史慶軒 楊超望
摘要:
通過(guò)對(duì)全尺寸可拆式鋼筋桁架模板在施工階段的截面力學(xué)性能試驗(yàn),研究了其在單調(diào)荷載作用下的破壞形態(tài)以及受力機(jī)理。并分別采用荷載撓度曲線法和極限彎矩法計(jì)算了截面特性。分析表明:施工階段可以采用上下弦連續(xù)的桁架計(jì)算模型,荷載撓度曲線法計(jì)算結(jié)果與理論值偏差較大,其原因是:試件破壞過(guò)程由變形控制,而非強(qiáng)度,以及由于連接件與鋼筋的相對(duì)滑移產(chǎn)生的附加撓度,極限彎矩法計(jì)算值與理論值較為吻合。在此基礎(chǔ)上,給出了簡(jiǎn)支或等跨連續(xù)(兩跨)梁計(jì)算模型的最大無(wú)支撐長(zhǎng)度的建議值。
關(guān)鍵詞:
可拆式模板;鋼筋桁架;變形;極限彎矩法
中圖分類號(hào):TU398.9
文獻(xiàn)標(biāo)志碼:A文章編號(hào):16744764(2016)06004608
Abstract:
The crosssection mechanical properties of fullsize detachable formwork with steel bar trusses were tested under construction stage and the failure mode as well as the mechanical behavior were analyzed under monotonic load, and the crosssection properties were calculated using loaddeflection curve method and ultimate moment method. The analysis results showed that truss model with its chords to be continuous and webs can be used during construction, the error was much large between results of loaddeflection curve method and theoretical values, and the reason was that the specimen in failed procress is controlled by deformation, rather than the strength; and the additional deflection was generated by the relative slip between connector and reinforcement; and ultimate moment method were in good agreement with theoretical values. On the base of results, the suggestions were given that the biggest unsupported length under simply supported or continuous beam model.
Keywords:
detachable formwork;steel truss;deformation;ultimate moment method
國(guó)外在20世紀(jì)20年代就開(kāi)始使用疊合結(jié)構(gòu)樓蓋形式,60年代壓型鋼板作為永久模板和施工平臺(tái)大量應(yīng)用[12],Von等[3]提出有效寬度計(jì)算壓型鋼板截面特性。中國(guó)最初應(yīng)用的疊合樓板體系為非組合壓型鋼板和組合壓型鋼板,并進(jìn)行抗彎性能試驗(yàn)以及采用不同方法計(jì)算其截面特性,并對(duì)計(jì)算結(jié)果進(jìn)行了分析比較等[46]。但壓型鋼板存在明顯的不足,為保留其優(yōu)勢(shì)又能有效地規(guī)避不足,鋼筋桁架樓承板應(yīng)運(yùn)而生。其中,Lok等[7]從鋼筋桁架夾芯板的抗彎、抗剪、抗扭承載力進(jìn)行截面特性計(jì)算理論研究;童根樹(shù)等[811]進(jìn)行自承式鋼筋桁架樓板的抗彎承載力試驗(yàn),采用不同的計(jì)算方法確定其截面特性,并對(duì)結(jié)果進(jìn)行對(duì)比分析,最終確定試件的截面慣性矩I和抗彎模量w。但對(duì)于這種新型的可拆式鋼筋桁架模板截面特性無(wú)任何研究。在此背景下,參考現(xiàn)有相關(guān)研究成果基礎(chǔ)上進(jìn)行單跨簡(jiǎn)支可拆式鋼筋桁架模板施工階段抗彎承載力試驗(yàn),由此得到可拆式鋼筋桁架模板的截面特性,從而為這種新型模板的理論研究以及實(shí)際工程的設(shè)計(jì)和施工做出參考依據(jù)。
1試驗(yàn)概況
1.1試件設(shè)計(jì)
試驗(yàn)共設(shè)計(jì)了兩組共20個(gè)試件,具體的試件尺寸及試件構(gòu)造見(jiàn)圖1和表1。其中鋼筋桁架腹桿采用鋼筋直徑為6 mm,fy=495 N/mm2,上下弦分別采用直徑為8、10、12 mm的鋼筋組合,其中8 mm鋼筋fy=506.7 N/mm2,10 mm鋼筋fy=493.3 N/mm2,12 mm鋼筋fy=463.3 N/mm2。鋼筋的彈性模量均為E=2.0×105 N/mm2。
1.2試驗(yàn)裝置和加載方式
為模擬可拆式鋼筋桁架樓承板在施工階段試件和混凝土自重下的受力性能,試驗(yàn)選用簡(jiǎn)支梁加載方案,為保證試件在水平方向的自由移動(dòng),在構(gòu)件一端使用一個(gè)滾軸支座。第1組試件(A1~A12)由于試件尺寸較小,不便于均布荷載直接施加于樓承板上,因此,采用集中力模擬均布荷載對(duì)簡(jiǎn)支板進(jìn)行等效加載,為了更好地模擬均布荷載的施加,防止局部荷載過(guò)大而引起的受力不均勻,單調(diào)靜力荷載采用二級(jí)分配梁系統(tǒng)通過(guò)10 t千斤頂施加,在長(zhǎng)跨和短跨的八分點(diǎn)位置,用豎桿撐起4個(gè)托板,在托板上施加集中荷載,第2組試件(B1~B8)采用荷重塊直接均勻鋪設(shè)在樓承板上以模擬均布荷載,加載示意見(jiàn)圖2。對(duì)第1組試件,分別在鋼筋桁架的上弦、腹桿、下弦位置處布置應(yīng)變片,以測(cè)量不同受力階段的鋼筋應(yīng)力,在計(jì)算跨度三分點(diǎn)處分別布置位移計(jì),由于是兩榀鋼筋桁架,在每榀跨中布置位移計(jì),第1組試件共3個(gè)位移計(jì),以求得試件的整體變形。位移計(jì)以及應(yīng)變布置見(jiàn)圖3(a)所示;對(duì)于第2組試件,在鋼筋桁架上布置應(yīng)變片,考慮到試件的內(nèi)力分布,跨中附近的桁架上、下弦桿和腹桿上多布置應(yīng)變片,在兩端的桁架上、下弦桿和腹桿上少布置應(yīng)變片,在第2組試件跨中、四分點(diǎn)及八分點(diǎn)處共布置7個(gè)位移計(jì)以測(cè)得不同位置處的撓度,同時(shí)在連接扣件上布置5個(gè)位移計(jì)以測(cè)得連接扣件與鋼筋的相對(duì)滑移,具體的位移計(jì)布置位置,見(jiàn)圖3(b)所示。endprint
2試驗(yàn)現(xiàn)象分析
A組鋼筋桁架樓承板:以A4試件為例,當(dāng)加載等效集中力較小時(shí),試件無(wú)明顯變形;當(dāng)?shù)刃Ъ辛_(dá)到8 kN后,跨中位移增大較快,連接件產(chǎn)生變形,下弦鋼筋逐漸從連接件中滑出;當(dāng)?shù)刃Ъ辛_(dá)到9.28 kN時(shí),連接件破壞或鋼筋與連接件完全脫落,致使構(gòu)件喪失承載力,底部模板與端部鋼板相互錯(cuò)開(kāi),加載點(diǎn)變形較大,鋼筋無(wú)任何屈曲變形現(xiàn)象。破壞形態(tài)如圖4所示。
B組鋼筋桁架樓承板:以B4試件為例,當(dāng)荷載達(dá)到4 kN之前,試件無(wú)明顯變形;繼續(xù)施加荷載至7.2 kN時(shí),跨中上弦鋼筋出現(xiàn)明顯變形;加載到達(dá)8.32 kN時(shí),跨中三榀上弦鋼筋突然同時(shí)受壓屈曲試件整體失穩(wěn)破壞,下弦鋼筋和腹桿鋼筋均無(wú)明顯變形,破壞過(guò)程急為突然,毫無(wú)預(yù)兆,試件變形較大。樓承板即使發(fā)生很大程度的彎曲但未出現(xiàn)劈裂,連接件性能完好,其與鋼筋無(wú)明顯滑移現(xiàn)象。破壞形態(tài)如圖5所示。
通過(guò)上述試驗(yàn)現(xiàn)象可以看出:
1)樓承板采用簡(jiǎn)支梁加載,加載點(diǎn)在四分點(diǎn)處,從受力角度講,跨中僅受到最大彎矩的作用,而加載位置不僅受到最大彎矩作用,還受到直接荷載作用,因此,其純彎段靠近連接件位置處更易發(fā)生破壞,這也與試驗(yàn)破壞形態(tài)相一致,最終因連接件破壞致使試件喪失承載能力。
2)桁架樓承板破壞為跨中上弦鋼筋屈曲破壞,整個(gè)試件為彎曲破壞,與力學(xué)模型預(yù)計(jì)破壞形態(tài)相一致,但破壞時(shí)具有突然性。在實(shí)際工程中為減少施工階段的撓度以及避免這種現(xiàn)象發(fā)生,可采取設(shè)置臨時(shí)支撐的方法進(jìn)行加固,建議采用多跨連續(xù)梁模型進(jìn)行計(jì)算和施工。
3截面特性計(jì)算
對(duì)于可拆式鋼筋桁架模板截面特性計(jì)算,采用以下兩種方法計(jì)算可拆式鋼筋桁架模板的慣性矩,分別是:1)根據(jù)荷載撓度曲線確定;2)極限彎矩確定;從而確定出這種新型樓板的截面特性。
3.1荷載撓度法
試驗(yàn)過(guò)程中,由數(shù)據(jù)采集儀可以得到荷載撓度曲線,通過(guò)力學(xué)知識(shí)可知,兩組試件的跨中撓度計(jì)算式分別為式(1)、式(2)。
f1 = 6.81P1 L31384EI1 (1)f2 = 5qL42384EI2 =5P2 L32384EI2(2)
式中:P1為施加的千斤頂荷載(已考慮分配梁自重產(chǎn)生的荷載);P2為施加均布荷載的等效集中力;L為試件的計(jì)算跨度;E為鋼筋彈性模量,取2.0×105 N/mm2;I為截面的慣性矩。令α1= P1/f1,α2= P2/f2來(lái)表示兩組試件截面的慣性矩,如式(3)、式(4)所示。
I1=45.4α1(3)
I2=1.76×103α2(4)
由式(3)、式(4)可知,只要確定荷載撓度曲線上彈性階段的 P/f,即可求得板的截面慣性矩。根據(jù)《組合樓板設(shè)計(jì)與施工規(guī)范》( CECS 273∶ 2010) [13](簡(jiǎn)稱組合樓板規(guī)范) 要求,可拆式鋼筋桁架模板在自重及施工活荷載作用下的撓度限值為min(L/180,20) ,因此在荷載位移曲線上P≤Pmax和f≤min(L/180,20)的彈性階段做切線,則切線斜率即為P/f,即可得到各試件的截面慣性矩實(shí)測(cè)值I。各個(gè)試件的試驗(yàn)荷載撓度曲線和擬合直線方程如圖6所示。
從表4、5對(duì)比結(jié)果可知:采用荷載撓度曲線法計(jì)算的截面慣性矩試驗(yàn)值與理論值差別非常大,主要有兩方面的原因:1)由于在施工荷載作用下小跨度試件的某一個(gè)連接件破壞時(shí)局部變形較大引起整體非均勻變形較大;大跨度試件是由于跨度較大并且主要承載構(gòu)件為上弦鋼筋,下弦鋼筋并未完全發(fā)揮其效應(yīng)。其次底部模板的剛度小,相比于其他材料變形較大,這也就是彈性階段試件的變形增長(zhǎng)速率遠(yuǎn)大于荷載增幅的原因,即試件由變形控制,而非強(qiáng)度;2)依據(jù)Eurocode4以及Easterling Wl[17]的建議,當(dāng)相對(duì)滑移超過(guò)0.5 mm時(shí),應(yīng)考慮附加撓度對(duì)于試件整體撓度的影響,如圖8所示。從試驗(yàn)中所測(cè)相對(duì)滑移數(shù)據(jù)可知,連接件與下弦鋼筋的相對(duì)滑移已超過(guò)0.5 mm,因此,在豎向荷載作用下,試件不僅會(huì)產(chǎn)生豎向的撓度y1,還會(huì)產(chǎn)生附加撓度y2,試驗(yàn)中所測(cè)得豎向撓度變形實(shí)際為y=y1+y2,而理論上只有變形y1,致使產(chǎn)生較大的誤差。
采用極限彎矩法計(jì)算試驗(yàn)值更加接近理論值,這主要是因?yàn)樵诩虞d過(guò)程中鋼筋應(yīng)力均勻增大,達(dá)到極限荷載時(shí)各截面應(yīng)力發(fā)揮較為充分;但小跨度試件試驗(yàn)值精確度相對(duì)小于大跨度試件,這主要是由于兩者不同的加載方式對(duì)于試驗(yàn)值精確度的影響,小跨度試件采用集中荷載加載方式下的試件連接件破壞或者與鋼筋脫落時(shí),試件在同一級(jí)荷載下的應(yīng)力分布極不均勻,并且隨著荷載增大,試件同一部位的應(yīng)變?cè)鲩L(zhǎng)幅度分布也不一致;大跨度試件的均布荷載加載方式下試件各部位的應(yīng)力均勻增長(zhǎng),達(dá)到極限荷載時(shí)截面各處應(yīng)力發(fā)揮充分,相應(yīng)的結(jié)果與理論值較為接近,故對(duì)于可拆式鋼筋桁架模板的截面特性應(yīng)該采用極限彎矩法進(jìn)行計(jì)算。由于不同跨度試件的下弦鋼筋的均未屈服,即試驗(yàn)中鋼筋桁架并未完全發(fā)揮其抵抗能力,所以試驗(yàn)值小于理論計(jì)算值為正常結(jié)果。
5最大無(wú)支撐長(zhǎng)度
鋼筋桁架模板由于本身的空間受力體系,具有一定的剛度,因此,在施工階段往往可以不設(shè)支撐,但是當(dāng)跨度增加到一定程度時(shí),模板的撓度就會(huì)達(dá)到規(guī)范的限值,即L/180或20 mm,所以在實(shí)際工程中需要計(jì)算出單向簡(jiǎn)支或等跨連續(xù)(兩跨)可拆式鋼筋桁架模板的最大無(wú)支撐長(zhǎng)度以保證施工階段變形要求。利用組合桁架計(jì)算模型,由材料力學(xué)知識(shí)可知在均布荷載作用下簡(jiǎn)支或等跨連續(xù)(兩跨)梁的跨中撓度采用式(2)和式(15)。
f=0.521qL4100EI(15)
計(jì)算模型中荷載應(yīng)盡量接近實(shí)際施工荷載,現(xiàn)以寬度為1 000 mm,厚100 mm的混凝土板為例可知:荷載應(yīng)包含樓承板自重G1k=0.3 kN/m2;G2k=24×0.1=2.4 kN/m2;鋼筋自重G3k=1.1×0.1=0.11 kN/m2;施工人員及施工設(shè)備荷載Qk=2.5 kN/m2施工總荷載S=G1k+ G2k+G3k+Qk即S=0.3+2.4+1.1+2.5=5.31 kN/m2。則施工荷載為5.31×0.6=3.186 kN/m,不同鋼筋直徑的可拆式鋼筋桁架模板在施工荷載下的的最大無(wú)支撐長(zhǎng)度計(jì)算結(jié)果見(jiàn)表6所示。endprint
6結(jié)論
1)確定可拆式鋼筋桁架模板的破壞形態(tài)以及受力機(jī)理,實(shí)際應(yīng)用中應(yīng)避免大跨度發(fā)生屈曲破壞,建議按照多跨連續(xù)梁模型計(jì)算和施工。
2)可拆式鋼筋桁架模板截面特性計(jì)算可由試驗(yàn)結(jié)果采用荷載撓度曲線法或者極限彎矩法確定截面慣性矩或截面模量,進(jìn)而通過(guò)中和軸位置確定截面其他參數(shù)。
3)按彈性階段荷載撓度曲線法計(jì)算截面特性與理論值差別較大,因?yàn)樵嚰茐挠勺冃慰刂疲菑?qiáng)度;以及連接件與鋼筋相對(duì)滑移所產(chǎn)生的附加撓度變形。極限彎矩法計(jì)算結(jié)果較為精確,但小跨度試件誤差相對(duì)于大跨度試件較大,這主要是由于兩者的加載方式不同所致。
4)提出的施工階段采用上下弦鋼筋連續(xù),腹桿鉸接的簡(jiǎn)化模型計(jì)算其截面參數(shù),且該計(jì)算模型完全適用可拆式鋼筋桁架模板,并給出簡(jiǎn)支或等跨連續(xù)(兩跨)梁試件的最大無(wú)支撐長(zhǎng)度,為設(shè)計(jì)以及施工做出參考依據(jù)。
參考文獻(xiàn):
[1]
COOK J P. Composite structure methods [M]. New York: Mc Grawhill Book Company Inc, 1976, 121150.
[2] YOUN J J. Simplified model to predict partialinteractive structural performance of steelconcrete composite slabs [J]. Journal of Constructional Steel Research, 2007: 15.
[3] VON K T, SECHLER E E, DONNELL L H. The strength of thin plates in compression [R]. New York: American Society of Mechanical Engineers, 1932.
[4] 白力更, 馮永偉, 程榮. 壓型鋼板截面特性計(jì)算方法的分析比較[J]. 鋼結(jié)構(gòu), 2011, 26(10) : 4245.
BAI L G, FENG Y W, CHENG R. Analysis and comprasion of calculation methods for section characteristics of profiled steel sheets [J]. Steel Construction, 2011, 26(10): 4245. (in Chinese)
[5] 王秋維, 史慶軒, 李衛(wèi)濤. 閉口型壓型鋼板截面力學(xué)特性試驗(yàn)研究[J]. 建筑結(jié)構(gòu), 2014, 44(12): 9599.
WANG Q W, SHI Q X, LI W T. Experimental study on crosssection mechanical properties of closed profiled sheetingconcrete composite slab [J]. Building Structure, 2014, 44(12): 9599. (in Chinese)
[6] 高曉博. 壓型鋼板截面特性及抗彎性能試驗(yàn)研究[D]. 西安:西安建筑科技大學(xué), 2004.
GAO X B. Section property and moment capacities of profiled metal sheets [D]. Xi'an: Xi'an University of Architecture and Technology, 2014. (in Chinese)
[7] LOK T S , CHENG Q H. Elastic stiffness properties and behavior of trusscore sandwich panel [J]. Journal of Structural Engineering, 2000(5): 552559. (in Chinese)
[8] 劉秩, 童根樹(shù), 李文斌, 等. 鋼筋桁架疊合板性能試驗(yàn)和設(shè)計(jì)方法研究[J]. 混凝土與水泥制品, 2006(2): 5760.
LIU Y, TONG G S, LI W B, et al. Experimental research and design method of composite floor slabs with steel bar trusses [J]. China Concrete and Cement Products, 2006(2): 5760. (in Chinese)
[9] 陳安英, 完海鷹, 孫磊,等. 鋼筋桁架組合樓板抗彎性能試驗(yàn)研究[J]. 建筑結(jié)構(gòu), 2015(8): 5963, 90.
CHEN A Y, WAN H Y, SUN L, et al. Experimental study on bending behavior of steel bar truss composite slab [J]. Building Structure, 2015(8): 5963, 90. (in Chinese)
[10] 完海鷹, 車建萍, 趙磊. 壓型鋼板對(duì)于鋼筋桁架樓板承載力影響的試驗(yàn)[J]. 建筑技術(shù),2014, 45(3): 265268.
WAN H Y, CHE J P, ZHAO L. Experimental research on effect of steel slabs on loadcarry capacity of steel bar truss slab [J]. Architecture Technology, 2014, 45(3): 265268. (in Chinese)endprint
[11] 何守民. 鋼筋桁架組合樓板剛度試驗(yàn)研究[D]. 合肥: 合肥工業(yè)大學(xué), 2013.
HE S M. Experimental study on rigidity of concrete composite slabs with steel bar truss [D]. Hefei: Hefei University of Tchnology, 2013. (in Chinese)
[12] 劉秩. 自承式鋼筋桁架混凝土疊合板性能研究[D]. 杭州: 浙江大學(xué), 2006.
LIU Y. Peformence research of steel bar truss and concrete composite slab [D]. Hangzhou: Zhejiang University, 2006. (in Chinese)
[13] 組合樓板設(shè)計(jì)與施工規(guī)范: CECS 273: 2010 [S]. 北京: 中國(guó)計(jì)劃出版社, 2010.
Code for composite slabs design and construction: CECS 273: 2010 [S]. BeiJing: China Planing Press, 2010. (in Chinese)
[14] 童根樹(shù), 劉書(shū)江, 李文斌. 自承式鋼模板系統(tǒng)性能試驗(yàn)和設(shè)計(jì)方法研究[J]. 建筑鋼結(jié)構(gòu)進(jìn)展, 2005, 7(3): 1622, 8.
TONG G S, LIU S J, LI W B. Experimental research on a selfsupported floor system [J]. Progress in Steel Building Structures, 2005,7(3):1622, 8. (in Chinese)
[15] 孫磊. 鋼筋桁架樓板承載力試驗(yàn)及理論分析[D]. 合肥: 合肥工業(yè)大學(xué), 2013.
SUN L. Theoretical analysis and experimental research for loadcarrying capacity of steel bar truss slab [D]. Hefei: Hefei University of Tchnology, 2013. (in Chinese)
[16] 胡憲鑫. 鋼筋桁架混凝土樓板受力性能分析[D]. 鄭州: 鄭州大學(xué), 2015.
HU X X. Mechanical behavior of steel bar truss concrete slab [D]. Zhengzhou: Zhengzhou University, 2015. (in Chinese)
[17] EASTERLING W, YOUNG C. Strength of composite slabs [J]. Journal of Structural Engineering, 1992, 118(9): 23702389.
(編輯王秀玲)endprint