羅志榮,蔡 昊,王強(qiáng)利,牟芳芳,邵水金,國(guó)海東
(上海中醫(yī)藥大學(xué)基礎(chǔ)醫(yī)學(xué)院:1人體解剖學(xué)教研室,2組織胚胎學(xué)教研室,上海201203)
心血管疾?。╟ardiovascular disease,CVD)是造成人類死亡的主要原因。在我國(guó),CVD占所有死亡人數(shù)的45%左右。其中,急性心肌梗死(acute myo?cardial infarction,AMI)因其突發(fā)性和高致死率、高致殘率,已成為全世界范圍內(nèi)的一個(gè)重大公共衛(wèi)生問題。心肌梗死后心肌細(xì)胞發(fā)生凝固性壞死,并在細(xì)胞間隙中出現(xiàn)水腫和中性粒細(xì)胞浸潤(rùn)。壞死的肌細(xì)胞被巨噬細(xì)胞清除,并最終被膠原瘢痕所代替[1]。
快速有效地恢復(fù)血流是減少梗死面積的最佳治療方案。然而,高達(dá)60%的AMI患者仍可能發(fā)生心肌重構(gòu)。目前的常規(guī)治療,包括藥物、介入或外科手術(shù),均不能挽救已經(jīng)壞死的心肌細(xì)胞,從而導(dǎo)致整個(gè)心臟的大小、形狀、結(jié)構(gòu)和功能發(fā)生變化[2]。近十幾年來(lái),干細(xì)胞領(lǐng)域的快速興起與發(fā)展為AMI的治療帶來(lái)了新的希望。干細(xì)胞治療AMI的可能機(jī)制包括直接向心肌和血管內(nèi)皮細(xì)胞分化、促進(jìn)血管新生或旁分泌途徑。其中,干細(xì)胞移植后經(jīng)旁分泌途徑保護(hù)受損心肌,促進(jìn)骨髓和/或心臟內(nèi)干細(xì)胞遷移到損傷部位已成為近年來(lái)研究的焦點(diǎn)[3]。
過去十幾年,已有多種干細(xì)胞用于臨床前動(dòng)物模型和臨床試驗(yàn),包括骨髓單核細(xì)胞(bone marrow mononuclear cell,BM?MNC),骨骼肌成肌細(xì)胞,內(nèi)皮祖細(xì)胞,間充質(zhì)干/基質(zhì)細(xì)胞(mesenchymal stem cells,MSC),心臟干細(xì)胞(cardiac stem cells,CSC),胚胎干細(xì)胞(embryonic stem cells,ESC)和誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPSC)等。 大部分動(dòng)物實(shí)驗(yàn)研究發(fā)現(xiàn),心肌梗死后,干細(xì)胞移植可促進(jìn)心肌再生,提高心功能。臨床試驗(yàn)表明,干細(xì)胞治療可以改善心臟功能,減少梗死面積和死亡率[4-5]。 然而,也有部分臨床試驗(yàn)[6]證明,干細(xì)胞移植并未讓心肌梗死患者受益。然而,在干細(xì)胞療法最終應(yīng)用到臨床之前尚需解決或完善諸多關(guān)鍵問題,包括細(xì)胞來(lái)源、細(xì)胞體外培養(yǎng)、移植細(xì)胞的數(shù)量、移植途徑、移植后在宿主體內(nèi)的存活和分化、免疫排斥等。
到目前為止,已有多種來(lái)源的干細(xì)胞用于臨床試驗(yàn),包括外周血、BM、心臟活檢組織、臍帶血和脂肪組織。其中,自體BM?MNC是最常見的用于治療AMI的干細(xì)胞類型。BM?MSC由于其易于從人體組織中分離以及多向分化潛力和低免疫原性而獲得了較多的關(guān)注[7]。CSC具有更好地向心肌分化的能力,但CSC培養(yǎng)具有侵襲性(需要心臟活檢),且需要較長(zhǎng)時(shí)間的體外培養(yǎng)才能獲得足夠數(shù)量的細(xì)胞。近來(lái),iPSC及其衍生細(xì)胞如心肌細(xì)胞代表了新的心臟再生細(xì)胞來(lái)源[8]。然而,在用于AMI患者的大規(guī)模試驗(yàn)之前,需要明確并解決其致瘤性和分化形成的心肌細(xì)胞的成熟性。
細(xì)胞的健康狀態(tài)是選擇干細(xì)胞來(lái)源的重要因素之一。老年人CSC喪失自我更新能力,端??s短或功能障礙,進(jìn)入不可逆的靜止?fàn)顟B(tài)[9]。并且,在每個(gè)細(xì)胞分裂期間,存在老化細(xì)胞可能無(wú)法糾正的有害DNA突變的風(fēng)險(xiǎn)[10]。除了年齡之外,還存在其他限制細(xì)胞再生潛力的影響因素。譬如,與健康人相比,從糖尿病和高血壓患者或終末期心臟病患者分離的CSC 擴(kuò)增能力明顯下降[11-12]。
對(duì)不同干細(xì)胞治療的作用進(jìn)行比較和評(píng)估,是今后臨床篩選合適干細(xì)胞類型的依據(jù)之一。有研究[13]比較了 BM?MSC與 BM?MNC的作用,并提出在改善局部心臟功能和減少梗死面積上,BM?MSC比BM?MNC更有優(yōu)勢(shì)。此外,心臟的形態(tài)發(fā)生十分復(fù)雜,包括多種不同的譜系提交的細(xì)胞類型。除心肌細(xì)胞之外,促進(jìn)梗死區(qū)平滑肌細(xì)胞和內(nèi)皮細(xì)胞的再生也是十分有價(jià)值的。然而,臨床試驗(yàn)需要明確兩個(gè)不同類型干細(xì)胞聯(lián)合使用時(shí)可能的不良反應(yīng)[13]。為了研究最佳的干細(xì)胞組合,CSC和MSC聯(lián)合移植已被用于豬的移植實(shí)驗(yàn)[14],并且至少有兩項(xiàng)研究正在進(jìn)行臨床Ⅰ和Ⅱ期試驗(yàn)(NCT02501811和NCT02503280)。
目前干細(xì)胞移植治療AMI還沒有建立標(biāo)準(zhǔn)化的細(xì)胞培養(yǎng)方案。不同的培養(yǎng)方法導(dǎo)致細(xì)胞的均一性、純度和效力都不同。另外,細(xì)胞來(lái)源個(gè)體的性別、采用不同的試劑、從不同的位置分離細(xì)胞都可能影響細(xì)胞的數(shù)量、純度和功能。 Seeger等[15]對(duì) REPAIR?AMI[16]與 ASTAMI[17]試驗(yàn)進(jìn)行比較,發(fā)現(xiàn)在 ASTAMI中使用Lymphoprep而不是Ficoll梯度離心導(dǎo)致總細(xì)胞數(shù)的恢復(fù)減少30%,包括CD34+細(xì)胞和MSC。從心房獲得的CSC和來(lái)自心室的CSC具有差異基因表達(dá)和功能特性[18]。因此,在進(jìn)行任何臨床試驗(yàn)之前,需要建立統(tǒng)一的細(xì)胞培養(yǎng)方案,包括對(duì)細(xì)胞的狀態(tài)、純度和功能等進(jìn)行鑒定[19]。
細(xì)胞數(shù)量的多少是影響干細(xì)胞療效的一個(gè)關(guān)鍵問題。理論上,需要足夠多的功能性心肌細(xì)胞才能獲得較為理想的治療作用。目前的研究中,細(xì)胞數(shù)量差別較大,在 1×106到 2×108之間[20]。 在實(shí)踐中,為了達(dá)到完全的心臟再生,可以移植大量的心肌細(xì)胞或較少數(shù)量的具有高增殖能力的前體/干細(xì)胞。一些臨床研究如 PROCHYMAL[21],ACT34?CMI[22],AMR?1[23]和POSEIDON[24]試驗(yàn)表明,低細(xì)胞數(shù)量比高劑量獲益更好。移植大數(shù)量的細(xì)胞可能導(dǎo)致細(xì)胞聚集體的形成,從而導(dǎo)致不良反應(yīng),如心律失常[25]。然而,高度增殖細(xì)胞的注射也有可能形成腫瘤的潛在風(fēng)險(xiǎn)。此外,高增殖能力的前體/干細(xì)胞在移植微環(huán)境中能否保持較高的增殖能力,以及是否很快發(fā)生分化都是需要闡明的問題。
到目前為止,臨床研究采用的細(xì)胞移植途徑主要有以下三種:心肌內(nèi)(intramuscular,IM)注射,經(jīng)冠狀動(dòng)脈(intracoronary,IC)和靜脈(intravenous,IV)注射[26]。這三種移植途徑各有優(yōu)劣,究竟哪種移植方式最佳尚未達(dá)成共識(shí)。此外,不同細(xì)胞類型、疾病急緩狀態(tài)、患者年齡和體質(zhì)以及有無(wú)其他危險(xiǎn)因素都會(huì)影響 移 植 途 徑 的 選 擇。 REGENERATE?IHD[27-28](NCT00747708)和 Alster?MACS(NCT01337011)臨床試驗(yàn)的結(jié)果將有助于闡明在慢性心力衰竭患者IC或IM之間的優(yōu)劣。
IM途徑可以通過開胸或通過心內(nèi)膜導(dǎo)管將細(xì)胞直接注射到心肌[29]。一般將細(xì)胞注射到梗死周邊區(qū)域,以確保細(xì)胞有足夠的血液供應(yīng)維持存活。這種方法的優(yōu)勢(shì)是有較多的細(xì)胞被移植入病變部位。然而,有可能導(dǎo)致一些副反應(yīng),例如心肌穿孔、血管損傷、栓塞和室性心律失常的風(fēng)險(xiǎn)[29]。
IC途徑是將細(xì)胞注射到冠狀動(dòng)脈循環(huán)中,包括使用標(biāo)準(zhǔn)經(jīng)皮冠狀動(dòng)脈導(dǎo)管。這種方法與IM途徑相比更具有優(yōu)勢(shì),因?yàn)樗哂械颓忠u性,并且有助于注射細(xì)胞相對(duì)均勻分布,并且細(xì)胞生存率也更高(因?yàn)榧?xì)胞注入有氧氣和營(yíng)養(yǎng)供應(yīng)的心肌區(qū)域)。因此,這種方式在臨床相對(duì)容易操作和推廣。然而,IC途徑仍然具有一定缺點(diǎn),例如通過體循環(huán)到達(dá)其他組織器官,而進(jìn)入心肌的細(xì)胞數(shù)量不多[30-31]。 另一個(gè)重要的缺點(diǎn)是可能導(dǎo)致冠狀動(dòng)脈栓塞,尤其是注射大直徑細(xì)胞(50~200 μm)時(shí)。
有些臨床試驗(yàn)也采用了IV途徑。該方法操作最簡(jiǎn)便,不會(huì)對(duì)患者造成損傷。但是大部分細(xì)胞潴留在肺中或被網(wǎng)狀血管上皮系統(tǒng)清除[30]。因此,在采用IV注射時(shí),如何增強(qiáng)移植細(xì)胞向病變部位遷移和募集值得深入研究和探討。
干細(xì)胞在移植后能夠在心肌內(nèi)停留并存活下來(lái)是細(xì)胞療法最關(guān)鍵的一步。動(dòng)物實(shí)驗(yàn)[32-33]和臨床試驗(yàn)[34-35]發(fā)現(xiàn),在移植后 24 h,只有不到 10%的細(xì)胞留存下來(lái)。而移植4周后,心臟中僅檢測(cè)到1%移植的細(xì)胞[36]。大部分細(xì)胞可能被血液循環(huán)沖洗、從注射部位溢出以及細(xì)胞死亡。細(xì)胞死亡(包括壞死和凋亡)的原因可能包括:炎癥、缺氧、酸中毒、缺乏底物和代謝物累積的缺血缺氧微環(huán)境;被吞噬細(xì)胞吞噬。
目前,提高細(xì)胞移植后存活的策略主要包括:①基因修飾:如轉(zhuǎn)染抗細(xì)胞凋亡基因如 AKT[37]或Bcl?2[38]。 ②生物材料:通過纖維蛋白膠、自聚肽納米纖維等生物材料構(gòu)建移植混合物或細(xì)胞片[39-40]。預(yù)處理:細(xì)胞移植前通過 eNOS增強(qiáng)物質(zhì)[41]、他汀類[42]、缺氧[43]或熱休克[44]預(yù)處理以提高細(xì)胞存活。
存活的干細(xì)胞能否有效向心肌細(xì)胞分化是心肌再生的主要問題。BM?MNC和MSC等移植后向心肌細(xì)胞分化效率極其有限。ESC和iPSC向心肌細(xì)胞分化的效率較高,但其安全性尚未得到有效評(píng)價(jià)。目前,多數(shù)學(xué)者認(rèn)為,干細(xì)胞移植后可能主要通過旁分泌途徑發(fā)揮改善心臟功能的作用。盡管如此,干細(xì)胞向心肌細(xì)胞分化并替代受損的心肌仍是干細(xì)胞療法的主要目的,如何提高干細(xì)胞向心肌細(xì)胞分化值得進(jìn)一步研究。此外,干細(xì)胞移植后向血管內(nèi)皮細(xì)胞、平滑肌細(xì)胞、淋巴管內(nèi)皮細(xì)胞的分化也具有較為重要的意義。
自體干細(xì)胞是最理想的干細(xì)胞來(lái)源,因?yàn)樗淮嬖诿庖叻磻?yīng)。然而,自體干細(xì)胞移植最大的缺陷在于它在體外培養(yǎng)和鑒定需要較長(zhǎng)一段時(shí)間,無(wú)法用于AMI的治療,這極大地限制了它的應(yīng)用。
同種異體間移植最值得關(guān)注的問題就是細(xì)胞免疫排斥反應(yīng),它可能直接影響細(xì)胞療法的最終效果。盡管 MSC 具有免疫豁免的特性[45-46],但有研究[47]報(bào)道其分化以后又重新獲得免疫原性,這可能在一定程度上解釋了MSC效果不佳的原因。在解決細(xì)胞免疫排斥方面,有以下幾種策略:HLA供體?受體匹配[48];使用免疫抑制劑,但具有較大的副作用[49];與免疫排斥有關(guān)的基因修飾[50];使用化學(xué)或生物材料降低免疫反應(yīng)[51]。此外,細(xì)胞儲(chǔ)存、細(xì)胞示蹤、移植時(shí)機(jī)、移植次數(shù)以及患者特征等也將在一定程度上影響干細(xì)胞治療的效果。
盡管干細(xì)胞移植對(duì)心肌梗死治療有較好的應(yīng)用前景,然而,在細(xì)胞來(lái)源和體外培養(yǎng)、移植細(xì)胞的數(shù)量、移植途徑和時(shí)機(jī)、移植后在宿主體內(nèi)的存活和分化、免疫排斥等方面尚不規(guī)范,也未建立相應(yīng)的可控的標(biāo)準(zhǔn),這些都會(huì)影響干細(xì)胞治療的效果。同種異體移植的細(xì)胞來(lái)源選擇性較大,質(zhì)量容易控制,并且可以儲(chǔ)存,能夠滿足急性應(yīng)用。因此,同種異體移植應(yīng)該是心臟再生醫(yī)學(xué)最主要的方式。盡管到目前為止,該領(lǐng)域還存在諸多的問題需要解決,但干細(xì)胞療法對(duì)于心肌梗死以及梗死后心力衰竭仍是最有希望的治療手段。在解決目前存在的問題的基礎(chǔ)上,相信在不久的將來(lái),干細(xì)胞療法最終將成為臨床上應(yīng)用于心肌梗死等缺血性心臟病的有效而成熟的治療方式。
【參考文獻(xiàn)】
[1] Cotran RS,Kumar V,Robbins SL.Robbins pathologic basis of dis?ease.5th.Philadelphia,PA: WB Saunders,1994.
[2] Steg PG,James SK,Atar D,et al.ESC Guidelines for the manage?ment of acute myocardial infarction in patients presenting with ST?segment elevation[J].Eur Heart J,2012,33(20):2569-2619.
[3] Gnecchi M,Zhang Z,Ni A,et al.Paracrine mechanisms in adult stem cell signaling and therapy[J].Circ Res,2008,103(11):1204-1219.
[4] Sch?chinger V,Erbs S,Els?sser A,et al.Intracoronary bone marrow?derived progenitor cells in acute myocardial infarction[J].N Engl J Med,2006,355(12):1210-1221.
[5] Meyer GP,Wollert KC,Lotz J,et al.Intracoronary bone marrow cell transfer after myocardial infarction: 5?year follow?up from the ran?domized?controlled BOOST trial[J].Eur Heart J,2009,30(24):2978-2984.
[6] Beitnes JO,Gjesdal O,Lunde K,et al.Left ventricular systolic and diastolic function improve after acute myocardial infarction treated with acute percutaneous coronary intervention,but are not influenced by intracoronary injection of autologous mononuclear bone marrow cells: a 3 year serial echocardiographic sub?study of the randomized?controlled ASTAMI study[J].Eur J Echocardiogr,2011,12(2):98-106.
[7] Chou SH,Lin SZ,Kuo WW,et al.Mesenchymal stem cell insights:prospects in cardiovascular therapy[J].Cell Transplant,2014,23(4-5):513-529.
[8] Iglesias?García O,Pelacho B,Prósper F.Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling[J].J Mol Cell Cardiol,2013,62:43-50.
[9] Rota M,Goichberg P,Anversa P,et al.Aging effects on cardiac pro?genitor cell physiology[J].Compr Physiol,2015,5(4):1775-1814.
[10] N?rv? E,Autio R,Rahkonen N,et al.High?resolution DNA analy?sis of human embryonic stem cell lines reveals culture?induced copy number changes and loss of heterozygosity[J].Nat Biotechnol,2010,28(4):371-377.
[11] Itzhaki?Alfia A,Leor J,Raanani E,et al.Patient characteristics and cell source determine the number of isolated human cardiac progeni?tor cells[J].Circulation,2009,120(25):2559-2566.
[12] Gambini E,Pesce M,Persico L,et al.Patient profile modulates cardiac c?kit(+) progenitor cell availability and amplification poten?tial[J].Transl Res,2012,160(5):363-373.
[13] Heldman AW,DiFede DL,F(xiàn)ishman JE,et al.Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC?HFT randomized trial[ J].JAMA,2014;311(1):62-73.
[14] Karantalis V,Suncion?Loescher VY,Bagno L,et al.Synergistic effects of combined cell therapy for chronic ischemic cardiomyopathy[J].J Am Coll Cardiol,2015,66(18):1990-1999.
[15] Seeger FH,Tonn T,Krzossok N,et al.Cell isolation procedures matter:a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocar?dial infarction[J].Eur Heart J,2007,28(6):766-772.
[16] Sch?chinger V,Erbs S,Els?sser A,et al.Intracoronary bone marrow?derived progenitor cells in acute myocardial infarction[J].N Engl J Med,2006,355(12):1210-1221.
[17] Beitnes JO,Gjesdal O,Lunde K,et al.Left ventricular systolic and diastolic function improve after acute myocardial infarction treated with acute percutaneous coronary intervention,but are not influenced by intracoronary injection of autologous mononuclear bone marrow cells: a 3 year serial echocardiographic sub?study of the randomized?controlled ASTAMI study[J].Eur J Echocardiogr,2011,12(2):98-106.
[18] Ng SY,Wong CK,Tsang SY.Differential gene expressions in atrial and ventricularmyocytes: insightsinto the road ofapplying embryonic stem cell?derived cardiomyocytes for future therapies[ J].Am J Physiol Cell Physiol,2010,299(6):C1234-C1249.
[19] Belotti D,Gaipa G,Bassetti B,et al.Full GMP?compliant valida?tion of bone marrow?derived human CD133(+) cells as advanced therapy medicinal product for refractory ischemic cardiomyopathy[J].Biomed Res Int,2015,2015:473159.
[20] Madonna R,F(xiàn)erdinandy P,De Caterina R,et al.Recent developments in cardiovascular stem cells[J].Circ Res,2014,115(12):e71-e78.
[21] Hare JM,Traverse JH,Henry TD,et al.A randomized,double?blind,placebo?controlled,dose?escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction[J].J Am Coll Cardiol,2009,54(24):2277-2286.
[22] Losordo DW,Henry TD,Davidson C,et al.Intramyocardial,autolo?gous CD34+ cell therapy for refractory angina[J].Circ Res,2011,109(4):428-436.
[23] Quyyumi AA,Waller EK,Murrow J,et al.CD34+cell infusion after ST elevation myocardial infarction is associated with improved perfu?sion and is dose dependent[J].Am Heart J,2011,161(1):98-105.
[24] Hare JM,F(xiàn)ishman JE,Gerstenblith G,et al.Comparison of alloge?neic vs autologous bone marrow?derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic car?diomyopathy: the POSEIDON randomized trial[J].JAMA,2012,308(22):2369-2379.
[25] Prockop DJ,Olson SD.Clinical trials with adult stem/progenitor cells for tissue repair: let's not overlook some essential precautions[J].Blood,2007,109(8):3147-3151.
[26] Beeres SL,Atsma DE,van Ramshorst J,et al.Cell therapy for ischaemic heart disease[J].Heart,2008,94(9):1214-1226.
[27] Yeo C,Mathur A.Autologous bone marrow?derived stem cells for ischemic heart failure: REGENERATE?IHD trial[J].Regen Med,2009,4(1):119-127.
[28] Mozid A,Yeo C,Arnous S,et al.Safety and feasibility of intramyo?cardial versus intracoronary delivery of autologous cell therapy in ad?vanced heart failure: the REGENERATE?IHD pilot study[J].Regen Med,2014,9(3):269-278.
[29] Campbell NG,Suzuki K.Cell delivery routes for stem cell therapy to the heart: current and future approaches[J].J Cardiovasc Transl Res,2012,5(5):713-726.
[30] Freyman T,Polin G,Osman H,et al.A quantitative,randomized study evaluating three methods of mesenchymal stem cell delivery fol?lowing myocardial infarction[J].Eur Heart J,2006,27(9):1114-1122.
[31] Goussetis E,Manginas A,Koutelou M,et al.Intracoronary infusion of CD133+ and CD133?CD34+ selected autologous bone marrow pro?genitor cells in patients with chronic ischemic cardiomyopathy:cell isolation,adherence to the infarcted area,and body distribution[J].Stem Cells,2006,24(10):2279-2283.
[32] Hou D,Youssef EA,Brinton TJ,et al.Radiolabeled cell distribu?tion after intramyocardial,intracoronary,and interstitial retrograde coronary venous delivery: implications for current clinical trials[J].Circulation,2005,112(9 Suppl):I150-I156.
[33] Aicher A,Brenner W,Zuhayra M,et al.Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling[J].Circulation,2003,107(16):2134-2139.
[34] Blocklet D,Toungouz M,Berkenboom G,et al.Myocardial homing of nonmobilized peripheral?blood CD34+ cells after intracoronary in?jection[J].Stem Cells,2006(2):333-336.
[35] Hofmann M,Wollert KC,Meyer GP,et al.Monitoring of bone marrow cell homing into the infarcted human myocardium [J].Circulation,2005,111(17):2198-2202.
[36] Terrovitis J,Lautam?ki R,Bonios M,et al.Noninvasive quantifica?tion and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac?derived stem cell delivery[J].J Am Coll Cardiol,2009,54(17):1619-1626.
[37] Mangi AA,Noiseux N,Kong D,et al.Mesenchymal stem cells mod?ified with Akt prevent remodeling and restore performance of infarc?ted hearts[J].Nat Med,2003,9(9):1195-1201.
[38] Li W,Ma N,Ong LL,et al.Bcl?2 engineered MSCs inhibited apoptosis and improved heart function[J].Stem Cells,2007,25(8):2118-2127.
[39] Chiu LL,Iyer RK,Reis LA,et al.Cardiac tissue engineering: cur?rent state and perspectives[J].Front Biosci(Landmark Ed),2012,17:1533-1550.
[40] Miyahara Y,Nagaya N,Kataoka M,et al.Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction[J].Nat Med,2006,12(4):459-465.
[41] Sasaki K,Heeschen C,Aicher A,et al.Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhan?cer AVE9488 enhances their functional activity for cell therapy[J].Proc Natl Acad Sci U S A,2006,103(39):14537-14541.
[42] Spyridopoulos I,Haendeler J,Urbich C,et al.Statins enhance migratory capacity by upregulation of the telomere repeat?binding factor TRF2 in endothelial progenitor cells[J].Circulation,2004,110(19):3136-3142.
[43] Hu X,Yu SP,F(xiàn)raser JL,et al.Transplantation of hypoxia?precondi?tioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis[J].J Thorac Cardiovasc Surg,2008,135(4):799-808.
[44] Maurel A,Azarnoush K,Sabbah L,et al.Can cold or heat shock improve skeletal myoblast engraftment in infarcted myocardium[J]?Transplantation,2005,80(5):660-665.
[45] Nasef A,Ashammakhi N,F(xiàn)ouillard L.Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms[J].Regen Med,2008,3(4):531-546.
[46] Chamberlain G,F(xiàn)ox J,Ashton B,et al.Concise review: mesenchy?mal stem cells: their phenotype,differentiation capacity,immuno?logical features,and potential for homing[J].Stem Cells,2007,25(11):2739-2749.
[47] Hang XP,Ludke A,Dhingra S,et al.ClassⅡtransactivator knock?down limits major histocompatibility complex II expression,diminishes immune rejection,and improves survival of allogeneic bone marrow stem cells in the infarcted heart[J].FASEB J,2016,30(9):3069-3082.
[48] Nakatsuji N,Nakajima F,Tokunaga K.HLA?haplotype banking and iPS cells[J].Nat Biotechnol,2008,26(7):739-740.
[49] Swijnenburg RJ,Schrepfer S,Govaert JA,et al.Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts[J].Proc Natl Acad Sci U S A,2008,105(35):12991-12996.
[50] Hacke K,F(xiàn)alahati R,F(xiàn)lebbe?Rehwaldt L,et al.Suppression of HLA expression by lentivirus?mediated gene transfer of siRNA cassettes and in vivo chemoselection to enhance hematopoietic stem cell transplantation[J].Immunol Res,2009,44(1-3):112-126.
[51] Zakrzewski JL,van den Brink MR,Hubbell JA.Overcoming immu?nological barriers in regenerative medicine[J].Nat Biotechnol,2014,32(8):786-794.