李泳欣,鄒藝軒,劉建新,劉紅云
(浙江大學(xué)動(dòng)物科學(xué)學(xué)院,杭州310058)
近年來,隨著集約化養(yǎng)殖的發(fā)展和奶牛生產(chǎn)性能的不斷提高,奶牛遭受氧化應(yīng)激的問題日益突出。在正常生理狀態(tài)下,動(dòng)物機(jī)體持續(xù)地產(chǎn)生自由基,自由基和體內(nèi)抗氧化物質(zhì)互相作用,維持細(xì)胞內(nèi)穩(wěn)態(tài)。當(dāng)自由基的產(chǎn)生速度超過其清除速度,氧化還原平衡被打破,機(jī)體就處于氧化應(yīng)激狀態(tài)[1]。氧化應(yīng)激不僅降低奶牛生產(chǎn)性能和繁殖性能,也會(huì)影響其抗病能力,對奶牛產(chǎn)業(yè)危害極大。生產(chǎn)中可通過補(bǔ)充維生素、微量元素和植物提取物來預(yù)防氧化應(yīng)激,但其抗氧化機(jī)制尚不完全清晰。本文綜述了奶牛氧化應(yīng)激的產(chǎn)生原因、危害、外源抗氧化劑及其抗氧化機(jī)制的研究現(xiàn)狀,以期為奶??寡趸瘷C(jī)制研究和新型抗氧化劑開發(fā)提供理論依據(jù)。
奶牛所處的生理階段直接影響其代謝速度,進(jìn)而影響氧化應(yīng)激的發(fā)生。高產(chǎn)奶牛代謝旺盛,其血清中脂質(zhì)過氧化物含量明顯高于中產(chǎn)奶牛,表明高產(chǎn)奶牛體內(nèi)自由基反應(yīng)更加活躍,更易遭受氧化應(yīng)激[2]。奶牛妊娠期最后4周至泌乳期前4周由于生理上的巨大變化,產(chǎn)生大量自由基用于能量代謝,進(jìn)而生成過量羥基酸和脂質(zhì)過氧化物等次級自由基,不僅造成氧化應(yīng)激發(fā)生率顯著增加,還可能提高代謝病發(fā)生的風(fēng)險(xiǎn)[3-4]。因此,高產(chǎn)奶牛的妊娠后期和泌乳早期,最易發(fā)生氧化應(yīng)激。
日糧成分影響動(dòng)物體內(nèi)自由基的產(chǎn)生。奶牛日糧中的多不飽和脂肪酸對脂質(zhì)氧化反應(yīng)敏感[5],使用富含n-3多不飽和脂肪酸的亞麻籽代替大豆飼喂奶牛后,血液中丙二醛(malondialdehyde,MDA)濃度顯著上升,標(biāo)志著自由基和脂質(zhì)過氧化反應(yīng)增加[6]。飼料中的微量元素具有重要的清除自由基的功能,影響抗氧化劑與自由基之間的平衡[7]。由于鈣(Ca)、銅(Cu)、錳(Mn)等礦質(zhì)元素配比不均衡造成的奶牛跛行病例中發(fā)生了氧化應(yīng)激,導(dǎo)致MDA水平和氧化谷胱甘肽比例顯著升高[7]。為了將營養(yǎng)供給不均衡帶來的負(fù)面影響降至最小,在飼養(yǎng)中需要給奶牛提供精準(zhǔn)的微量元素,以保證其抗氧化系統(tǒng)的活性。
環(huán)境溫度過高可引起奶牛熱應(yīng)激,進(jìn)而誘發(fā)氧化應(yīng)激,而冷應(yīng)激與奶牛氧化應(yīng)激的關(guān)系尚不清楚。DAS等[8]研究表明,在高溫環(huán)境下,奶牛產(chǎn)熱和散熱速度不均衡,心率和呼吸頻率加快,直腸溫度升高,出現(xiàn)熱應(yīng)激,此時(shí)奶牛血清中的MDA含量,過氧化氫酶(catalase,CAT)、超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽還原酶活性隨之升高,以緩解熱應(yīng)激引起的機(jī)體氧化損傷。與秋冬季節(jié)相比,夏季奶牛脂肪動(dòng)員增加,總還原性物質(zhì)減少,提示奶??寡趸芰档停S后代償性提高SOD和谷胱甘肽過氧化物酶(glutathion peroxidase,GSH-Px)活性,以維持氧化還原反應(yīng)的平衡狀態(tài)[9-10]。
氧化應(yīng)激明顯影響各泌乳階段奶牛的生產(chǎn)性能。PEDERNERA等[11]對泌乳前5周奶牛的研究表明,氧化應(yīng)激常伴隨嚴(yán)重的能量負(fù)平衡,同時(shí)造成產(chǎn)奶量顯著下降。SURIYASATHAPORN等[12]發(fā)現(xiàn),牛奶中MDA含量與產(chǎn)奶量呈負(fù)相關(guān),提示氧化應(yīng)激可能導(dǎo)致奶牛的產(chǎn)奶量下降。泌乳中后期奶牛遭遇氧化應(yīng)激后,總抗氧化能力(total antioxidant capacity,T-AOC)和GSH-Px活性降低,奶牛干物質(zhì)采食量和泌乳量顯著下降[13],說明氧化應(yīng)激可降低奶牛生產(chǎn)性能。
氧化應(yīng)激還可以影響奶牛的繁殖性能,如過量自由基可損傷黃體細(xì)胞膜,影響黃體酮分泌,最終導(dǎo)致胚胎發(fā)育阻滯[14]。張麗[15]也報(bào)道了當(dāng)奶牛遭受氧化應(yīng)激時(shí),胎牛胎盤中誘導(dǎo)型一氧化氮合酶高效表達(dá),促進(jìn)一氧化氮(NO)的產(chǎn)生,從而抑制子宮收縮,引發(fā)炎癥反應(yīng),影響胎兒胎盤與母體胎盤的正常分離。TURK等[9,16]證明,炎熱季節(jié)奶牛的T-AOC下降,產(chǎn)犢到受胎間隔延長,且產(chǎn)犢到受胎間隔與T-AOC呈顯著負(fù)相關(guān),表明抗氧化能力降低可能致使繁殖周期延長,繁殖性能降低。
氧化應(yīng)激可引起奶牛免疫功能失調(diào)和炎癥反應(yīng),提高奶牛對多種疾病的易感性。奶牛乳腺炎發(fā)生過程與氧化應(yīng)激存在密切聯(lián)系,在臨床乳腺炎病例中,奶牛血液中谷胱甘肽水平、SOD和CAT活性顯著降低,紅細(xì)胞脂質(zhì)過氧化物增多,機(jī)體抗氧化能力下降[17-18]。同時(shí),POLITIS等[18]證明氧化應(yīng)激水平與奶牛乳腺炎發(fā)病率呈正相關(guān),可能是抗氧化能力降低使機(jī)體對乳腺炎的敏感性增加。另有研究表明,奶牛跛行、代謝綜合征等疾病與氧化應(yīng)激有關(guān)[7,19],緩解氧化應(yīng)激對奶牛健康意義深遠(yuǎn)。
奶牛自身的抗氧化防御系統(tǒng)可以抵御和修復(fù)一定程度的氧化損傷,若超出了自身的修復(fù)能力,則需要另外添加抗氧化劑。生產(chǎn)中常通過補(bǔ)充維生素和微量元素進(jìn)行調(diào)節(jié),同時(shí)多種植物提取物也被發(fā)現(xiàn)具有較好的抗氧化效果。
多種還原性維生素具有提高免疫力、改善氧化應(yīng)激的作用。在泌乳期奶牛日糧中分別添加110和220 IU/kg的維生素A,發(fā)現(xiàn)高劑量組奶牛血清中免疫球蛋白、白細(xì)胞介素濃度顯著升高,T-AOC和多種抗氧化酶活性提高,MDA、活性氧自由基(reactive oxide species,ROS)濃度和T淋巴細(xì)胞、乳中體細(xì)胞數(shù)下降,表明補(bǔ)充較高劑量的維生素A可顯著提高泌乳期奶牛抗氧化能力和免疫功能[20]。作為機(jī)體必需的營養(yǎng)物質(zhì),維生素E可抑制脂質(zhì)自由基的連鎖反應(yīng),減少自由基積累。在泌乳期奶牛日糧中,對每頭奶牛每天添加1 000 IU維生素E,可顯著降低應(yīng)激標(biāo)記物(MDA、熱休克蛋白70和皮質(zhì)醇)含量,提高SOD、GSH-Px活性,同時(shí)提高黃體酮濃度,改善奶牛繁殖性能[21-22]。
Cu、Mn、鋅(Zn)、硒(Se)等微量元素可增強(qiáng)奶牛的抗氧化功能。Cu、Mn、Zn是銅/錳/鋅-超氧化物歧化酶、GSH-Px和CAT的組成成分,體內(nèi)Cu、Mn、Zn缺乏可降低相應(yīng)酶的含量,影響抗氧化系統(tǒng)活性[23]。在基礎(chǔ)日糧中以硫酸鋅形式補(bǔ)充Zn,可提高GSH-Px、CAT活性,改善空腸段的氧化損傷[24]。DKHIL等[25]報(bào)道,納米Se可顯著降低NO含量和脂質(zhì)過氧化反應(yīng),提高谷胱甘肽含量和抗氧化酶活性,并減少細(xì)胞凋亡和組織損傷。因此,多種微量元素參與了抗氧化酶的組成并調(diào)控其活性,進(jìn)而影響奶??寡趸芰?。
3.3.1 多酚類物質(zhì)
茶多酚是茶葉中提取的多酚類物質(zhì)的總稱。QI等[26]報(bào)道了茶多酚可改善過氧化氫誘導(dǎo)的線粒體損傷和氧化應(yīng)激,并且這種保護(hù)作用與茶多酚激活轉(zhuǎn)錄因子E2相關(guān)因子2-抗氧化反應(yīng)元件(Nrf2-ARE)信號(hào)通路有關(guān)。NA等[27]研究發(fā)現(xiàn),茶多酚最主要的組分之一——沒食子兒茶素沒食子酸酯(epigallocatechin gallate,EGCG),可提高細(xì)胞內(nèi)血紅素氧合酶-1和錳超氧化物歧化酶表達(dá),提高細(xì)胞對于氧化應(yīng)激的防御能力。除茶多酚外,白藜蘆醇也是一種常見的天然多酚類化合物,可減少過氧化氫引起的ROS產(chǎn)生、內(nèi)質(zhì)網(wǎng)應(yīng)激和線粒體相關(guān)的細(xì)胞凋亡,提高細(xì)胞存活能力,并誘導(dǎo)血紅素氧合酶-1和硫氧還蛋白還原酶表達(dá),提高細(xì)胞抗氧化活性[28]。
3.3.2 黃酮類物質(zhì)
大豆黃素是從大豆等植物中提取的生物活性成分。在6月齡錦江牛日糧中添加大豆黃素,奶牛血液中SOD、GSH-Px活性和免疫球蛋白G濃度顯著升高,產(chǎn)奶量和乳脂含量也顯著提高,MDA和免疫球蛋白M含量分別有降低和升高趨勢,證明日糧中補(bǔ)充適量大豆黃素不僅可提高機(jī)體的抗氧化功能,而且對其生產(chǎn)性能和免疫功能具有促進(jìn)作用[29]。蘆丁是另一種從植物的花、果中提取的黃酮類化合物,已被報(bào)道具有抗氧化功能,可降低一氧化氮合成酶活性,并提高SOD、GSH-Px、CAT活性,減少ROS、MDA、NO和氧化谷胱甘肽產(chǎn)生,改善線粒體損傷[30]。
3.3.3 其他
根皮素是蘋果等水果中富含的活性成分。LIU等[31]報(bào)道,根皮素可提高大鼠體內(nèi)SOD、GSH-Px活性和谷胱甘肽含量,減少M(fèi)DA產(chǎn)生,同時(shí)上調(diào)Nrf2通路。另外,DING等[32]證明從石榴皮中提取的安石榴苷,可通過激活腺苷酸依賴的蛋白激酶,減少細(xì)胞凋亡、過氧化物和MDA產(chǎn)生,提高機(jī)體抗氧化能力。由此可見,多種植物中提取的生物活性物質(zhì)均具有一定程度的抗氧化效果,可作為潛在的抗氧化飼料添加劑進(jìn)行研究并進(jìn)一步開發(fā)、利用。
作為機(jī)體必需的營養(yǎng)素,維生素和微量元素研究較為成熟,在奶牛日糧中已有應(yīng)用,而天然植物提取物由于種類繁多,來源廣泛,抗氧化效果優(yōu)異,也逐漸成為研究的熱點(diǎn)。研究發(fā)現(xiàn),在動(dòng)物個(gè)體或細(xì)胞遭受氧化應(yīng)激后,抗氧化劑主要通過Nrf2-ARE、核因子κB(NF-κB)、絲裂原激活的蛋白激酶(MAPK)和PI3K/Akt等信號(hào)轉(zhuǎn)導(dǎo)途徑激活抗氧化酶和Ⅱ相解毒酶表達(dá),提高機(jī)體抗氧化能力。
Nrf2-ARE是目前已知的最重要的抗氧化通路,當(dāng)細(xì)胞內(nèi)ROS濃度過高時(shí),會(huì)發(fā)生細(xì)胞防御反應(yīng)以抵御氧化損傷,這些反應(yīng)大多受Nrf2-ARE調(diào)控[33]。Nrf2的活性主要受Kelch樣環(huán)氧氯丙烷相關(guān)蛋白-1調(diào)控:在正常情況下,Kelch樣環(huán)氧氯丙烷相關(guān)蛋白-1與肌動(dòng)蛋白結(jié)合,將Nrf2錨定在細(xì)胞質(zhì)中,內(nèi)源抗氧化物和Ⅱ相解毒酶處于基礎(chǔ)表達(dá)水平。若受到氧化應(yīng)激的誘導(dǎo),該通路被激活,Kelch樣環(huán)氧氯丙烷相關(guān)蛋白-1構(gòu)象改變,使Nrf2被釋放入核中與ARE結(jié)合,促進(jìn)多種抗氧化劑和Ⅱ相解毒酶表達(dá),從而在細(xì)胞氧化應(yīng)激損傷過程中發(fā)揮保護(hù)作用[34-35]。已有研究團(tuán)隊(duì)通過基因芯片技術(shù)系統(tǒng)地探究了Nrf2的靶基因,發(fā)現(xiàn)Nrf2-ARE通路可調(diào)節(jié)超過200個(gè)基因的表達(dá)[36]。
研究發(fā)現(xiàn),EGCG可促進(jìn)Nrf2核轉(zhuǎn)移,并促進(jìn)其與抗氧化反應(yīng)元件ARE結(jié)合,提高其轉(zhuǎn)錄活性,將Nrf2基因沉默后,細(xì)胞對于EGCG誘導(dǎo)抗氧化酶表達(dá)的敏感性降低[27]。同時(shí),槲皮素可上調(diào)Nrf2表達(dá),降低黃嘌呤氧化酶活性,減少超氧化物陰離子自由基含量和氧化應(yīng)激造成的DNA損傷[37-38]。此外,JIN等[28]報(bào)道了白藜蘆醇可能通過磷脂酰肌醇3激酶/蛋白激酶B(PI3K/Akt)、細(xì)胞外調(diào)節(jié)蛋白激酶(ERK1/2)、c-Jun氨基末端激酶和反應(yīng)激酶,介導(dǎo)Nrf2通路的激活,誘導(dǎo)抗氧化酶表達(dá)??梢姸喾N信號(hào)轉(zhuǎn)導(dǎo)途徑參與了機(jī)體抗氧化防御過程,并且Nrf2、Akt和ERK1/2信號(hào)通路的激活對于白藜蘆醇發(fā)揮細(xì)胞保護(hù)作用必不可少。
轉(zhuǎn)錄因子NF-κB在炎癥反應(yīng)和免疫過程中發(fā)揮關(guān)鍵作用,其生物學(xué)功能通常受到IκB蛋白的調(diào)控。IκB一方面與NF-κB直接結(jié)合,使NF-κB與DNA結(jié)合的結(jié)構(gòu)域被掩蓋,另一方面可調(diào)節(jié)細(xì)胞核輸出信號(hào),將NF-κB從細(xì)胞核轉(zhuǎn)移入細(xì)胞質(zhì),抑制NF-κB下游基因的表達(dá)。若受到TNF受體家族、Toll樣受體家族和白介素等促炎因子誘導(dǎo),NF-κB被激活,與IκB解離并釋放入核,促進(jìn)其下游基因表達(dá)[39]。
近年來的研究表明,NF-κB的激活可能介導(dǎo)氧化應(yīng)激發(fā)生。裂谷熱病毒感染肝細(xì)胞后,細(xì)胞內(nèi)過氧化物和ROS水平升高,提示發(fā)生了氧化應(yīng)激,同時(shí)細(xì)胞因子和預(yù)凋亡基因表達(dá)上調(diào),NF-κB和p53應(yīng)答激活。使用姜黃素預(yù)處理后,細(xì)胞內(nèi)過氧化物水平降低,NF-κB的核定位和p53核轉(zhuǎn)移顯著減少[40],表明氧化應(yīng)激常伴隨著NF-κB的活化和免疫、凋亡的發(fā)生,姜黃素可能通過抑制NF-κB激活,減少細(xì)胞應(yīng)激反應(yīng)。此外,蘆丁和根皮素可顯著下調(diào)NF-κB的磷酸化作用,抑制其活化,改善氧化損傷[41-42],而槲皮素可下調(diào)NF-κB和環(huán)氧合酶-2表達(dá),減少ROS產(chǎn)生,調(diào)節(jié)細(xì)胞的氧化應(yīng)激和氧化還原狀態(tài)[37]。
MAPK又稱細(xì)胞外信號(hào)調(diào)節(jié)激酶,可通過ERK1/2、c-Jun氨基末端激酶和反應(yīng)激酶的磷酸化激活,PI3K/Akt激活則主要表現(xiàn)為Akt的磷酸化,但過度的活化可能會(huì)導(dǎo)致細(xì)胞的功能失調(diào),應(yīng)激反應(yīng)、細(xì)胞因子、激素等均可誘導(dǎo)PI3K/Akt的激活[43]。多項(xiàng)研究表明,各通路之間存在相互作用,但不同抗氧化劑發(fā)揮作用時(shí)參與其信號(hào)轉(zhuǎn)導(dǎo)的途徑并不完全相同。例如EGCG可激活A(yù)kt和ERK1/2,若抑制這2種激酶的表達(dá),Nrf2核轉(zhuǎn)移顯著減少,說明Nrf2的激活可能通過Akt和ERK1/2信號(hào)途徑實(shí)現(xiàn)[27]。菊苣酸可抑制c-Jun氨基末端激酶和反應(yīng)激酶-MAPK磷酸化與環(huán)氧合酶-2表達(dá),促進(jìn)Akt磷酸化,減少NO和ROS產(chǎn)生[43]。另外,蘆丁和根皮素可減少M(fèi)APK的磷酸化作用,抑制其激活,并上調(diào)血紅素氧合酶-1和Nrf2表達(dá),從而降低免疫反應(yīng),減少氧化應(yīng)激造成的肺部損傷[41-42]。
由此可見,各種植物提取物可通過調(diào)節(jié)不同信號(hào)轉(zhuǎn)導(dǎo)途徑,發(fā)揮細(xì)胞保護(hù)作用。這些物質(zhì)是否還通過其他信號(hào)轉(zhuǎn)導(dǎo)途徑發(fā)揮抗氧化作用,不同途徑之間的互作和上下游關(guān)系,以及其他抗氧化物質(zhì)的調(diào)節(jié)機(jī)制,均需進(jìn)一步深入研究和證明。
在奶業(yè)生產(chǎn)中,奶牛的生理階段、營養(yǎng)狀況和所處的環(huán)境溫度均可影響機(jī)體氧化還原的平衡狀態(tài),直接影響奶牛健康和生產(chǎn)性能。日糧中補(bǔ)充適量的維生素、微量元素和植物提取物可有效改善奶牛氧化應(yīng)激。除了最重要的Nrf2-ARE通路外,多種信號(hào)轉(zhuǎn)導(dǎo)途徑均參與了奶牛的抗氧化作用,因此,外源抗氧化劑的作用機(jī)制還需進(jìn)一步深入研究和闡明,這些研究將為優(yōu)質(zhì)高效的新型抗氧化飼料添加劑的開發(fā)和利用奠定堅(jiān)實(shí)的基礎(chǔ)。
參考文獻(xiàn)(References):
[1] TAFURI S,COCCHIA N,LANDOLFI F,et al.Redoxomics and oxidative stress:From the basic research to the clinical practice//Free Radicals and Diseases.Philippines:intech,2016:149-169.
[2] LOHRKE B,VIERGUTZ T,KANITZ W,et al.Hydroperoxides in circulating lipids from dairy cows:Implications for bioactivity of endogenous-oxidized lipids.Journal of Dairy Science,2005,88(5):1708-1710.
[3] KONVI?Ná J,VARGOVá M,PAULíKOVá I,et al.Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods.Acta Veterinaria Brno,2015,84(2):133-140.
[4]KRZY?EWSKI J,STRZA?KOWSKA N,BAGNICKA E,et al.Oxidative stress in high yielding dairy cows during the transition period.Medycyna Weterynaryjna,2012,68(8):468-474.
[5] OBANDO M,PAPASTERGIADIS A,LI S S,et al.Impact of lipid and protein co-oxidation on digestibility of dairy proteins in oil-in-water(o/w)emulsions.Journal of Agricultural and Food Chemistry,2015,63(44):9820-9830.
[6] ?IDARA M,POLJI?AK-MILAS N,MILINKOVI?-TUR S,et al.Immune and oxidative response to linseed in the diet of periparturient Holstein cows.Animal,2015,9(8):1349-1354.
[7] ZHAO X J,WANG X Y,WANG J H,et al.Oxidative stress and imbalance ofmineralmetabolism contribute to lameness in dairy cows.Biological Trace Element Research,2015,164(1):43-49.
[8] DAS R,SAILO L,VERMA N,et al.Impact of heat stress on health and performance of dairy animals:A review.Veterinary World,2016,9(3):260-268.
[9] TURK R,PODPE?AN O,MRKUN J,et al.Environmental heat stress alters lipid metabolism and antioxidant status and impairs reproduction in dairy cows.Middle European Buiatric Congress,10th Symposium of the ECBHM,25th Conference of the Slovenian Buiatric Association.Maribor,Yugoslavia.10-13 June,2015.[S.l.]:[s.n.],2015.
[10]CHIGERWE M,BECK A D,KIM S S,et al.Comparison of plasma oxidative status biomarkers in neonatal dairy calves during summer and fall seasons.Journal of Veterinary Science&Technology,2013,S11:006.
[11]PEDERNERA M,CELI P,GARCíA S C,et al.Effect of diet,energy balance and milk production on oxidative stress in early-lactating dairy cows grazing pasture.The Veterinary Journal,2010,186(3):352-357.
[12]SURIYASATHAPORN W,VINITKETKUMNUEN U,CHEWONARIN T,et al.The indicative influence of oxidative stress on low milk yields in dairy cattle.The Thai Journal of Veterinary Medicine,2009,39(3):237-243.
[13]VáZQUEZ-A?óN M,NOCEK J,BOWMAN G,et al.Effects of feeding a dietary antioxidant in diets with oxidized fat on lactation performance and antioxidant status of the cow.Journal of Dairy Science,2008,91(8):3165-3172.
[14]STRZA?KOWSKA N,MARKIEWICZ-K?SZYCKA M,KRZY?EWSKI J,et al.Influence of stress on the yield and quality of milk as well as on reproductive rates of highyielding dairy cows.Medycyna Weterynaryjna,2014,70(2):84-89.
[15]張麗.胎衣不下奶牛胎兒胎盤NOS的表達(dá).黑龍江,大慶:黑龍江八一農(nóng)墾大學(xué),2010.ZHANG L.Expression of NOS in foetal placenta in cows with retention of fetal membranes.Daqing,Heilongjiang:Heilongjiang BayiAgricultural University,2010.(in Chinese with English Abstract)
[16]TURK R,PODPE?AN O,MRKUN J,et al.The effect of seasonal thermal stress on lipid mobilisation,antioxidant status and reproductive performance in dairy cows.Reproduction in Domestic Animals,2015,50(4):595-603.
[17]JHAMBH R,DIMRI U,GUPTA V K,et al.Blood antioxidant profile and lipid peroxides in dairy cows with clinical mastitis.Veterinary World,2013,6(6):271-273.
[18]POLITIS I,THEODOROU G,LAMPIDONIS A D,et al.Oxidative status and incidence of mastitis relative to blood α-tocopherol concentrations in the postpartum period in dairy cows.Journal of Dairy Science,2012,95(12):7331-7335.
[19]STANCLIFFE R A,THORPE T,ZEMEL M B,et al.Dairy attenuates oxidative and inflammatory stress in metabolic syndrome.The American Journal of Clinical Nutrition,2011,94(2):422-430.
[20]JIN L,YAN S M,SHI B L,et al.Effects of vitamin A on the milk performance,antioxidantfunctionsand immune functionsofdairy cows.AnimalFeed Science and Technology,2014,192:15-23.
[21]董澤偉,王佳堃,劉建新,等.維生素E的抗氧化功能及其在奶牛生產(chǎn)中的應(yīng)用.中國畜牧雜志,2014,50(16):39-44.DONG Z W,WANG J K,LIU J X,et al.Effects of vitamin E on performance of dairy cow as antioxidant.Chinese Journal of Animal Science,2014,50(16):39-44.(in Chinese with English Abstract)
[22]KHAN I,QURESHI M S,AKHTAR S,et al.Fertility improvement in cross-bred dairy cows through supplementation of vitamin E as antioxidant.Pakistan Journal of Zoology,2016,48(4):923-930.
[23]孫維敏,施子晗,張根發(fā),等.超氧化物歧化酶研究進(jìn)展.當(dāng)代農(nóng)業(yè),2013,2(1):1-12.SUN W M,SHI Z H,ZHANG G F,et al.Research progress of superoxide dismutase.Journal of Modern Agriculture,2013,2(1):1-12.(in Chinese with English Abstract)
[24]SONG Z G,LU J D,SHEIKHAHMADI A,et al.Attenuating effect of zinc and vitamin E on the intestinal oxidative stress induced by silver nanoparticles in broiler chickens.Biological Trace Element Research,2017,180(2):306-313.
[25]DKHIL M A,ZRIEQ R,AL-QURAISHY S,et al.Selenium nanoparticles attenuate oxidative stress and testicular damage in streptozotocin-induced diabetic rats.Molecules,2016,21(11):1517-1529.
[26]QI G Y,MI Y S,FAN R,et al.Tea polyphenols ameliorate hydrogen peroxide and constant darkness-triggered oxidative stress via modulating the Keap1/Nrf2 transcriptional signaling pathway in HepG2 cells and mice liver.RSC Advances,2017,7(51):32198-32208.
[27]NA H K,KIM E H,JUNG J H,et al.(-)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells.Archives of Biochemistry and Biophysics,2008,476(2):171-177.
[28]JIN X L,WANG K,LIU H Y,et al.Protection of bovine mammary epithelial cells from hydrogen peroxide-induced oxidative cell damage by resveratrol.Oxidative Medicine and Cellular Longevity,2016,2016:2572175.
[29]周珊,趙向輝,楊食堂,等.大豆甙元對生長期錦江黃牛生產(chǎn)性能、抗氧化能力及免疫性能的影響.動(dòng)物營養(yǎng)學(xué)報(bào),2016,28(10):3161-3167.ZHOU S,ZHAO X H,YANG S T,et al.Effects of daidzein on performance,antioxidant capacity and immune function of growing Jinjiang cattle.Chinese Journal of Animal Nutrition,2016,28(10):3161-3167.(in Chinese with English Abstract)
[30]WANG S W,WANG Y J,SU Y J,et al.Rutin inhibits βamyloid aggregation and cytotoxicity,attenuates oxidative stress,and decreases the production of nitric oxide and proinflammatory cytokines.NeuroToxicology,2012,33(3):482-490.
[31]LIU Y,ZHANG L,LIANG J J,et al.Activation of the Nrf2 defense pathway contributes to neuroprotective effects of phloretin on oxidative stress injury after cerebral ischemia/reperfusion in rats.Journal of the Neurological Sciences,2015,351(1/2):88-92.
[32]DING M G,WANG Y,SUN D,et al.Punicalagin pretreatmentattenuatesmyocardialischemia-reperfusion injury via activation of AMPK.The American Journal of Chinese Medicine,2017,45(1):53-66.
[33]KANSANEN E,KUOSMANEN S M,LEINONEN H,et al.The Keap1-Nrf2 pathway:Mechanisms of activation and dysregulation in cancer.Redox Biology,2013,1(1):45-49.
[34]KANSANEN E,JYRKK?NEN H K,LEVONEN A L.Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids.Free Radical Biology and Medicine,2012,52(6):973-982.
[35]LI L,YANG N,NIN L,et al.Chinese herbal medicine formula Tao Hong Si Wu decoction protects against cerebral ischemia-reperfusion injury via PI3K/Akt and the Nrf2 signaling pathway.Journal of Natural Medicines,2015,69(1):76-85.
[36]KOBAYASHI M,YAMAMOTO M.Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation.Antioxidants&Redox Signaling,2005,7(3/4):385-394.
[37]RAMYAA P,KRISHNASWAMY R,PADMA V V,et al.Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells:Up regulation of Nrf2 expression and down regulation of NF-κ B and COX-2.Biochimica et Biophysica Acta-General Subjects,2014,1840(1):681-692.
[38]CARRASCO-POZO C,CASTILLO R L,BELTRáN C,et al.Molecular mechanisms of gastrointestinal protection by quercetin against indomethacin-induced damage:Role of NF-κB and Nrf2.The Journal of Nutritional Biochemistry,2016,27:289-298.
[39]MORGAN M J,LIU Z G.Crosstalk of reactive oxygen species and NF-κB signaling.Cell Research,2011,21(1):103-115.
[40]NARAYANAN A,AMAYA M,VOSS K,et al.Reactive oxygen species activate NF-κB(p65)and p53 and induce apoptosis in RVFV infected liver cells.Virology,2014,449:270-286.
[41]YEH C H,YANG J J,YANG M L,et al.Rutin decreases lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and the MAPK-NF-κB pathway.Free Radical Biology and Medicine,2014,69:249-257.
[42]HUANG W C,LAI C L,LIANG Y T,et al.Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways.International Immunopharmacology,2016,40:98-105.
[43]JIA L W,CHEN Y H,TIAN Y H,et al.MAPK pathway mediates the anti-oxidative effect of chicoric acid against cerebral ischemia-reperfusion injury in vivo.Experimental and Therapeutic Medicine,2018,15(2):1640-1646.