劉 揚, 陳偉紅, 李 睿綜述, 董艷紅, 呂佩源審校
65歲以上老年人中60%患有高血壓,85歲以上者可達(dá)80%[1]。腦組織是高血壓的早期受損靶器官。實際上,腦小血管病(CSVD)是高血壓引起認(rèn)知障礙的重要機(jī)制之一。高血壓引起小動脈硬化,內(nèi)膜中層平滑肌細(xì)胞丟失,纖維玻璃樣物質(zhì)沉積,血管壁增厚,管腔狹窄,致CSVD。CSVD是集神經(jīng)影像學(xué)、病理學(xué)、無明顯臨床癥狀于一體的由磁共振成像(MRI)可檢查到的一組疾病,包括:腦白質(zhì)病變(WML),擴(kuò)大的血管周圍間隙(EPVS),腔隙性腦梗死(LI),腦微出血(MCB)等。特別是隨著近年來MRI技術(shù)飛速發(fā)展,CSVD的診斷越來越明確。這些CSVD亞型可單獨存在,但常常同時存在。有數(shù)據(jù)表明,65歲以上老年人認(rèn)知障礙和癡呆的患病率約為8%,80歲以上者可達(dá)15%~20%[2],這給社會、家庭帶來了巨大的經(jīng)濟(jì)負(fù)擔(dān),大大降低了幸福指數(shù)。在高血壓的慢性病程中早期識別出認(rèn)知功能下降并及時給予干預(yù)尤為重要。本篇綜述主要目的是討論高血壓引起CSVD的機(jī)制,進(jìn)而闡述CSVD與認(rèn)知障礙的關(guān)系。
腦白質(zhì)病變(WML),也稱腦白質(zhì)高信號(WMH),在MRI T1加權(quán)成像呈等信號或低信號,而T2加權(quán)成像、液體衰減反轉(zhuǎn)恢復(fù)序列(FLAIR)呈高信號[3]。WML可由小動脈周圍腦組織少量軸突缺失發(fā)展為廣泛脫髓鞘和軸索病變[4]。WML最重要的危險因素是年齡和高血壓。收縮壓對WML的危害遠(yuǎn)遠(yuǎn)大于舒張壓,而有效的血壓控制可延緩WML的進(jìn)展。長期高血壓可引起營養(yǎng)深部腦白質(zhì)的小動脈、穿支動脈的血管內(nèi)膜中層透明變性,管腔狹窄。也可引起血管纖維化,4型膠原纖維和細(xì)胞外基質(zhì)成分改變,使血管壁僵硬,致腦血流自身調(diào)節(jié)障礙。這種障礙是腦血流自身調(diào)節(jié)范圍的縮小,而調(diào)節(jié)速度并沒有改變[5~7]。深部腦白質(zhì)有分水嶺供血的特點,故更易受低灌注的影響[8]。此外,高血壓引起的WML常常伴有淀粉樣蛋白沉積[9]。
WML的發(fā)生發(fā)展與認(rèn)知功能下降、癡呆、腦血管病、死亡率等有關(guān)。一項為期4 y的縱向隊列研究[10]發(fā)現(xiàn),高血壓患者腦室周圍WML的進(jìn)展與執(zhí)行功能下降密切相關(guān),但腦室周圍WML基線水平與認(rèn)知功能無關(guān)。因此有效延緩高血壓患者WML進(jìn)展應(yīng)得到臨床上的重視。血壓控制欠佳者,WML常伴有腦灰質(zhì)萎縮,引起執(zhí)行功能、記憶力等降低[4]。與皮質(zhì)下WML相比,腦室周圍WML更容易引起認(rèn)知障礙,前者局限于皮質(zhì)—皮質(zhì)連接處較短的白質(zhì)纖維損害,而后者破壞遠(yuǎn)端皮質(zhì)區(qū)的較長的纖維束,因此對認(rèn)知的影響更大[10]。但WML總體積與認(rèn)知障礙的關(guān)系尚存在爭議。一項基于三維FLAIR成像的研究[11]指出,WML的總體積與簡易智力狀態(tài)檢查量表(MMSE)評分有關(guān),而對于蒙特利爾認(rèn)知評估量表(MoCA)評分,只有頂葉WML體積與之獨立相關(guān)。相反,另有研究[12]表明,WML體積與MMSE評分無關(guān)。這種對立的結(jié)果可能歸結(jié)于樣本量、種族、伴隨疾病、MRI序列參數(shù)、統(tǒng)計學(xué)方法不同等方面。因此,WML總體積與認(rèn)知障礙的關(guān)系尚需進(jìn)一步大樣本的臨床研究。
血管周圍間隙(PVS)包繞在經(jīng)蛛網(wǎng)膜下腔進(jìn)入腦實質(zhì)的穿支動脈和小靜脈周圍,作為腦組織的間質(zhì)液和溶解物的引流系統(tǒng),屬于正常的結(jié)構(gòu)組織。當(dāng)PVS擴(kuò)大時,可在MRI中檢測到線狀或點狀的與腦脊液信號強(qiáng)度相似的擴(kuò)大的血管周圍間隙(EPVS),也稱Virchow-Robin間隙[13,14]。長期高血壓損害血管彈性,激活低氧誘導(dǎo)因子-1α,產(chǎn)生級聯(lián)炎癥反應(yīng)。細(xì)胞因子,炎癥性基質(zhì)金屬蛋白酶和環(huán)氧合氧酶-2活化,開放血腦屏障(BBB),并誘導(dǎo)內(nèi)皮細(xì)胞粘附因子的表達(dá),導(dǎo)致白細(xì)胞、血小板粘附及微血管閉塞。BBB功能紊亂使血漿成分通過BBB外漏到PVS,可致EPVS[15,16]。Yao等[17]發(fā)現(xiàn)高血壓可致基底節(jié)、白質(zhì)、海馬等多個部位EPVS加重。但高血壓與EPVS分布的關(guān)系尚不明確。有研究[14]顯示高血壓,尤其是收縮壓,對基底節(jié)EPVS的危害大于白質(zhì)區(qū)。而另有研究[18]指出,高血壓是白質(zhì)區(qū)(而非基底節(jié))EPVS的獨立危險因素。此外,其他類型的CSVD也可致基底節(jié)EPVS,而半卵圓中心EPVS與血管危險因素聯(lián)系更緊密[19]。因此,血壓水平與不同解剖部位EPVS的發(fā)生發(fā)展需進(jìn)一步探索。
多項前瞻性研究[20,21]表明,基底節(jié)EPVS(而不是白質(zhì)EPVS)患者,計算力會逐漸下降,且其發(fā)展成血管性癡呆的風(fēng)險大于阿爾茨海默病,但EPVS總數(shù)量與認(rèn)知功能并無明顯相關(guān)性?;坠?jié)EPVS對輕度認(rèn)知障礙的影響并不獨立于其他CSVD亞型[22]。Yao等[17]也發(fā)現(xiàn),海馬EPVS并未導(dǎo)致認(rèn)知障礙,盡管海馬與學(xué)習(xí)、記憶、認(rèn)知功能有緊密聯(lián)系。不同解剖部位的EPVS可能有不同的臨床意義,有待繼續(xù)探討。
腔隙性腦梗死(LI)是多位于深部穿支動脈供血區(qū)(內(nèi)囊,基底節(jié),放射冠,丘腦,腦干等)直徑小于15 mm的梗死灶[23,24]。高血壓是腦梗死的首要危險因素,其對LI的危害遠(yuǎn)大于大動脈粥樣硬化或非腔隙性腦梗死,而且高血壓患者LI復(fù)發(fā)率極高[24,25]。不同解剖部位的LI病因不同:高血壓、多發(fā)LI和WML等均易引起半卵圓中心LI,而高脂血癥易引起丘腦LI[26,27]。
LI發(fā)展為大面積腦梗死、癡呆的風(fēng)險極高,但因其常常沒有明顯臨床癥狀,及時有效的二級預(yù)防常常被忽略。一項meta分析[28]顯示,大于30%的LI患者4 y后認(rèn)知功能會顯著下降。家庭血壓偏高、多發(fā)LI是認(rèn)知障礙、LI復(fù)發(fā)的的獨立危險因素。多發(fā)的無癥狀性LI可致額葉功能障礙、暫時延遲的語言記憶[29]。此外,Kitagawa 等[30]的隊列研究表明,CSVD對認(rèn)知功能的影響遠(yuǎn)大于大動脈病變,即同期LI患者發(fā)展成癡呆,而頸動脈狹窄患者認(rèn)知功能無明顯變化。
腦微出血(CMB)可由磁敏感成像(SWI)檢測到,呈圓形或卵圓形、邊界清楚、均質(zhì),且相應(yīng)部位的T1及T2加權(quán)成像上沒有顯示出高信號的直徑2 ~ 10 mm病灶,其病理機(jī)制是小血管周圍局部含鐵血黃素的沉積[31]。高血壓可引起大腦后動脈供血區(qū),深部腦組織、幕下腦組織CMB,皮質(zhì)CMB則與由淀粉樣蛋白血管病相關(guān)[32,33]。而淀粉樣蛋白血管病致CMB也是由高血壓介導(dǎo)的[34]。CMB和WML常常同時存在,Gao等[35]研究發(fā)現(xiàn)高血壓在CMB和WML的相互關(guān)系中起調(diào)節(jié)作用。持續(xù)高血壓,尤其是反勺性高血壓,損傷血管內(nèi)皮,細(xì)胞因子,腫瘤壞死因子-α(TNF-α)釋放,發(fā)生高血壓相關(guān)性血管壁炎癥反應(yīng)。TNF是巨噬細(xì)胞和小膠質(zhì)細(xì)胞分泌的關(guān)鍵調(diào)節(jié)因子,其中腫瘤壞死因子受體2(TNFR-2)是促進(jìn)CMB的主要因子。高血壓性動脈壁僵硬也可致CMB[36,37]。
研究表明,客觀認(rèn)知功能正常的高血壓患者,若存在CMB,常常伴有主觀認(rèn)知功能下降—認(rèn)知障礙的早期表現(xiàn)[38]。CMB致認(rèn)知障礙可能是局部腦組織損傷,相鄰腦組織的神經(jīng)纖維和星形膠質(zhì)斷裂所致。局部解部位的CMB對認(rèn)知有特定的影響,如基底節(jié)、丘腦,皮質(zhì)區(qū)域CMB與執(zhí)行功能有關(guān),而全腦認(rèn)知障礙與皮質(zhì)CMB相關(guān),但幕下CMB與認(rèn)知障礙無關(guān)[39]。也研究[40]發(fā)現(xiàn),皮質(zhì)CMB與全腦認(rèn)知障礙有關(guān),而深部灰質(zhì)、幕下CMB并不會引起認(rèn)知障礙。多處CMB(≥2)或混合性CMB發(fā)展成癡呆的風(fēng)險確有增加[41]。因此,CMB具體解剖部位與認(rèn)知功能領(lǐng)域的關(guān)系應(yīng)進(jìn)一步行大規(guī)模臨床試驗研究。
此外,Ages-Reykjavik研究證實,晚年高血壓(收縮壓+舒張壓)增加CSVD的風(fēng)險,所以適當(dāng)降低血壓是有益的。相反,中年即患有高血壓者,晚年時再降低血壓可致廣泛的器官低灌注,腦萎縮甚至是認(rèn)知功能下降[42]。因此,血壓的調(diào)控在不同時期意義不同。一項橫斷面研究顯示,不同CSVD亞型同時存在會加重微血管結(jié)構(gòu)受損,認(rèn)知障礙的風(fēng)險增加。CSVD總評分可預(yù)測發(fā)生癡呆的風(fēng)險,特別是執(zhí)行功能。這些結(jié)果表明腦組織損害的疊加可加重認(rèn)知障礙[43]。
小結(jié)與展望:高血壓與每種CSVD亞型均密切相關(guān)。多種高血壓性血管病變和炎癥反應(yīng)可引起CSVD。CSVD單獨或同時存在,均可引起認(rèn)知功能下降。盡早識別出高血壓患者伴有CSVD及認(rèn)知功能下降十分重要。合理調(diào)控血壓可有效延緩CSVD進(jìn)展。但WML總體積是否與認(rèn)知障礙有關(guān),高血壓與EPVS具體解剖部位的關(guān)系,基底節(jié)EPVS是否是認(rèn)知障礙的獨立危險因素以及不同解剖部位的CMB與認(rèn)知障礙領(lǐng)域的真正關(guān)聯(lián)性仍需進(jìn)一步研究。
[1]Banegas JR,Graciani A,de la Cruz-Troca JJ,et al. Achievement of cardiometabolic goals in aware hypertensive patients in Spain:a nationwide population-based study[J]. Hypertension,2012,60(4):898-905.
[2]Qiu C,Winblad B,F(xiàn)ratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia[J]. Lancet Neurol,2005,4(8):487-499.
[3]Teng Z,Dong Y,Zhang D,et al. Cerebral small vessel disease and post-stroke cognitive impairment[J]. Int J Neurosci,2017,127(9):824-830.
[4]Kern KC,Wright CB,Bergfield KL,et al. Blood pressure control in aging predicts cerebral atrophy related to small-vessel white matter lesions[J]. Front Aging Neurosci,2017,9:132.
[5]Faraco G,Iadecola C. Hypertension:a harbinger of stroke and dementia[J]. Hypertension,2013,62(5):810-817.
[6]Tzourio C,Laurent S,Debette S. Is hypertension associated with an accelerated aging of the brain[J] ? Hypertension,2014,63(5):894-903.
[7]Novak V,Hajjar I. The relationship between blood pressure and cognitive function[J]. Nat Rev Cardiol,2010,7(12):686-698.
[8]O’Sullivan M,Lythgoe DJ,Pereira AC,et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis[J]. Neurology,2002,59(3):321-326.
[9]Scott JA,Braskie MN,Tosun D,et al. Cerebral amyloid and hypertension are independently associated with white matter lesions in elderly[J]. Front Aging Neurosci,2015,7(415):221.
[10]Uiterwijk R,Staals J,Huijts M,et al. MRI progression of cerebral small vessel disease and cognitive decline in patients with hypertension[J]. J Hypertens,2017,35(6):1263-1270.
[11]Ai Q,Pu YH,Sy C,et al. Impact of regional white matter lesions on cognitive function in subcortical vascular cognitive impairment[J]. Neurol Res,2014,36(5):434-443.
[12]Delano-Wood L,Abeles N,Sacco JM,et al. Regional white matter pathology in mild cognitive impairment:differential influence of lesion type on neuropsychological functioning[J]. Stroke,2008,39(3):794-799.
[13]Potter GM,Doubal FN,Jackson CA,et al. Enlarged perivascular spaces and cerebral small vessel disease[J]. Int J Stroke,2015,10(3):376-381.
[14]Yang S,Qin W,Yang L,et al. The relationship between ambulatory blood pressure variability and enlarged perivascular spaces:a cross-sectional study[J]. BMJ Open,2017,7(8):e015719.
[15]Iadecola C. The pathobiology of vascular dementia[J]. Neuron,2013,80(4):844-866.
[16]Rosenberg GA. Extracellular matrix inflammation in vascular cognitive impairment and dementia[J]. Clin Sci (Lond),2017,131(6):425-437.
[17]Yao M,Zhu YC,Soumare A,et al. Hippocampal perivascular spaces are related to aging and blood pressure but not to cognition[J]. Neurobiol Aging,2014,35(9):2118-2125.
[18]Zhu YC,Tzourio C,Soumare A,et al. Severity of dilated Virchow-Robin spaces is associated with age,blood pressure,and MRI markers of small vessel disease:a population-based study[J]. Stroke,2010,41(11):2483-2490.
[19]Arba F,Quinn TJ,Hankey GJ,et al. Enlarged perivascular spaces and cognitive impairment after stroke and transient ischemic attack[J]. Int J Stroke,2018,13(1):47-56.
[20]Ding J,Sigurethsson S,Jonsson PV,et al. Large perivascular spaces visible on magnetic resonance imaging,cerebral small vessel disease progression,and risk of dementia:the age,gene/environment susceptibility-reykjavik study[J]. JAMA Neurol,2017,74(9):1105-1112.
[21]Huijts M,Duits A,Staals J,et al. Basal ganglia enlarged perivascular spaces are linked to cognitive function in patients with cerebral small vessel disease[J]. Curr Neurovasc Res,2014,11(2):136-141.
[22]Riba-Llena I,Nafria C,Mundet X,et al. Assessment of enlarged perivascular spaces and their relation to target organ damage and mild cognitive impairment in patients with hypertension[J]. Eur J Neurol,2016,23(6):1044-1050.
[23]Li Y,Liu N,Huang Y,et al. Risk factors for silent lacunar infarction in patients with transient ischemic attack[J]. Med Sci Monit,2016,22:447-453.
[24]Lv P,Jin H,Liu Y,et al. Comparison of risk factor between lacunar stroke and large artery atherosclerosis stroke:a cross-sectional study in China[J]. PLoS One,2016,11(3):e0149605.
[25]Altmann M,Thommessen B,Ronning OM,et al. Blood pressure differences between patients with lacunar and nonlacunar infarcts[J]. Brain Behav,2015,5(8):e00353.
[26]Kloppenborg RP,Nederkoorn PJ,Grool AM,et al. Do lacunar infarcts have different aetiologies? Risk factor profiles of lacunar infarcts in deep white matter and basal ganglia:the second manifestations of ARTerial disease-magnetic resonance study[J]. Cerebrovasc Dis,2017,43(3-4):161-168.
[27]Rutten-Jacobs L,Markus HS. Vascular risk factor profiles differ between magnetic resonance imaging-defined subtypes of younger-onset lacunar stroke[J]. Stroke,2017,48(9):2405-2411.
[28]Makin SD,Turpin S,Dennis MS,et al. Cognitive impairment after lacunar stroke:systematic review and meta-analysis of incidence,prevalence and comparison with other stroke subtypes[J]. J Neurol Neurosurg Psychiatry,2013,84(8):893-900.
[29]Blanco-Rojas L,Arboix A,Canovas D,et al. Cognitive profile in patients with a first-ever lacunar infarct with and without silent lacunes:a comparative study[J]. BMC Neurol,2013,13(1):203.
[30]Kitagawa K,Miwa K,Yagita Y,et al. Association between carotid stenosis or lacunar infarction and incident dementia in patients with vascular risk factors[J]. Eur J Neurol,2015,22(1):187-192.
[31]Schrag M,Greer DM. Clinical associations of cerebral microbleeds on magnetic resonance neuroimaging[J]. J Stroke Cerebrovasc Dis,2014,23(10):2489-2497.
[32]Graff-Radford J,Simino J,Kantarc K,et al. Neuroimaging correlates of cerebral microbleeds:the ARIC study (atherosclerosis risk in communities)[J]. Stroke,2017,48(11):2964-2972.
[33]Jia Z,Mohammed W,Qiu Y,et al. Hypertension increases the risk of cerebral microbleed in the territory of posterior cerebral artery:a study of the association of microbleeds categorized on a basis of vascular territories and cardiovascular risk factors[J]. J Stroke Cerebrovasc Dis,2014,23(1):e5-11.
[34]Yakushiji Y,Yokota C,Yamada N,et al. Clinical characteristics by topographical distribution of brain microbleeds,with a particular emphasis on diffuse microbleeds[J]. J Stroke Cerebrovasc Dis,2011,20(3):214-221.
[35]Gao Z,Wang W,Wang Z,et al. Cerebral microbleeds are associated with deep white matter hyperintensities,but only in hypertensive patients[J]. PLoS One,2014,9(3):e91637.
[36]Kwon HM,Lim JS,Kim YS,et al. Cerebral microbleeds are associated with nocturnal reverse dipping in hypertensive patients with ischemic stroke[J]. BMC Neurol,2014,14(1):8.
[37]Shoamanesh A,Preis SR,Beiser AS,et al. Inflammatory biomarkers,cerebral microbleeds,and small vessel disease:Framingham Heart Study[J]. Neurology,2015,84(8):825-832.
[38]Uiterwijk R,Huijts M,Staals J,et al. Subjective cognitive failures in patients with hypertension are related to cognitive performance and cerebral microbleeds[J]. Hypertension,2014,64(3):653-657.
[39]Yamashiro K,Tanaka R,Okuma Y,et al. Cerebral microbleeds are associated with worse cognitive function in the nondemented elderly with small vessel disease[J]. Cerebrovasc Dis Extra,2014,4(3):212-220.
[40]Chiang GC,Cruz Hernandez JC,Kantarci K,et al. Cerebral microbleeds,CSF p-Tau,and cognitive decline:significance of anatomic distribution[J] . AJNR Am J Neuroradiol,2015,36(9):1635-1641.
[41]Miwa K,Tanaka M,Okazaki S,et al. Multiple or mixed cerebral microbleeds and dementia in patients with vascular risk factors[J]. Neurology,2014,83(7):646-653.
[42]Muller M,Sigurdsson S,Kjartansson O,et al. Joint effect of mid-and late-life blood pressure on the brain:the AGES-Reykjavik study[J]. Neurology,2014,82(24):2187-2195.
[43]Staals J,Booth T,Morris Z,et al. Total MRI load of cerebral small vessel disease and cognitive ability in older people[J]. Neurobiol Aging,2015,36(10):2806-2811.