靳開(kāi)川 何金環(huán)
摘要:油菜素內(nèi)酯(brassinosteroid,BR)在植物生長(zhǎng)發(fā)育過(guò)程中起著非常重要的調(diào)節(jié)作用。近幾年,研究人員結(jié)合遺傳學(xué)、基因與蛋白質(zhì)組學(xué)、細(xì)胞生物學(xué)等多學(xué)科方法和手段,使油菜素內(nèi)酯的研究取得了顯著進(jìn)展。介紹油菜素內(nèi)酯在植物的抗逆性(干旱、高鹽、高溫、低溫、重金屬)過(guò)程中的作用及信號(hào)轉(zhuǎn)導(dǎo)機(jī)制等,以期為植物分子育種提供借鑒。
關(guān)鍵詞:植物;油菜素內(nèi)酯;抗逆;信號(hào)轉(zhuǎn)導(dǎo);機(jī)制;調(diào)節(jié)作用
中圖分類號(hào): Q945.78文獻(xiàn)標(biāo)志碼: A
文章編號(hào):1002-1302(2017)14-0004-04
油菜素內(nèi)酯(brassinosteroid,BR)是一種類固醇類植物激素,與其他植物激素協(xié)同作用參與植物的生長(zhǎng)發(fā)育過(guò)程,如細(xì)胞的伸長(zhǎng)與分裂、葉片衰老、微管分化、開(kāi)花、光形態(tài)建成等生長(zhǎng)發(fā)育過(guò)程,而且在植物抗逆方面也具有重要的作用。目前,在許多物種(如擬南芥、水稻、番茄、大麥、玉米等)中,都鑒定到了BR相關(guān)的突變體,并克隆得到相關(guān)的基因,通過(guò)研究,不僅了解了植物中BR的合成、修飾與信號(hào)轉(zhuǎn)導(dǎo)的分子途徑,而且還發(fā)現(xiàn)其在植物抗逆方面也具有重要的作用[1]。本文綜述了植物中BR在植物抗逆中的作用(干旱、低溫、高溫等)及信號(hào)轉(zhuǎn)導(dǎo)的分子機(jī)制,為農(nóng)作物育種研究提供理論依據(jù)。
1BR在植物抗逆中的作用
1.1干旱脅迫
干旱可降低植物中的水含量與葉片的水勢(shì),導(dǎo)致氣孔關(guān)閉,影響植物生長(zhǎng),甚至可導(dǎo)致植物死亡。但是在菜用大豆中預(yù)先施加24-表油菜素內(nèi)酯(24-epibrassinolide,EBL)或 28-高油菜素內(nèi)酯(28-homobrassinolide,HBL)能夠提高根的生長(zhǎng)能力、玉米素的含量、固氮酶的活性,并能夠減緩干旱誘導(dǎo)的相關(guān)參數(shù)的降低[2]。把生長(zhǎng)在含有1 μmol/L EBL培養(yǎng)基上的擬南芥或油菜的幼苗轉(zhuǎn)移到沙子上,然后進(jìn)行干旱處理 96 h(擬南芥)或60 h(油菜),結(jié)果表明,EBL處理能夠增強(qiáng)2種幼苗在干旱條件下的成活率,EBL能夠誘導(dǎo)干旱響應(yīng)相關(guān)基因表達(dá)的上調(diào),進(jìn)一步說(shuō)明EBL在植物抗旱過(guò)程中起重要作用[3]。在干旱條件下,EBL還能夠誘導(dǎo)植物中抗氧化物質(zhì)含量的升高,從而促進(jìn)植物生長(zhǎng)[4]。在干旱條件下,BR能夠提高大豆光合效率、細(xì)胞水勢(shì)、可溶性糖與脯氨酸的含量、過(guò)氧化物酶(POD)與超氧化物歧化酶(SOD)的活性,BR還能夠降低丙二醛的含量、葉片的電滲透率,促進(jìn)植物生長(zhǎng)[5]。在芥菜的研究中還表明,HBL和干旱脅迫都能夠提高過(guò)氧化氫酶(CAT)、POD、SOD的活性以及脯氨酸的含量;在干旱條件下,BR能夠促進(jìn)芥菜的生長(zhǎng)[6]。但是,BR提高植物抗旱能力的分子作用機(jī)制還需要進(jìn)一步研究。
1.2高鹽脅迫
高鹽脅迫影響植物的生長(zhǎng)與發(fā)育,是一個(gè)主要的環(huán)境脅迫因子,可導(dǎo)致滲透脅迫、離子毒害,甚至影響植物對(duì)營(yíng)養(yǎng)元素的吸收與轉(zhuǎn)運(yùn)過(guò)程[7]。在高鹽脅迫下,脯氨酸作為滲透調(diào)節(jié)物質(zhì)或一個(gè)信號(hào)分子影響植物對(duì)逆境脅迫的反應(yīng)過(guò)程,其積累依賴于1-吡咯啉-5-羧酸合成酶(P5CS)和脯氨酸脫氫酶(PDH)的活性,前者是脯氨酸合成過(guò)程中的一個(gè)限速酶,后者催化脯氨酸的降解[8]。研究表明,在鹽脅迫下,EBL能夠促進(jìn)水稻(cv.IR-28)幼苗的生長(zhǎng),緩解質(zhì)膜受到的損傷,降低脯氨酸的積累,提高抗壞血酸過(guò)氧化物酶(aseorbateperoxidase,APX)的活性[9]。在鷹嘴豆與綠豆中的研究表明,BRs能夠促進(jìn)脯氨酸的積累,提高抗氧化酶的活性[10]。EBL能夠緩解高鹽脅迫對(duì)茄子生長(zhǎng)與小麥產(chǎn)量的抑制[11-12]。
1.3高溫脅迫
[CM(24]高溫能夠?qū)ζ咸训娜~肉細(xì)胞造成傷害,增加質(zhì)膜透[CM)][LM]性[13]。在高溫脅迫下,EBL能夠誘導(dǎo)線粒體熱激蛋白(MT-sHSP)的積累及光合效率的提高,進(jìn)而提高番茄的抗性[14]。對(duì)番茄的研究表明,在高溫脅迫下,EBL能夠提高SOD的活性[15],保護(hù)光合系統(tǒng)中酶的活性,提高光合效率[16]。在擬南芥中的研究表明,EBL能夠提高植物對(duì)高溫脅迫的抗性,擬南芥幼苗在有或者沒(méi)有EBL的情況下,43 ℃分別處理1、2、3、4 h后,移到22 ℃恢復(fù)7 h,發(fā)現(xiàn)高溫脅迫2 h就可以讓擬南芥幼苗的葉片白化,而在EBL處理下的擬南芥幼苗在高溫處理4 h后才會(huì)出現(xiàn)葉片的白化現(xiàn)象[17]。
1.4低溫脅迫
低溫是一個(gè)主要的環(huán)境脅迫因子,其可限制物種的分布與作物的產(chǎn)量[18]。低溫脅迫通過(guò)影響電子傳遞、碳同化及二氧化碳的吸收來(lái)降低光合效率,還可以導(dǎo)致植物中糖分的積累、質(zhì)膜的過(guò)氧化以及細(xì)胞的脫水[19]。研究表明,EBL能夠提高17種低溫脅迫相關(guān)蛋白的表達(dá)量,提高綠豆對(duì)低溫脅迫的抗性[20],在油菜與擬南芥中也得到了驗(yàn)證[17],EBL還能夠減小低溫誘導(dǎo)的質(zhì)膜滲透性的增加幅度,提高葉片中色素的含量[21]。
1.5重金屬脅迫
BRs能夠通過(guò)增加外排的方式,減少植物對(duì)重金屬與放射性元素的吸收[22]。鎘是植物生長(zhǎng)發(fā)育所必需的微量元素,當(dāng)土壤中的鎘含量過(guò)高時(shí)會(huì)對(duì)植物造成毒害,影響水分平衡,降低酶的活性與光合效率[23]。研究表明,EBL能夠降低高濃度的鎘對(duì)油菜光合作用的影響[24]。BRs能夠降低高濃度鎘對(duì)植物生長(zhǎng)的抑制,增加脯氨酸的積累,提高CAT、APX、GPX、SOD的活性,但是對(duì)鎘誘導(dǎo)的質(zhì)膜過(guò)氧化沒(méi)有太大的影響[25]。在酸性土壤中,鋁的毒害主要是抑制農(nóng)作物的生長(zhǎng),研究表明,BRs能夠提高高鋁條件下綠豆植物中SOD、CAT和POD的活性及脯氨酸的含量,促進(jìn)幼苗的生長(zhǎng)[12]。近年來(lái),土壤中的銅對(duì)農(nóng)作物的影響越來(lái)越嚴(yán)重,高濃度的銅能對(duì)植物造成毒害,影響植物生長(zhǎng),甚至導(dǎo)致植物死亡。研究表明,EBL能夠降低高濃度的銅對(duì)薺菜種子萌發(fā)與植株生長(zhǎng)的抑制作用,并能減少對(duì)銅的吸收與積累[26]。另外,HBL還能提高高濃度銅條件下植物中SOD、CAT、POD的活性及脯氨酸的含量。鎳是植物生長(zhǎng)所必需的微量元素,但在薺菜中的研究表明,高濃度鎳影響植物的光合作用、呼吸效率,降低酶的活性與脯氨酸的含量,對(duì)植物造成毒害[27]。endprint
2BR的信號(hào)傳導(dǎo)途徑
通過(guò)對(duì)擬南芥BR的大量試驗(yàn)研究發(fā)現(xiàn),植物中位于膜上的激酶受體BRI1(brassinosteroid insensitive 1)能感受BR的信號(hào),胞質(zhì)部分具有激酶活性[28]。在沒(méi)有BR的情況下,受體BRI1以同源二聚體的形式存在,由于其胞質(zhì)部分與抑制子BKI1(BRI1 kinase inhibitor 1)結(jié)合,處于失活狀態(tài)[29]。在有BR存在的情況下,BR的結(jié)合激活了受體BRI1的激酶活性,通過(guò)聯(lián)合受體BAK1/SERK3(BRI1-associated receptor kinase 1/somatic embryogenesis receptor kinase 3)磷酸化抑制子BKI1,使其從膜上解離下來(lái),磷酸化的BKI1能與磷酸多肽結(jié)合蛋白14-3-3s結(jié)合,并且解除對(duì)BZR1(brassinazole-resistant 1)和BES1(BRI1-EMS-suppressor 1)的抑制作用,Ser270、Ser274和Tyr211在BKI1的磷酸化過(guò)程中起著重要的作用[30]。因此,該磷酸化過(guò)程為BR首先激活受體BRI1的激酶活性,接著磷酸化并激活聯(lián)合受體BAK1,最后磷酸化抑制子BKI1解除其抑制作用。除BAK1/SERK3外,由于SERK4在功能上與BAK1的相似被認(rèn)為是BKK1(BAK1-like 1)[31]。最近的研究表明,SERK1、SERK2和SERK4都有可能參與了BR的信號(hào)轉(zhuǎn)導(dǎo)過(guò)程[32]。激活的受體BRI1磷酸化BSKs(BR signaling kinases)和CDG1(constitutive differential growth 1),進(jìn)而激活磷酸酶BSU1(BRI1-suppressor 1);CDG1與BSKs的功能類似,受體BRI1磷酸化BSK1和CDG1,進(jìn)而激活BSU1,接著B(niǎo)SU1通過(guò)去磷酸化作用抑制負(fù)調(diào)控子BIN2(brassinosteroid-insensitive 2)/GSK3(glycogen synthase kinase 1)的激酶活性,研究表明,BSU1通過(guò)BIN2的Tyr200去磷酸化影響其活性[33-34]。BIN2與蛋白磷酸酶2A(PP2A)通過(guò)去磷酸化激活2個(gè)同源的轉(zhuǎn)錄因子BES1、BZR1,研究表明,PP2A可與BZR1直接結(jié)合使其去磷酸化[35]。去磷酸化激活的BES1和BZR1從胞質(zhì)轉(zhuǎn)運(yùn)到細(xì)胞核,進(jìn)而調(diào)節(jié)BR響應(yīng)基因的表達(dá)。在缺少BR的情況下,BIN2可使BES1和BZR1磷酸化,影響其功能,如干擾其與DNA的結(jié)合,在胞質(zhì)中與14-3-3s結(jié)合而被降解等[36](圖1)。通過(guò)基因芯片等方法的研究已經(jīng)鑒定了許多轉(zhuǎn)錄因子BES1和BZR1的下游基因,早期的研究認(rèn)為BZR1可與BRRE(BR-response element,CGTGT/CG)結(jié)合,抑制啟動(dòng)子區(qū)含有BRRE的基因表達(dá),BES1可與E-box元件(CANNTG)結(jié)合,促進(jìn)啟動(dòng)子區(qū)含有E-box元件的基因表達(dá),最近的研究表明,它們都可以相互結(jié)合,因此須要更加深入的研究轉(zhuǎn)錄因子BES1和BZR1的作用機(jī)制[37]。BES1可與其他轉(zhuǎn)錄因子相互作用促進(jìn)啟動(dòng)子區(qū)含有該轉(zhuǎn)錄因子的基因表達(dá),如BIMI(bKLH factor BES1-interacting MYC-like 1)、ELF6(early flowering 6)、REF6(relative of early flowering 6)、IWS1(interacting-with-SPT6-1)等轉(zhuǎn)錄因子[38]。BES1可與MYBL2(myeloblastosis family factor like-2)結(jié)合抑制啟動(dòng)子區(qū)含有MYBL2的基因表達(dá)[39]。研究還發(fā)現(xiàn),BES1/BZR1還可與其他蛋白相互作用,如與DELLA蛋白結(jié)合負(fù)調(diào)控對(duì)赤霉素的反應(yīng)過(guò)程,與PIF(phytochrome-interacting factor)結(jié)合調(diào)節(jié)植物的生長(zhǎng)與發(fā)育[40-42]。
(phyB activation tagged suppressor1)編碼細(xì)胞色素P450蛋白,研究表明,該蛋白也參與BR的失活過(guò)程[47]。DWF4和CPD通過(guò)參與BR合成的限速步驟,即類固醇c-22a和c-23a的羥基化作用過(guò)程控制內(nèi)源BR的穩(wěn)態(tài)[48]。最新的研究表明,擬南芥中的BAHD(benzylalcohol O-acetyltransferase,anthocyanin O-hydroxycinnamoyltransferase,anthranilate N-hydroxycinnamoyl/benoyltransferase,deacetylvindoline 4-O-acetyltransferase)乙酰轉(zhuǎn)移酶家族參與內(nèi)源BR穩(wěn)態(tài)的調(diào)控過(guò)程,如BAHD乙酰轉(zhuǎn)移酶家族基因BIA1與ABS1通過(guò)乙?;饔檬笲R失活[49]。另外,PP2A通過(guò)甲基化作用使BRI1去磷酸化,導(dǎo)致BRI1的降解,終止BR的信號(hào)傳遞過(guò)程,BRI1的Ser891的自磷酸化是主要的失活機(jī)制,導(dǎo)致BRI1降解,BR信號(hào)終止[50]。通過(guò)內(nèi)吞作用降解BR與BRI1結(jié)合的復(fù)合物也可導(dǎo)致BR信號(hào)傳遞的終止[51]。
在擬南芥和水稻等物種中的研究表明,BR在植物的抗逆過(guò)程中具有重要的作用,但是目前對(duì)其信號(hào)傳遞的分子機(jī)制了解得還非常有限。例如,盡管知道BR影響逆境條件下植物的光合反應(yīng)過(guò)程,但是具體影響位點(diǎn)還不清楚,因此,進(jìn)一步鑒定其在抗逆過(guò)程中的關(guān)鍵基因至關(guān)重要,也為通過(guò)生物工程的方法提高農(nóng)作物的抗逆能力、產(chǎn)量與品質(zhì)提供理論基礎(chǔ)。
參考文獻(xiàn):
[1]Clouse S D,Langford M,McMorris T C. A brassinosteroid insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development[J]. Plant Physiol,1996,111(3):671-678.endprint
[2]Upreti K K,Murti G S R. Effects of brassinosteroids on growth,nodulation,phytohormone content and nitrogenase activity in French bean under water stress[J]. Biol Plant,2004,48(3):407-411.
[3]Kagale S,Divi U K,Krochko J E,et al. Brassinosteroids confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses[J]. Planta,2007,225(2):353-364.
[4]Li Y H,Liu Y J,Xu X L,et al. Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana[J]. Biol Plant,2012,56:192-196.
[5]Zhang M C,Zhai Z X,Tian X L,et al. Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.)[J]. Plant Growth Regul,2008,56(3):257-264.
[6]Fariduddin Q,Khanam S,Hasan S A,et al. Effect of 28-homobrassinolide on drought stress induced changes in photosynthesis and antioxidant system of Brassica juncea L.[J]. Acta Physiol Plant,2009,31(5):889-897.
[7]Turkan I,Demiral T. Recent developments in understanding salinity tolerance[J]. Environ Exp Bot,2009,67(1):2-9.
[8]Lin Y C,Kao C H. Proline accumulation induced by excess nickel in detached rice leaves[J]. Biol Plant,2007,51(2):351-354.
[9]zdemir F,Bor M,Demiral T,et al. Effects of 24-epibrassinolide on seed germination,seedling growth,lipid peroxidation,proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress[J]. Plant Growth Regul,2004,42(3):203-211.
[10]Hayat S,Hasan S A,Yusuf M,et al. Effect of 28-homobrassinolide on photosynthesis,fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata[J]. Environ Exp Bot,2010,69(2):105-112.
[11]Ding H D,Zhu X H,Zhu Z W,et al. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide[J]. Biol Plant,2012,56(4):767-770.
[12]Ali Q,Athar H U R,Ashraf M. Modulation of growth,photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide[J]. Plant Growth Regulation,2008,56(2):107-116.
[13]Zhang J H,Huang W D,Liu Y P,et al. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses[J]. Journal of Integrative Plant Biology,2005,47(8):959-970.
[14]Singh I,Shono M. Physiological and molecular effects of 24-epibrassinolide,a brassinosteroid on thermotolerance of tomato[J]. Plant Growth Regulation,2005,47(2):111-119.endprint
[15]Mazorra L M,Nunez M,Hechavarria M,et al. Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures[J]. Biologia Plantarum,2002,45(4):593-596.
[16]Ogweno J O,Song X S,Shi K,et al. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum[J]. Journal of Plant Growth Regulation,2008,27(1):49-57.
[17]Kagale S,Divi U K,Krochko J E,et al. Brassinosteroids confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses[J]. Planta,2007,2252:353-364.
[18]Salveit M E. Chilling injury is reduced in cucumber and riceseedlings in tomato pericarp discs by heat-shocks appliedafter chilling[J]. Postharvest Biology and Technology,2001,21(2):169-177.
[19]Allen D J,Ort D R. Impacts of chilling temperatures on photosynthesis in warm-climate plants[J]. Trends in Plant Science,2001,6(1):36-42.
[20]Huang L F,Zheng J H,Zhang Y Y,et al. Diurnal variations in gas exchange,chlorophyll fluorescence quenching and light allocation in soybean leaves:the cause for midday depression in CO2 assimilation[J]. Scientia Horticulturae,2006,110(2):214-218.
[21]Janeczko A,Gullner G,Skoczowski A,et al. Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves[J]. Biologia Plantarum,2007,51(2):355-358.
[22]Bajguz A,Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant Physiology and Biochemistry:PPB/Societe Francaise de Physiologie Vegetale,2009,47(1):1-8.
[23]Vassilev A,Yordanov I. Reductive analysis of factors limiting growth of cadmium-treated plants:a review[J]. Bulg J Plant Physiol,1997,23(3/4):114-133.
[24]Janeckzo A,Koscielniak J,Pilipowicz M,et al. Protection of winter rapephotosystem 2 by 24-epibrassinolide under Cadmium stress[J]. Photosynthetica,2005,43(2):293-298.
[25]Anuradha S,Rao S . The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under Cadmium stress[J]. Plant Soil and Environment,2007,53(11):465-472.
[26]Sharma P,Bhardwaj R. Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress[J]. Acta Physiologiae Plantarum,2007,29(3):259-263.
[27]Alam M M,Hayat S,Ali B,et al. Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea[J]. Photosynthetica,2007,45(1):139-142.endprint
[28]She J,Han Z F,Kim T W,et al. Structural insight into brassinosteroid perception by BRI1[J]. Nature,2011,474:472-476.
[29]Wang X E,Chory J. Brassinosteroids regulate dissociation of BKI1,a negative regulator of BRI1 signaling,from the plasma membrane[J]. Science,2006,313(5790):1118-1122.
[30]Russinova E,Borst J W,Kwaaitaal M,et al. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1)[J]. Plant Cell,2004,16(12):3216-3229.
[31]Roux M,Schwessinger B,Albrecht C A,et al. The Arabidopsis Leucine-Rich repeat Receptor-Like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens[J]. Plant Cell,2011,23(6):2440-2455.
[32]Gou X P,Yin H J,He K,et al. Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling[J]. PLoS Genetics,2012,8(1):71-76.
[33]Kim T W,Guan S H,Burlingame A L,et al. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2[J]. Molecular Cell,2011,43(4):561-571.
[34]Yan Z Y,Zhao J,Peng P,et al. BIN2 functions redundantly with other Arabidopsis GSK3-Like kinases to regulate brassinosteroid signaling[J]. Plant Physiology,2009,150(2):710-721.
[35]Tang W Q,Yuan M,Wang R J,et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1[J]. Nature Cell Biology,2011,13(2):U49-124.
[36]Ye H X,Li L,Yin Y H. Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways[J]. Journal of Integrative Plant Biology,2011,53(6):455-468.
[37]Yu X,Li L,Zola J,et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana[J]. Plant Journal,2011,65(4):634-646.
[38]Li L,Ye H X,Guo H Q,et al. Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(8):3918-3923.
[39]Ye H X,Li L,Guo H Q,et al. MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(49):20142-20147.
[40]Bai M Y,Shang J X,Oh E,et al. Brassinosteroid,gibberellin and phytochrome impinge on a common transcription module in Arabidopsis[J]. Nature Cell Biology,2012,14(8):U78-810.endprint
[41]Gallego-Bartolome J,Minguet E G,Grau-Enguix F,et al. Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(33):13446-13451.
[42]Oh E,Zhu J Y,Wang Z Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses[J]. Nature Cell Biology,2012,14(8):U64-802.
[43]Symons G M,Reid J B. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels[J]. Plant Physiology,2004,135(4):2196-2206.
[44]Zhao B L,Li J. Regulation of brassinosteroid biosynthesis and inactivation[J]. Journal of Integrative Plant Biology,2012,54(10,SI):746-759.
[45]Kim G T,F(xiàn)ujioka S,Kozuka T,et al. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana[J]. Plant Journal,2005,41(5):710-721.
[46]Mussig C,F(xiàn)ischer S,Altmann T. Brassinosteroid-regulated gene expression[J]. Plant Physiology,2002,129(3):1241-1251.
[47]Turk E M,F(xiàn)ujioka S,Seto H,et al. BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms[J]. Plant Journal,2005,42(1):23-34.
[48]Kim H B,Kwon M,Ryu H,et al. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis[J]. Plant Physiology,2006,140(2):548-557.
[49]Wang M J,Liu X Y,Wang R,et al. Overexpression of a putative Arabidopsis BAHD acyltransferase causes dwarfism that can be rescued by brassinosteroid[J]. Journal of Experimental Botany,2012,63(16):5787-5801.
[50]Oh M H,Wang X F,Clouse S D,et al. Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(1):327-332.
[51]Irani N G,Rubbo S D,Mylle E,et al. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane[J]. Nature Chemical Biology,2012,8(6):583-589.endprint