傅定發(fā)+馬鑫+陳鼎
摘 要:采用超聲波輔助球磨工藝降解剛果紅.在超聲波的空化作用以及零價(jià)鐵的化學(xué)作用和機(jī)械力化學(xué)的作用下,溶液中的羥基自由基濃度明顯提高;在羥基自由基的強(qiáng)氧化作用以及反應(yīng)過(guò)程中剝落的納米級(jí)的零價(jià)鐵的還原作用下,反應(yīng)速度明顯加快,并應(yīng)對(duì)反映起促進(jìn)作用.在2 min時(shí)剛果紅去除率達(dá)99%,10 min時(shí)大部分有機(jī)物被礦化,總碳含量(TOC)的去除率達(dá)到80%.在高濃度的條件下,降解效率明顯并且降解的效果更加徹底,而且成本較低,操作簡(jiǎn)便環(huán)保.結(jié)果表明超聲波輔助球磨工藝在降解偶氮染料廢水中有巨大的應(yīng)用價(jià)值.
關(guān)鍵詞:超聲波輔助球磨;納米零價(jià)鐵;羥基自由基;偶氮染料;氧化還原;超聲空化
中圖分類號(hào):O644 文獻(xiàn)標(biāo)志碼:A
Degradation of Azo Dye in Wastewater by UltrasonicAssisted Ball Milling
FU Dingfa,MA Xin,CHEN Ding
(College of Materials Science and Engineering,Hunan University,Changsha 410082,China)
Abstract:Azo dye is a common pollutant,and many researchers focus on its treatment. In this study,the ultrasonic assisted ball milling technology was used to degradate the Congo red. With the combination of ultrasonic cavitation,effect of zero valence iron and mechanical chemistry,the hydroxyl radical concentration increased significantly in solution. Then,reaction speed was apparently accelerated under the oxidation of hydroxyl radical and the reaction of nano iron. Eventually,the removal rate of Congo red reached 99% within 2 minutes. Most of the organic matters were mineralized,and the removal rate of total carbon (TOC) reached 80% with 10 min. The degradation efficiency increased significantly and the degradation effect was more thorough under high concentration. It is a cost-effective,simple and environmental method. All these indicated the ultrasonic assisted ball milling process is valuable to be applied to the degradation of azo dye wastewater.
Key words:ultrasonic assisted ball milling; nano zero valence iron;·OH; azo dye; oxidation reduction; ultrasonic cavitation
偶氮染料分子中含有偶氮基,是一種常見(jiàn)的芳香族化合物,可用于蛋白質(zhì)沉淀、胚胎切片、植物粘蛋白、纖維素、彈性組織等的染色[1-2],有些偶氮染料如果與人體接觸或被吸收容易引發(fā)癌癥,因此處理偶氮染料廢水也成為研究熱點(diǎn)[3-5].
近幾年來(lái)對(duì)超聲波在有機(jī)反應(yīng)中的應(yīng)用研究,發(fā)展十分迅速[6-7],該方法中用到的儀器設(shè)備簡(jiǎn)單,反應(yīng)過(guò)程易于控制.
國(guó)際上目前已經(jīng)研究出許多方法,進(jìn)行偶氮染料廢水的處理并且出現(xiàn)了很好的效果,如 Fenton 法[8-10]、催化氧化法[11-16]、臭氧氧化法[17-18]、光催化法等[19-20].董永春等人[21]采用改性PAN纖維與鐵離子的配位結(jié)構(gòu)Fe-AO-PAN來(lái)進(jìn)行偶氮染料的降解,取得了較好的結(jié)果.施晶瑩等人[22]采用TiO2 光電化學(xué)電池催化氧化的方法降解甲基紅,以鈦基 TiO2 薄膜為光陽(yáng)極,成功地得到了組裝電極,使得甲基紅降解效率提高.
本文采用超聲波輔助球磨技術(shù),將超聲波和水溶液球磨方法進(jìn)行耦合,促進(jìn)固-液兩相之間的連續(xù)反應(yīng),在球磨的碰撞和超聲波的作用下將反應(yīng)生成的物質(zhì)從球表面剝離,形成新的反應(yīng)層,不斷為反應(yīng)物提供反應(yīng)位.同時(shí)超聲輔助水溶液球磨的反應(yīng)過(guò)程中會(huì)產(chǎn)生羥基自由基,促進(jìn)有機(jī)物降解反應(yīng)的進(jìn)行 [23-24],本實(shí)驗(yàn)所降解物質(zhì)濃度高,反應(yīng)設(shè)備簡(jiǎn)單,易于操作,調(diào)整適當(dāng)?shù)墓に噮?shù)對(duì)生產(chǎn)實(shí)際廢水中有機(jī)物以及無(wú)機(jī)鹽的去除效果較好[25-26],所消耗的成本低,便于工業(yè)化.
1 實(shí)驗(yàn)材料與方法
1.1 試劑與儀器
剛果紅(分析純,天津市化學(xué)試劑研究所);硫酸(分析純,國(guó)藥集團(tuán)化學(xué)試劑有限公司);過(guò)氧化氫(分析純,國(guó)藥集團(tuán)化學(xué)試劑有限公司);對(duì)苯二甲酸(分析純,國(guó)藥集團(tuán)化學(xué)試劑有限公司);磷酸二氫鉀(分析純,西隴化工股份有限公司).
紫外可見(jiàn)分光光度計(jì)(UV-2550PC,日本島津公司);電導(dǎo)率儀(PDS-11A,艾普計(jì)量?jī)x器有限公司);熒光分光光度計(jì)(F-2500,日本日立高新技術(shù)公司);XRD分析儀(TD-3300,丹東通達(dá)科技有限公司).endprint
1.2 實(shí)驗(yàn)過(guò)程
1.2.1 降解實(shí)驗(yàn)過(guò)程
超聲輔助球磨過(guò)程所用的裝置如圖1所示.
在特制的不銹鋼球磨罐(直徑150 mm,高度145 mm,總體積約2 561 mL)中進(jìn)行超聲輔助水溶液球磨降解剛果紅溶液反應(yīng),并在其中加入2 kg的鐵球(Φ=2 mm),將一定量的剛果紅(分析純)加入到1 500 mL的去離子水中,配制成一定濃度的剛果紅溶液,在實(shí)驗(yàn)過(guò)程中調(diào)整攪拌桿的高度直至其距球磨罐底部5 mm處,開始攪拌,攪拌速度為250 r/min,將球磨罐連接到超聲發(fā)生器上,發(fā)生器功率66 W,球磨罐中發(fā)生化學(xué)反應(yīng)平均溫度為50 ℃.在特定時(shí)間內(nèi)取樣、離心進(jìn)行檢測(cè).
1.2.2 剛果紅濃度檢測(cè)
用島津UV-2550PC紫外分光光度計(jì)測(cè)量剛果紅濃度,將實(shí)驗(yàn)取得的樣品,選用10 mL的石英比色皿,用蒸餾水、酒精清洗多次,用待測(cè)試樣潤(rùn)洗3次,再將待測(cè)試樣取至比色皿的2/3~3/4處,用擦鏡紙擦干凈比色皿四壁后進(jìn)行檢測(cè).
1.2.3 羥基自由基的測(cè)定
熒光測(cè)定方法是在球磨罐中加入原料、對(duì)苯二甲酸捕捉劑以及磷酸鹽緩沖劑使溶液pH=7.3.在設(shè)定的時(shí)間用一次性吸管從中提取10 mL溶液并向體系中加入等量的捕捉劑和緩沖劑,取樣然后將過(guò)濾后的溶液放入棕色玻璃瓶中.選用10 mm的751型石英比色皿,用蒸餾水、酒精分別清洗3次,之后烘干,用一次性吸管將待測(cè)溶液吸入比色皿至2/3~3/4處,用擦鏡紙擦干凈比色皿四壁.將盛有待測(cè)液的比色皿放入日立F2500熒光分光光度計(jì)中測(cè)量其熒光強(qiáng)度[27],其中激發(fā)值(excitation)為310.4 nm,放射值(emission)426.4 nm.
2 實(shí)驗(yàn)結(jié)果與分析
2.1 工藝參數(shù)對(duì)實(shí)驗(yàn)的影響
本實(shí)驗(yàn)所配溶液體積為1 500 mL,在超聲波輔助球磨條件下,從剛果紅初始濃度、超聲頻率、溶液pH值3種工藝參數(shù)的改變來(lái)研究超聲球磨法降解剛果紅過(guò)程的最佳條件,具體的參數(shù)如表1所示.
本實(shí)驗(yàn)采用紫外分光光度計(jì)所測(cè)濃度經(jīng)計(jì)算獲得剛果紅的降解率,剛果紅降解率的計(jì)算公式如下:
Degradation rate(%)=1—Ct/C0(1)
2.1.1 剛果紅初始濃度的影響
圖2是用超聲球磨法降解濃度分別為100 mg/L,200 mg/L,300 mg/L時(shí)的剛果紅溶液.由圖2可知,在60 min之內(nèi),降解率都達(dá)到了95%以上.
但可以發(fā)現(xiàn)剛果紅的降解效率隨著反應(yīng)物的初始濃度的增加而逐漸降低,這是由于超聲發(fā)生器本身頻率較低,聲強(qiáng)較小,難以在超聲空化過(guò)程中產(chǎn)生足夠多的·OH自由基來(lái)參與氧化反應(yīng).另一方面是由于鐵球表面大量的零價(jià)鐵其還原作用同樣也會(huì)使得剛果紅中的偶氮鍵斷裂.隨著初始濃度的增加,導(dǎo)致反應(yīng)物參與反應(yīng)的幾率大,反應(yīng)向正方向進(jìn)行,但也不是完全按照正比例的關(guān)系進(jìn)行.在反應(yīng)物濃度過(guò)高的情況下,有偶氮染料分子會(huì)爭(zhēng)奪在零價(jià)鐵表面的反應(yīng)位,從而導(dǎo)致反應(yīng)速率下降,反應(yīng)進(jìn)程受阻.
2.1.2 超聲波頻率的影響
由圖3可知,在5 min后,隨著超聲頻率的增加降解速率也不斷增加,并且在30 min時(shí)超聲3種頻率下降解率都已經(jīng)達(dá)到了98%以上.發(fā)生這種現(xiàn)象是由于,當(dāng)超聲強(qiáng)度大于空化閾值時(shí),隨著超聲頻率的增大,聲周期也會(huì)縮短,這使得空化泡的數(shù)目增多[28],而且超聲波作為一種機(jī)械波作用于液體,與球磨相互協(xié)同作用,其產(chǎn)生的負(fù)壓作用也可以導(dǎo)致液體內(nèi)部產(chǎn)生大量的微小氣泡或空穴,促進(jìn)超聲空化[29-30],從而使降解效率提高.
2.1.3 pH值的影響
由圖4可以看出隨著pH的減少降解速率增加,在pH為3時(shí),4 min降解率就達(dá)到了95%以上,而在時(shí)間為12 min時(shí),pH值為5的條件下,達(dá)到了98%.剛果紅pH=3時(shí)溶液呈現(xiàn)出藍(lán)紫色,這種條件下剛果紅以鄰醌式內(nèi)鹽的結(jié)構(gòu)存在,使其更容易擴(kuò)散到空化泡內(nèi)及其氣-液界面上,促進(jìn)羥基自由基的生成,并使其發(fā)生熱解或者被·OH自由基氧化[31].另一方面當(dāng)溶液偏酸性時(shí)會(huì)與鐵球表面反應(yīng),生成Fe2+加快電子的轉(zhuǎn)移,在溶液中發(fā)生類Fenton反應(yīng),從而提高降解速率,當(dāng)溶液偏堿性時(shí),所帶入的OH-會(huì)與生成的鐵離子生成沉淀并附著在鐵球以及鐵粉的表面,阻止反應(yīng)進(jìn)一步的進(jìn)行,所以導(dǎo)致降解速率減小.
2.1.4 最終條件下降解效果
圖5(a)是在初始濃度為100 mg/L、超聲頻率為40 kHz、pH=3的條件下加入0.3 g過(guò)氧化氫后,對(duì)剛果紅進(jìn)行超聲波輔助球磨處理,剛果紅降解率在2 min達(dá)到了99%以上,顏色完全褪去,說(shuō)明剛果紅的偶氮鍵完全斷開.在圖5(b)所示的紫外圖譜中可以看出隨著時(shí)間的增加,剛果紅分子中的官能團(tuán)紫外的衍射峰在2 min中大部分已經(jīng)消失,只有在300 nm后有小部分衍射峰,說(shuō)明剛果紅中大部分的C元素與H元素以CO2和H2O的形式出現(xiàn).降解效率高,產(chǎn)物變化比較徹底.
2.1.5 總碳含量(TOC)檢測(cè)
圖6所示為在最終條件下剛果紅染料降解后的總碳含量測(cè)定.由圖可以看出在10 min時(shí)TOC的去除率達(dá)到了80%,說(shuō)明偶氮染料中的大部分有機(jī)物已被礦化并轉(zhuǎn)變成了二氧化碳和水,該結(jié)果與紫外光譜圖中所示的官能團(tuán)峰的顯示結(jié)果相對(duì)應(yīng),說(shuō)明超聲波輔助球磨法可以將偶氮染料等有機(jī)物徹底地轉(zhuǎn)變?yōu)闊o(wú)機(jī)物,達(dá)到去除污染的目的.剛果紅降解反應(yīng)中TOC變化如表2所示.
2.2 實(shí)驗(yàn)結(jié)果討論
2.2.1 反應(yīng)沉淀物檢測(cè)分析
圖7所示為未加入過(guò)氧化氫條件下反應(yīng)后從溶液中經(jīng)過(guò)真空抽濾、真空干燥后的沉淀物,其成分為Fe3O4,F(xiàn)e,F(xiàn)eO(OH).Fe3O4的來(lái)源中一部分為在鐵球表面發(fā)生反應(yīng)生成的,另一部分為在機(jī)械力和超聲波作用下從鐵球表面剝落的零價(jià)鐵反應(yīng)生成的,此外還有少量未參加反應(yīng)的零價(jià)鐵.零價(jià)鐵反應(yīng)后生成Fe2+,后被氧化成為Fe3+,并與·OH結(jié)合,所以在XRD檢測(cè)分析過(guò)程中,存在FeO(OH).endprint
圖8所示為沉淀物的N吸附脫附曲線.
由圖可以看出吸附質(zhì)與吸附劑的相互作用很弱,低壓下氣體分子僅吸附在固體表面少數(shù)活性位上并優(yōu)先吸附在團(tuán)簇上,說(shuō)明沉淀物發(fā)生了團(tuán)簇現(xiàn)象,這是由于沉淀物的粒徑較小,比表面積較大,易發(fā)生團(tuán)簇.
最終檢測(cè)結(jié)果沉淀物比表面積為90.257/g,平均粒徑估算值為154.54 nm,可以說(shuō)明在反應(yīng)過(guò)程中會(huì)有納米級(jí)零價(jià)鐵的存在,失去電子能力較強(qiáng),而且由于存在較大的比表面積,所以反應(yīng)速率很快,導(dǎo)致偶氮染料分解速度較快.但反應(yīng)速率過(guò)快,所以導(dǎo)致捕捉到的量較少.
2.2.2 反應(yīng)溶液分析
圖9是超聲輔助球磨條件下所檢測(cè)到的羥基自由基的熒光強(qiáng)度圖譜.隨著時(shí)間的增加,溶液中羥基自由基(·OH)峰強(qiáng)度不斷增加,說(shuō)明生成的羥基自由基數(shù)量也不斷增多,其反應(yīng)方程式如下:
H2O+超聲波+ 機(jī)械能→·OH+·H(2)
2·OH→H2O2(3)
Fe0+超聲波→Fe2++2e-(4)
Fe2++H2O2→Fe3++·OH+OH- (5)
由以上反應(yīng)可以看出,超聲(小于100 kHz)可以產(chǎn)生一個(gè)非常大的流體剪切力[32-33],和沖擊力耦合的鐵球之間,使鐵球皮層產(chǎn)生新的反應(yīng)層,從而促進(jìn)反應(yīng)生成的羥基自由基的氧化作用.在另一方面,超聲存在的條件下,零價(jià)鐵也可以形成Fe2+,F(xiàn)e2+和H2O2 [16]之間會(huì)發(fā)生類似芬頓的反應(yīng) (式(5)),使得反應(yīng)速率增加.超聲球磨的條件下,隨著時(shí)間的增加,峰強(qiáng)不斷上升,表明羥基自由基數(shù)目不斷增加,明顯多于單獨(dú)球磨和單獨(dú)超聲波過(guò)程中所產(chǎn)生的羥基自由基數(shù)量.
圖10是在不同反應(yīng)條件下所測(cè)得的溶液的電導(dǎo)率.由圖可以清楚地看出,在超聲波球磨的條件下溶液的電導(dǎo)率值最大,而且隨著時(shí)間的增加還繼續(xù)不斷增大,這是由于在此條件下產(chǎn)生的羥基自由基最多,同時(shí)反應(yīng)過(guò)程中零價(jià)鐵的還原作用會(huì)使得偶氮鍵斷裂并且生成大量的Fe2+和Fe3+ 離子[34-35],導(dǎo)致溶液的電導(dǎo)率增大.其反應(yīng)方程式如下:
Fe0 + ─N═N─ → Fe2++ ─N─N─(6)
在單獨(dú)超聲波作用的條件下,溶液中電導(dǎo)率先升高后不再變化,這是由于在只有超聲波作用的條件下,剛果紅分子中存在的SO32-游離在溶液中.在單獨(dú)球磨過(guò)程中體系內(nèi)以機(jī)械能的形式進(jìn)行能量輸入,當(dāng)其達(dá)到能量閾值時(shí)水分子發(fā)生斷鍵,生成羥基自由基,使剛果紅被降解,但由于單獨(dú)球磨時(shí)沒(méi)有超聲波作用產(chǎn)生的Fe2+較少,生成后馬上參與反應(yīng)生成Fe3O4沉淀,導(dǎo)致溶液的電導(dǎo)率趨于穩(wěn)定.而且可以看出超聲球磨過(guò)程溶液電導(dǎo)率遠(yuǎn)比單獨(dú)超聲或單獨(dú)球磨條件下的效果好,這是由于除了會(huì)發(fā)生式(6)的反應(yīng)外,式(4)和式(5)的反應(yīng)也會(huì)發(fā)生,此時(shí)溶液中所產(chǎn)生的Fe2+和Fe3+遠(yuǎn)大于其他2種條件所產(chǎn)生的離子量,導(dǎo)致電導(dǎo)率增長(zhǎng)速率最高,由此可以看出在超聲波與機(jī)械球磨的耦合作用下效果最佳.
3 結(jié) 論
1)超聲波輔助球磨降解剛果紅的效率高,在2 min時(shí)的降解率達(dá)到99%以上.最佳的工藝參數(shù):初始濃度為100 mg/L,超聲波頻率為40 kHz,pH值為3.
2)超聲輔助球磨工藝可以使偶氮染料的總碳含量(TOC)在4 min內(nèi)降解到80%.
3) 超聲輔助球磨工藝降解有機(jī)染料機(jī)理為:偶氮染料分子會(huì)與鐵球表層的零價(jià)鐵接觸,在羥基自由基的作用下發(fā)生氧化反應(yīng)生成Fe3O4和FeO(OH)沉淀物,并附著在鐵球表面,再通過(guò)超聲波以及球磨的機(jī)械作用將表層沉淀物剝落形成新的反應(yīng)層,新的反應(yīng)層繼續(xù)反應(yīng).周而復(fù)始,反應(yīng)中生成的Fe2+會(huì)與在超聲波空化作用下生成的H2O2發(fā)生類Fenton的反應(yīng),生成羥基自由基推進(jìn)反應(yīng)向正方向進(jìn)行,此外在鐵球撞擊的過(guò)程中也會(huì)剝落一定的零價(jià)鐵,其比表面積較大,參與反應(yīng)時(shí)反應(yīng)速率較快,從而推進(jìn)了反應(yīng)的進(jìn)行.
參考文獻(xiàn)
[1] CRINI G. Non-conventional low-cost adsorbents for dye removal: a review[J]. Bioresource Technology,2006,97(9): 1061-1085.
[2] FORGACS E,CSERHATI T,OROS G. Removal of synthetic dyes from wastewaters: a review[J].Environment International,2004 ,30(7):953-971.
[3] SINGH R L,SINGH P K,SINGH R P. Enzymatic decolorization and degradation of azo dyes-a review[J]. International Biodeterioration & Biodegradation,2015,104:21-31.
[4] YAGUB M T,SEN T K,AFROZE S,et al.Dye and its removal from aqueous solution by adsorption: a review[J]. Advances in Colloid and Interface Science,2014,209:172-184.
[5] YAMJALA K,NAINAR M S,RAMISETTI N R. Methods for the analysis of azo dyes employed in food industry-a review[J]. Food Chemistry,2016,92:813-824.
[6] 江傳春,肖蓉蓉,楊平. 高級(jí)氧化技術(shù)在水處理中的研究進(jìn)展[J]. 水處理技術(shù),2011,37(7):12-33.endprint
JIANG Chuanchun,XIAO Rongrong,YANG Ping. Research process of advanced oxidation processes in wastewater treatment[J]. Technology of Water Treatment,2011,37(7):12-33.(In Chinese)
[7] 劉晶冰,燕磊,白文榮,等. 高級(jí)氧化技術(shù)在水處理的研究進(jìn)展[J]. 水處理技術(shù),2011,37(3):11-17.
LIU Jingbing,YAN Lei,BAI Wenrong,et al. Study progress of water treatment by advanced oxidation processes[J]. Technology of Water Treatment,2011,37(3):11-17.(In Chinese)
[8] CAI M,SU J,ZHU Y,et al. Decolorization of azo dyes orange using hydrodynamic cavitation coupled with heterogeneous fenton process[J]. Ultrasonics Sonochemistry,2016,28:302-310.
[9] HARICHANDRAN G,PRASAD S. Sono fenton degradation of an azo dye,direct red[J]. Ultrasonics Sonochemistry,2016,29:178-185.
[10]SATHISHKUMAR P,MANGALARAJA R V,ANANDAN S. Review on the recent improvements in sonochemical and combined sono chemical oxidation processes-a powerful tool for destruction of environmental contaminants[J]. Renewable and Sustainable Energy Reviews,2016,55:426-454.
[11]WANG Y F,DAN Z,MA W H,et al Enhanced sonocatalytic degradation of azo dyes by Au/TiO2[J]. Environmental Science & Technology,2008,42: 6173-6178.
[12]ARAB C M,BAGHERIAN G,JAVID A,et al. Synthesis of Ag-ZnO with multiple rods (multipods) morphology and its application in the simultaneous photo-catalytic degradation of methyl orange and methylene blue[J].Spectrochimica Acta Part A,Molecular and Biomolecular Spectroscopy,2015,150:230-237.
[13]DALODIERE E,VIROT M,MOISY P,et al. Effect of ultrasonic frequency on H2O2 sonochemical formation rate in aqueous nitric acid solutions in the presence of oxygen[J].Ultrasonics Sonochemistry,2016,29: 198-204.
[14]LEI X F,CHEN C,LI X,et al. Study on ultrasonic degradation of methyl orange wastewater by modified steel slag[J]. Applied Mechanics and Materials,2014,662:125-128.
[15]YUAN N,ZHANG G,GUO S,et al. Enhanced ultrasound-assisted degradation of methyl orange and metronidazole by rectorite-supported nanoscale zero-valent iron[J]. Ultrasonics Sonochemistry,2016,28:62-68.
[16]ZHAO H,ZHANG G,ZHANG Q. MnO2/CeO2 for catalytic ultrasonic degradation of methyl orange[J]. Ultrasonics Sonochemistry,2014,21(3):991-996.
[17]BENLI H,BAHTIYARI M I. Combination of ozone and ultrasound in pretreatment of cotton fabrics prior to natural dyeing[J]. Journal of Cleaner Production,2015,89:116-124.
[18]TEZCANLI-GUYER G,INCE N H. Individual and combined effects of ultrasound,ozone and UV irradiation: a case study with textile dyes[J]. Ultrasonics,2004,42(1/9):603-609.endprint
[19]HE Y,GRIESER F,ASHOKKUMAR M. The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions[J]. Ultrasonics Sonochemistry,2011,18(5):974-980.
[20]KUMAR R,KUMAR G,AKHTAR M S, et al. Sonophotocatalytic degradation of methyl orange using ZnO nano-aggregates[J]. Journal of Alloys and Compounds,2015,629:167-172.
[21]DONG Yongchun,DU Fang,HAN Zhenbang.Coordination structure between modified pan fiber and Fe(Ⅲ) Ion and its catalytic function on degradation of azo dyes[J]. Acta Physico-Chimica Sinica,2008,24(1):2114-2121.
[22]SHI Jingying,LENG Wenhua,CHENG Xiaofang,et al. Photocatalytic oxidation ofmethyl red by TiO2 in a photoelectrochemical cell[J]. Acta Physico-Chimica Sinica,2005,21(9):971- 976.
[23]CHEN D,AI S,LIANG Z,et al. Preparation and photocatalytic properties of zinc oxide nanoparticles by microwave-assisted ball milling[J]. Ceramics International,2016,42(2):3692-3696.
[24]CHEN D,LI D Y,ZHANG Y Z, et al. Preparation of magnesium ferrite nanoparticles by ultrasonic wave-assisted aqueous solution ball milling[J]. Ultrasonics Sonochemistry,2013,20(6):1337-1340.
[25]CHEN L,CHEN Z,CHEN D,et al. Removal of hexavalent chromium from contaminated waters by ultrasound-assisted aqueous solution ball milling[J]. Journal of Environmental Sciences,2016,52:276-283.
[26]袁麗,陳鼎,廖紅東,等.超聲波預(yù)處理下的稀酸-球磨系統(tǒng)降解樺木木屑[J].湖南大學(xué)學(xué)報(bào):自然科學(xué)報(bào),2012,39(12):68-72.
YUAN Li,CHEN Ding,LIAO Hongdong,et al. Ultrasonic-assisted ball milling hydrolysis of brich wood with dilute citric acid[J]. Journal of Hunan University:Natural Sciences,2012,39(12):68-72.
[27]YUAN Z,CHEN Z H,CHEN D, et al. Analyses of factors affecting nickel ferrite nanoparticles synthesis in ultrasound-assisted aqueous solution ball milling[J]. Ultrasonics Sonochemistry,2015,22:188-197.
[28]TRAN K V,KIMURA T,KONDO T,et al.Quantification of frequency dependence of mechanical effects induced by ultrasound[J]. Ultrasonics Sonochemistry,2014,21(2):716-721.
[29]PDTRIER C,F(xiàn)RANCONY A. Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation[J]. Ultrasonics Sonochemistry,1997,4(4):295-300.
[30]PETRIER C,F(xiàn)RANCONY A. Incidence of wave-frequwncy on the reaction rates during ultrasonic wastewater treatment[J]. Water Science & Technology,1997,35(4):175-180.
[31]INCE N H,UYER GT-G. Impacts of pH and molecular structure on ultrasonic degradation of azo dyes[J]. Ultrasonics,2004,42(1/9):591-596.
[32]TIEHML A,.NICKEL K,ZELLHORN M,et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research,2001,35(8):2003-2009.
[33]MARK G,TAUBER A,LAUPERT R D,et al. OH-radical formation by ultrasound in aqueous solution-Part II:Terephthalate and fricke dosimetry and the influence of various conditions on the sonolytic yield[J]. Ultrasonics Sonochemistry,1998,5(2):41-52.
[34]FENG W,NANSHENG D,HELIN H. Degradation mechan-ism of azo dye C. I. reactive red 2 by iron powder reduction and photooxidation in aqueous solutions[J]. Chemosphere,2000,41(8):1233-1238.
[35]ZHANG H,DUAN L,ZHANG Y,et al. The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zero-valent iron[J]. Dyes and Pigments,2005,65(1):39-43.endprint