降解秧盤(pán)機(jī)插的平均群體穎花量高于普通平盤(pán)機(jī)插,但結(jié)實(shí)率和千粒重低,最終生物降解秧盤(pán)機(jī)插產(chǎn)量略高于普通平盤(pán)機(jī)插。在撒播條件下,30 g/盤(pán)處理的基本苗明顯低于其他播量處理,雖然水稻群體自我調(diào)節(jié)作用能在一定程度上彌補(bǔ)基本苗的不足,但群體穎花量仍然偏少,導(dǎo)致產(chǎn)量較低,限制了雜交稻產(chǎn)量潛力的發(fā)揮[31-33]。相比之下,70 g/盤(pán)處理能夠保證足夠的基本苗,產(chǎn)量構(gòu)成要素也較為合理,產(chǎn)量在所有處理中達(dá)到最高。播量再高時(shí)每穗粒數(shù)下降明顯,產(chǎn)量反而有所下降??梢?jiàn),雜交稻使用生物降解秧盤(pán)機(jī)插,播量不是越低越好,必須提高播種質(zhì)量,實(shí)現(xiàn)精播勻播,協(xié)調(diào)好漏秧率和種植密度,以發(fā)揮稀播育壯秧和無(wú)損移栽的優(yōu)勢(shì),創(chuàng)建高質(zhì)量群體起點(diǎn),實(shí)現(xiàn)高產(chǎn)穩(wěn)產(chǎn)。

4 結(jié) 論

綜合上述分析和討論,本研究初步結(jié)論:1)生物降解秧盤(pán)帶盤(pán)機(jī)插,盤(pán)根力均大于100 N,使稀播培育壯秧成為可能。2)使用生物降解秧盤(pán)育秧,可提高出苗率,所育秧苗根系短粗、根白,且根系相對(duì)獨(dú)立,有利于減輕取秧和栽插過(guò)程中秧爪對(duì)秧苗根系的損傷。3)生物降解秧盤(pán)采用上毯下缽設(shè)計(jì),調(diào)節(jié)插秧機(jī)取秧量可實(shí)現(xiàn)按缽精確機(jī)插,較普通平盤(pán)機(jī)插顯著降低漏秧率。4)撒播條件下生物降解秧盤(pán)育秧以70 g/盤(pán)為宜,能夠保證基本苗,實(shí)現(xiàn)高產(chǎn)穩(wěn)產(chǎn)。如能實(shí)現(xiàn)精播勻播,協(xié)調(diào)好漏秧率和種植密度,可進(jìn)一步減少育秧播量,降低水稻生產(chǎn)成本。因此,生物降解秧盤(pán)帶盤(pán)機(jī)插可發(fā)揮稀播培育壯秧優(yōu)勢(shì),提高機(jī)插質(zhì)量,有助于雜交稻少本稀植、充分發(fā)揮增產(chǎn)潛力。

[1] 彭少兵. 轉(zhuǎn)型時(shí)期雜交水稻的困境與出路[J]. 作物學(xué)報(bào),2016,42(3):313-319. Peng Shaobing. Dilemma and way-out of hybrid rice during the transition period in China[J]. Acta Agronomic Sinica, 2016, 42(3): 313-319. (in Chinese with English abstract)

[2] Peng Shaobing, Tang Qiyuan, Zou Yingbin. Current status and challenges of rice production in China[J]. Plant Production Science, 2009, 12(1): 3-8.

[3] IRRI. Rice almanac, 4th edition[M]. Philippines: Internation Rice Research Institute, 2013.

[4] Zhang Liyang, Zhang Zhongxu, Li Quanying, et al. Mechanical automation of rice transplanting and key agronomic techniques[J]. Applied Mechanics & Materials, 2013, 345: 498-501.

[5] Xu Lijun, Yang Minli. Paddy rice production mechanization in China:A review[J]. Ama-Agricultural Mechanization in Asia Africa and Latin America, 2014, 45(4): 7-11.

[6] 白人樸. 關(guān)于水稻生產(chǎn)機(jī)械化技術(shù)路線(xiàn)選擇的幾個(gè)問(wèn)題[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2011(1):15-18.

Bai Renpu. Several issues on the route choice of mechanization of rice production technology[J]. Chinese Agricultural Mechanization, 2011(1): 15-18. (in Chinese with English abstract)

[7] 張洪程,龔金龍. 中國(guó)水稻種植機(jī)械化高產(chǎn)農(nóng)藝研究現(xiàn)狀及發(fā)展探討[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(7):1273-1289.

Zhong Hongcheng, Gong Jinlong. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China[J]. Scientia Agricultura Sinica, 2014, 47(7): 1273-1289. (in Chinese with English abstract)

[8] 張洪程,李杰,戴其根,等. 機(jī)插稻“標(biāo)秧、精插、穩(wěn)發(fā)、早擱、優(yōu)中、強(qiáng)后”高產(chǎn)栽培精確定量關(guān)鍵技術(shù)[J]. 中國(guó)稻米,2010,16(5):1-6.

Zhang Hongcheng, Li Jie, Dai Qigen, et al. Raising standardized seedling, quantitative transplanting by machine, tillering stable, draining paddy field early, optimizing middle growth, strengthening late growth-precise and quantitative key technology for high-yielding cultivation with manual and mechanical transplantation[J]. China Rice, 2010, 16(5): 1-6. (in Chinese with English abstract)

[9] 李澤華,馬旭,謝俊鋒,等. 雙季稻區(qū)雜交稻機(jī)插秧低播量精密育秧試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(6):17-27.

Li Zehua, Ma Xu, Xie Junfeng, et al. Experiment on precision seedling raising and mechanized transplanting of hybrid rice under low sowing rate in double cropping area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(6): 17-27. (in Chinese with English abstract)

[10] 鄧興旺,王海洋,唐曉艷,等. 雜交水稻育種將迎來(lái)新時(shí)代[J]. 中國(guó)科學(xué):生命科學(xué),2013,43(10):864-868.

Deng Xingwang, Wang Haiyang, Tang Xiaoyan, et al. Hybrid rice breeding welcomes a new era of molecular crop design[J]. Scientia Sinica Vitae, 2013, 43(10): 864-868. (in Chinese with English abstract)

[11] 張軍,王興龍,石廣躍,等. 不同機(jī)栽方式下雜交稻產(chǎn)量及其形成特征比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):84-91. Zhang Jun, Wang Xinglong, Shi Guangyue, et al. Yield and its formation of hybrid rice under different mechanical transplanted methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 84-91. (in Chinese with English abstract)

[12] 彭長(zhǎng)青,李世峰,卞新民,等. 機(jī)插水稻高產(chǎn)栽培關(guān)鍵技術(shù)的適宜值[J]. 應(yīng)用生態(tài)學(xué)報(bào),2006,17(9):1619-1623.

Peng Changqing, Li Shifeng, Bian Xinmin, et al. Appropriate parameters for high yielding cultivation of machine transplanted rice[J]. Chinese Journal of Applied Ecology, 2006, 17(9): 1619-1623. (in Chinese with English abstract)

[13] 胡劍鋒,楊波,周偉,等. 播種方式和播種密度對(duì)雜交秈稻機(jī)插秧節(jié)本增效的研究[J]. 中國(guó)水稻科學(xué),2017,31(1):81-90.

Hu Jianfeng, Yang Bo, Zhou Wei, et al. Effect of seeding method and density on the benefit of mechanical transplanting in indica hybrid rice[J]. Chinese Journal of Rice Science, 2017, 31(1): 81-90. (in Chinese with English abstract)

[14] 徐一成,朱德峰,趙勻,等. 超級(jí)稻精量條播與撒播育秧對(duì)秧苗素質(zhì)及機(jī)插效果的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(1):99-103.

Xu Yicheng, Zhu Defeng, Zhao Yun, et al. Effects of broadcast sowing and precision drilling of super rice seed on seedling quality and effectiveness of mechanized transplanting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 99-103. (in Chinese with English abstract)

[15] 姚雄,楊文鈺,任萬(wàn)軍. 育秧方式與播種量對(duì)水稻機(jī)插長(zhǎng)齡秧苗的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(6):152-157.

Yao Xiong, Yang Wenyu, Ren Wanjun. Effects of seedling raising methods and sowing rates on machine-transplanted long-age rice seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 152-157. (in Chinese with English abstract)

[16] 于林惠,丁艷鋒,薛艷鳳,等. 水稻機(jī)插秧田間育秧秧苗素質(zhì)影響因素研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(3):73-78.

Yu Linhui, Ding Yanfeng, Xue Yanfeng, et al. Factors affacting rice seedling quality of mechanical transplanting rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(3): 73-78. (in Chinese with English abstract)

[17] 沈建輝,邵文娟,張祖建,等. 水稻機(jī)插中苗雙膜育秧落谷密度對(duì)苗質(zhì)和產(chǎn)量影響的研究[J]. 作物學(xué)報(bào),2004,30(9):906-911.

Shen Jianhui, Shao Wenjuan, Zhang Zujian, et al. Effects of sowing density on quality of medium-seedling nursed with two-layer plastic film and grain yield in mechanical transplanting rice[J]. Acta Agronomica Sinica, 2004, 30(9): 906-911. (in Chinese with English abstract)

[18] 李木英,黃程寬,譚雪明,等. 不同機(jī)插株距和取秧面積對(duì)雙季早稻產(chǎn)量的影響[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,37(6):947-954. Li Muying, Huang Chengkuan, Tan Xueming, et al. Impact of machine transplanting space and seedling-taken size on the yield of double season early rice[J]. Acta Agriculturae Universitatis Jiangxiensis, 2015, 37(6): 947-954. (in Chinese with English abstract)

[19] 羅漢亞,李吉,袁釗和,等. 雜交稻機(jī)插秧育秧播種密度與取秧面積耦合關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(7):98-102.

Luo Hanya, Li Ji, Yuan Zhaohe, et al. Coupling relationships of nursing seedling densities and finger sticking area by mechanized hybrid rice transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(7): 98-102. (in Chinese with English abstract)

[20] Toshihiko Nishio, Sadakichi Fujii. Studies on the physical characteristics of rice seedling: IV.The effects of some conditions in raising of seedling[J]. Japanese Journal of Crop Science, 1978, 47(1): 111-117.

[21] Ryouji Sasaki, Katsunori Gotoh. Characteristics of rooting and early growth of transplanted rice nursling seedlings with several plant ages in leaf number[J]. Japanese Journal of Crop Science, 1999, 68(2): 194-198.

[22] Naomichi Tanaka, Kin-ichi Nishikawa, Kenji Akita. Relation between characteristics and rooting activity of rice seedlings (Oryza sativa L.) with special reference to amylase activity[J]. Japanese Journal of Crop Science, 1990, 59(2): 334-339.

[23] 姚雄. 雜交中稻大苗機(jī)插植株生長(zhǎng)特性與育秧技術(shù)研究[D]. 成都:四川農(nóng)業(yè)大學(xué),2010.

Yao Xiong. Research on the plant growth characteristics and seedling-raising techniques for machine-transplanted mid-season hybrid rice[D]. Chengdu: Sichuan Agricultural University, 2010. (in Chinese with English abstract)

[24] 劉義. 秧齡、移栽密度和播種密度對(duì)雙季稻生長(zhǎng)特性的影響[D]. 武漢:華中農(nóng)業(yè)大學(xué),2015.

Liu Yi. The effect of seedling age, transplanting density and seedling rate on the growth characteristics in double season rice [D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese with English abstract)

[25] 黃大山. 播期、播量和移栽密度對(duì)寧粳1號(hào)機(jī)插稻產(chǎn)量形成及氮素吸收的影響[D]. 揚(yáng)州:揚(yáng)州大學(xué),2008.

Huang Dashang. Effects of sowing date, sowing rate and transplanting density on the yield formation and nitrogen absorption of mechanical transplanting rice Ning Jing 1 [D]. Yangzhou: Yangzhou University, 2008. (in Chinese with English abstract)

[26] Ryouji Sasaki. Characteristics and seedling establishment of rice nursling seedlings[J]. Jarq-Japan Agricultural Research Quarterly, 2004, 38(1): 7-13.

[27] Ikeda H, Kamoshita A, Manabe T. Genetic analysis of rooting ability of transplanted rice (Oryza sativa L.) under different water conditions[J]. Journal of Experimental Botany, 2007, 58(2): 309-318.

[28] Yoshinori Yamamoto, Kazumi Maeda, Kisaburo Hayashi. Studies on transplanting injury in rice plant: I. the effects of root cutting treatments on the early growth of rice seedlings after transplanting[J]. Japanese Journal of Crop Science, 1978, 47(1): 31-38.

[29] 陳惠哲,朱德峰,徐一成. 水稻缽形毯狀秧苗機(jī)插技術(shù)及應(yīng)用效果[J]. 中國(guó)稻米,2009,15(3):5-7.

Chen Huizhe, Zhu Defeng, Xu Yicheng. Mechanized planting technology of rice bowl-shaped blanket seedling and application effect[J]. China Rice, 2009, 15(3): 5-7. (in Chinese with English abstract)

[30] 張洪程,朱聰聰,霍中洋,等. 缽苗機(jī)插水稻產(chǎn)量形成優(yōu)勢(shì)及主要生理生態(tài)特點(diǎn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(21):50-59.

Zhang Hongcheng, Zhu Congcong, Huo Zhongyang, et al. Advantages of yield formation and main charicteristics of physiological and ecological in rice with nutrition bowl mechanical transplanting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 50-59. (in Chinese with English abstract)

[31] Yoshida H, Horie T, Shiraiwa T. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia[J]. Field Crops Research, 2006, 97(2/3): 337-343.

[32] 張洪程,吳桂成,吳文革,等. 水稻“精苗穩(wěn)前、控蘗優(yōu)中、大穗強(qiáng)后”超高產(chǎn)定量化栽培模式[J]. 中國(guó)農(nóng)業(yè)科學(xué),2010,43(13):2645-2660.

Zhang Hongcheng, Wu Guicheng, Wu Wenge, et al. The SOI model of quantitative cultivation of super-high yielding rice[J]. Scientia Aricultura Sinica, 2010, 43(13): 2645-2660. (in Chinese with English abstract)

[33] 張洪程,趙品恒,孫菊英,等. 機(jī)插雜交粳稻超高產(chǎn)形成群體特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(2):39-44.

Zhang Hongcheng, Zhao Pinheng, Sun Juying, et al. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(2): 39-44. (in Chinese with English abstract)

Effects of biodegradable seedling tray and sowing rate on seedling quality and yield of mechanical transplanting rice

Shi Hongzhi, Zhu Defeng, Zhang Yuping, Xiang Jing, Zhang Yikai, Zhu Conghua, Wu Hui, Chen Huizhe※

(,,310006)

Mechanical transplanting is the tendency of planting mechanization for most of rice regions in China. The sowing rate of nursing seedling is usually high (90-120 g/tray) for forming seedling carpet and reducing the unplanted hill percentage, which leads to weak seedlings, excessive basic seedlings in fields, and poor heterosis representations for hybrid rice. The biodegradable seedling tray is made with bioplastic - polylactic acid (PLA, a kind of material widely used) and designed as bowl-blanket shape and mechanical transplanting with seedling tray, which could provide a new way to realize mechanical transplanting of hybrid rice under thin sowing rate model. This experiment was conducted to evaluate the applicability of biodegradable seedling tray in thin sowing and mechanical transplanting. Zhongzheyou 8 (indica hybrid rice) and Yongyou 538 (indica-japonica hybrid rice) were used as materials. The carpet seedling tray was applied as control. Four sowing rates: 30, 50, 70 and 90 g/tray were adopted (the weight of dry seeds). The nineteen-days-old seedlings under different tray and sowing rate treatments were transplanted in the plot of 30 m2separately with 30 cm × 18 cm planting density. A fertilizer dose of 180:450:112.5 kg/hm2of N:P:K was applied in the form of urea, calcium superphosphate, and potassium chloride, respectively. The nitrogen fertilizer was applied at soil preparation, tillering stage and panicle initiation stage in a proportion of 5:3:2. Total phosphorus fertilizer was applied at soil preparation and total potassium fertilizer was applied at panicle initiation stage. Weeds, insects and diseases were intensively controlled during the whole growing season to avoid yield loss. The other managements were uniform with high-yield cultivation. In this experiment, the emergence rate of seed, morphological characteristic of shoot and root of seedlings, root entwining force, unplanted hill percentage of mechanical transplanting, the yield and its components were investigated. Results showed that, nursing seedling with biodegradable seedling tray had significant the emergence rate increase (<0.05), and the lower sowing rate, the higher the emergence rate compared with carpet seeding tray. The emergence rate of Zhongzheyou 8 in 30 g/tray treatment was higher by 20.57 percentagepoints than that of the carpet seedling tray. The seedlings roots in biodegradable seedling tray treatment were white, stubby, separate and coiled in bowls due to bowl-blanket design and the average root diameter was 8.63% greater than that of the carpet seedling tray (<0.05). In addition, the root entwining force of seedlings with biodegradable seedling tray was greater than 100 N in all sowing rates treatments, which met the demand of mechanical transplanting. Because of bowl-shaped precision transplanting with seedling tray, the unplanted hill percentage of Zhongzheyou 8 in 30 g/tray treatment declined by 6.67 percentagepointscompared with carpet seedling tray. Despite the fill-grain percentage and the 1 000-grain weight of biodegradable seedling tray treatment were lower (<0.05) than that of carpet seedling tray, but the population spikelets and yield were slightly higher. According to the performance of nursing seedlings, mechanical transplanting and yield, 70 g/tray was appropriate sowing date for biodegradable seedling tray. Our results suggested that biodegradable seedling tray transplanted with tray was beneficial for nursing strength seedlings under thin sowing model, improving mechanical transplanting quality and yield potentiality of hybrid rice.

crops; mechanization; seed; rice; mechanical transplanting; biodegradable seedling tray; seedling quality; yield

10.11975/j.issn.1002-6819.2017.24.004

S233.71

A

1002-6819(2017)-24-0027-08

2017-07-22

2017-12-06

國(guó)家自然科學(xué)基金(31501272)、浙江省公益技術(shù)研究農(nóng)業(yè)項(xiàng)目(2015C32044)、2014RG004-2。

史鴻志,主要從事水稻種植機(jī)械化研究。 Email:1178244522@qq.com。

陳惠哲,研究員,博士,主要從事水稻種植機(jī)械化研究。 Email:chenhuizhe@163.com。

史鴻志,朱德峰,張玉屏,向 鏡,張義凱,朱從樺,武 輝,陳惠哲. 生物降解秧盤(pán)及播種量對(duì)機(jī)插水稻秧苗素質(zhì)及產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):27-34. doi:10.11975/j.issn.1002-6819.2017.24.004 http://www.tcsae.org

Shi Hongzhi, Zhu Defeng, Zhang Yuping, Xiang Jing, Zhang Yikai, Zhu Conghua, Wu Hui, Chen Huizhe. Effects of biodegradable seedling tray and sowing rate on seedling quality and yield of mechanical transplanting rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 27-34. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.24.004 http://www.tcsae.org

猜你喜歡
平盤(pán)秧盤(pán)播量
不同播量對(duì)小麥品種天麥119 適應(yīng)性的影響
一種插秧機(jī)缽育秧盤(pán)的低成本3D打印技術(shù)研究
反彈的平盤(pán)價(jià)制約
汝州市2018年度優(yōu)質(zhì)小麥不同播量處理試驗(yàn)報(bào)告
盤(pán)中下跌反抽的賣(mài)出技巧
秸稈秧盤(pán)育秧技術(shù)試驗(yàn)總結(jié)
水稻秧盤(pán)形變測(cè)度方法與等級(jí)評(píng)價(jià)研究
水稻秧盤(pán)高速播種配套技術(shù)的發(fā)展與分析
不同播量對(duì)新麥26群體性狀及產(chǎn)量的影響
播期播量對(duì)晚粳稻寧84農(nóng)藝性狀及產(chǎn)量的影響
绥江县| 乡城县| 湟中县| 肇东市| 阳原县| 都江堰市| 翁源县| 藁城市| 安阳市| 绥阳县| 丰镇市| 彭州市| 麻城市| 泽普县| 阿瓦提县| 交口县| 四平市| 垦利县| 兰溪市| 宁安市| 连城县| 临猗县| 永年县| 胶南市| 南安市| 泽普县| 长垣县| 长海县| 府谷县| 桃江县| 石林| 竹山县| 谢通门县| 桐梓县| 高阳县| 金寨县| 南充市| 青铜峡市| 福安市| 象山县| 富裕县|