国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

實(shí)體瘤CART治療面臨的挑戰(zhàn)*

2018-01-24 03:43:46RojinaShilpakar魏云巍
中國免疫學(xué)雜志 2018年4期
關(guān)鍵詞:檢查點(diǎn)免疫抑制屏障

丁 爍 趙 磊 Rojina Shilpakar 魏云巍

(哈爾濱醫(yī)科大學(xué)附屬第一醫(yī)院腫瘤腔鏡外科,哈爾濱 150001)

近年來,嵌合抗原受體(CAR)修飾T 細(xì)胞在治療腫瘤中取得了很大進(jìn)展。CART細(xì)胞(Chimeric antigen receptor T cell,CART)將能識別腫瘤相關(guān)抗原(Tumor associate antigen,TAA)的單鏈抗體和能促進(jìn)T 細(xì)胞活化的信號傳遞結(jié)構(gòu)域融合表達(dá)于自體T 細(xì)胞的表面,從而賦予該T 細(xì)胞以腫瘤靶向的殺傷活性和持久擴(kuò)增的能力,抗體與相應(yīng)的腫瘤抗原結(jié)合后能使T 細(xì)胞活化,進(jìn)而發(fā)揮抗腫瘤效應(yīng)。不同于生理性的TCR,重組CARs 與抗原的結(jié)合不需要依賴于MHC的遞呈,有效避免了腫瘤細(xì)胞MHC 表達(dá)下調(diào)這一免疫逃逸機(jī)制;同時,CARs 不僅能夠與蛋白質(zhì)結(jié)合,還能識別糖類、神經(jīng)節(jié)苷脂、蛋白多糖、高度糖基化的蛋白,更加廣譜殺傷腫瘤細(xì)胞。CART 在血液腫瘤治療中獲得了突破,但由于受實(shí)體瘤中微環(huán)境復(fù)雜、免疫逃逸機(jī)制多樣、腫瘤抗原靶點(diǎn)繁雜、且實(shí)體瘤體積大、CART細(xì)胞難以歸巢到腫瘤組織等多方面因素的影響,CART 在實(shí)體瘤的治療實(shí)踐中仍有部分障礙。本文針對CART實(shí)體瘤治療存在的問題及目前研究的現(xiàn)狀綜述如下。

1 腫瘤微環(huán)境

實(shí)體腫瘤的微環(huán)境對其增殖、轉(zhuǎn)移、免疫逃逸等生物學(xué)行為具有重要的推動作用。實(shí)體腫瘤與血液腫瘤不同,其微環(huán)境中存在大量的纖維基質(zhì)和免疫抑制細(xì)胞,同時通過物理屏障和免疫屏障保護(hù)腫瘤組織、抵抗免疫細(xì)胞的攻擊[1]。因此,針對實(shí)體腫瘤微環(huán)境的CART治療方式有望起到一定的效果。

1.1物理屏障 惡性腫瘤微環(huán)境中的物理屏障由其周圍基質(zhì)組成,其中包括大量的纖維結(jié)締組織等[2]。這些基質(zhì)成分不僅通過物理方式阻止免疫細(xì)胞進(jìn)入腫瘤微環(huán)境與腫瘤細(xì)胞接觸,而且通過與微環(huán)境的其他物質(zhì)和腫瘤細(xì)胞的相互作用影響腫瘤細(xì)胞的增殖、轉(zhuǎn)移等[3]。如在胰腺癌腫瘤微環(huán)境中透明質(zhì)酸(Hyaluronan)含量明顯增多,并且其與胰腺癌的病理類型和生物學(xué)行為密切相關(guān)[4-6]。腫瘤細(xì)胞的物理屏障同樣阻止了CART細(xì)胞的浸潤,針對這種情況Moon等[7]和Wang等[8]都分別研發(fā)了靶向成纖維細(xì)胞活化蛋白(Fibroblast activation protein,FAP)的CART細(xì)胞,使腫瘤周圍纖維結(jié)締組織形成減少,從而增加淋巴細(xì)胞的浸潤。

1.2免疫屏障 有些實(shí)體腫瘤組織中TIL的數(shù)量并不少,但對腫瘤殺傷作用仍不明顯,其中TME的免疫屏障起到重要作用[9]。免疫屏障主要是對TIL起免疫抑制作用,其中調(diào)節(jié)性T細(xì)胞、骨髓抑制細(xì)胞、巨噬細(xì)胞和腫瘤細(xì)胞本身及其分泌的因子均參與了對T細(xì)胞的免疫抑制作用。CART細(xì)胞與腫瘤浸潤性淋巴細(xì)胞(Tumor-infiltrating lymphocytes,TIL)相似,在腫瘤微環(huán)境中同樣接受復(fù)雜的信號網(wǎng)絡(luò)調(diào)節(jié)。①免疫檢查點(diǎn)(Checkpoint):免疫檢查點(diǎn)其實(shí)是腫瘤細(xì)胞和免疫細(xì)胞調(diào)節(jié)的抑制信號。當(dāng)T細(xì)胞與腫瘤細(xì)胞接觸時,腫瘤細(xì)胞上的免疫檢查點(diǎn)受體通過與T細(xì)胞上的配體相結(jié)合,抑制T細(xì)胞發(fā)揮抗腫瘤作用。目前發(fā)現(xiàn)的免疫檢查點(diǎn)很多,如程序性細(xì)胞死亡蛋白/受體1(Programmed cell death protein 1,PD-1/PDL-1)、細(xì)胞毒性T細(xì)胞抗原4(Cytotoxic T lymphocyte antigen 4,CTLA-4)、淋巴細(xì)胞活化基因3蛋白(Lymphocyte activation gene 3 protein,LAG3)、T細(xì)胞免疫球蛋白黏蛋白3(T cell immunoglobulin domain and mucin domain-containing protein 3,TIM3)等[10]。其中CTLA4和PD-1/PDL-1是目前研究最多也最具有代表性的靶點(diǎn)。CTLA-4位于細(xì)胞膜,當(dāng)其上調(diào)時可抑制CD28和B7的共刺激激活信號并使T細(xì)胞的細(xì)胞周期停滯、阻止其增殖[11-14]。PD-1則通過與PDL-1結(jié)合抑制T細(xì)胞激酶信號的激活,阻止T細(xì)胞活化[15]。針對免疫檢查點(diǎn)抑制,CART治療目前采用兩種改進(jìn)策略:一種為CART與免疫檢查點(diǎn)抑制劑如Nivolumab和Pembrolizumab等聯(lián)合用藥[16];另一種為制備靶向免疫檢查點(diǎn)的CART細(xì)胞[17]。兩種方式均取得了良好的效果,但仍有待大量研究加以證實(shí)。②免疫抑制細(xì)胞:實(shí)體腫瘤微環(huán)境中包含了大量免疫抑制細(xì)胞,如調(diào)節(jié)性T細(xì)胞(Regulatory T-cells,Tregs)、腫瘤相關(guān)巨噬細(xì)胞(Tumor-associated macrophages,TAMs)、骨髓源性細(xì)胞(Myeloid-derived suppressor cells,MDSCs)等。這些免疫抑制細(xì)胞及其分泌的抑制性因子如IL-10、IL-4等通過調(diào)控復(fù)雜的信號網(wǎng)絡(luò)抑制CART細(xì)胞激活或增加微環(huán)境纖維基質(zhì)含量,阻止其與腫瘤細(xì)胞接觸以及對腫瘤細(xì)胞的殺傷[18]。③腫瘤細(xì)胞本身因素:實(shí)體瘤占惡性腫瘤的絕大多數(shù)且種類繁多,各種惡性腫瘤組織來源不同、內(nèi)部結(jié)構(gòu)不一、各部分細(xì)胞分化程度各異,加之患者間的個體差異,使得CART靶向治療可能僅對腫瘤的部分細(xì)胞有效,有時甚至?xí)黾幽[瘤復(fù)發(fā)和轉(zhuǎn)移的風(fēng)險(xiǎn)[19,20]。

2 CART細(xì)胞靶點(diǎn)的選擇

腫瘤表面的抗原可分為相關(guān)性抗原(TAA)和特異性抗原(TSA)兩類。在實(shí)體瘤治療研究的早期,CART細(xì)胞多針對實(shí)體腫瘤的TAA而非TSA,容易產(chǎn)生“脫靶效應(yīng)”,導(dǎo)致正常組織的損傷[21]。為使CART細(xì)胞更具安全性,研究中多從以下三個方面對CART細(xì)胞加以改進(jìn):①在CART細(xì)胞中加入“自殺基因”,如HSV-tk、Caspase9等。這些“自殺基因”可根據(jù)需要(如患者CRS反應(yīng)劇烈時)中止CART細(xì)胞的殺傷效應(yīng),表達(dá)HSV-tk的CART細(xì)胞可以在更昔洛韋的刺激下發(fā)生凋亡[22];表達(dá)Caspase9的CART細(xì)胞也同樣可以在小分子藥物A1903的作用下發(fā)生凋亡[23]。但實(shí)際中“自殺基因”并不是對所有CART細(xì)胞均有效,且有些轉(zhuǎn)染的“自殺基因”如HSV-tk會自身激活造成CART細(xì)胞的無辜消耗并影響其殺傷效果[22]。近年來,CD20和EGFR也被嘗試用于CART細(xì)胞的“自殺基因”[24,25],可分別經(jīng)利妥昔單抗和西妥昔單抗刺激后導(dǎo)致細(xì)胞死亡,但其功效仍有待進(jìn)一步確認(rèn)。②選擇腫瘤特異性更強(qiáng)的靶點(diǎn)。理論上選擇特異性腫瘤靶點(diǎn)是解決“脫靶效應(yīng)”的最好方式。然而,CART細(xì)胞只能識別腫瘤細(xì)胞表面的抗原靶點(diǎn),因此尋找僅在腫瘤細(xì)胞膜上特異性表達(dá)的靶點(diǎn)并非易事。表皮生長因子變異受體(Epidermal growth factor receptor variant Ⅲ,EGFRvⅢ)和多態(tài)性上皮黏蛋白1(Mucin 1,MUC1)是實(shí)體瘤CART治療中研究最多的特異性抗原。人源化的EGFRvⅢ抗體主要用于腦膠質(zhì)瘤的治療,前期研究顯示靶向EGFRvⅢ的CART細(xì)胞和NK細(xì)胞均對腦膠質(zhì)瘤細(xì)胞殺傷作用明顯同時不損傷正常組織[26,27]。MUC1是一種高糖基化、高分子量的膜蛋白,靶向MUC1的CART細(xì)胞也被認(rèn)為是一種可行的抗腫瘤方式[28]。Posey等[29]近期研究也表明,靶向Tn-MUC1的CART細(xì)胞可在體內(nèi)外殺傷白血病和胰腺癌細(xì)胞。然而,TSA的臨床試驗(yàn)未見大宗病例報(bào)道,其有效性和安全性仍待臨床試驗(yàn)評估。③制備非永久表達(dá)CART細(xì)胞。通常情況下編碼CAR的基因通過病毒轉(zhuǎn)染至T細(xì)胞DNA中,使其能夠永久性表達(dá)。但考慮到目前可用的實(shí)體瘤靶點(diǎn)多為TAA,CART細(xì)胞永久表達(dá)可能對擁有相同TAA的正常組織造成損傷。間皮素是腫瘤細(xì)胞的TAA,其在正常組織中也有少量表達(dá)[30]。Beatty等[31]將表達(dá)間皮素CAR的mRNA序列轉(zhuǎn)染至患者T細(xì)胞中,在治療中他們發(fā)現(xiàn),這種CART細(xì)胞僅在人體內(nèi)存在1~2個月,在此期間胰腺癌患者腹腔轉(zhuǎn)移灶明顯好轉(zhuǎn)而且未對其他臟器造成損害。④增加CAR對腫瘤細(xì)胞的識別能力。腫瘤細(xì)胞本身具備多種抗原可供識別,但傳統(tǒng)CART細(xì)胞一般只能識別一種抗原,一旦其所識別的抗原為TAA就可能產(chǎn)生“脫靶效應(yīng)”。Roybal等[32]設(shè)計(jì)了一種識別雙抗原的CART細(xì)胞,首先CART細(xì)胞識別腫瘤細(xì)胞A抗原并激活細(xì)胞內(nèi)CAR編碼序列表達(dá),CAR表達(dá)后其表面的單鏈抗體再識別腫瘤細(xì)胞的B抗原,從而激活CART細(xì)胞并殺傷腫瘤細(xì)胞。這些靶向雙抗原的CART細(xì)胞可以殺傷表達(dá)雙抗原的腫瘤細(xì)胞,使殺傷更為精準(zhǔn),同時避免了“脫靶效應(yīng)”的發(fā)生[33]。Cao等[34]還設(shè)計(jì)了一種雙結(jié)構(gòu)的轉(zhuǎn)換器,轉(zhuǎn)換器一端連接CART細(xì)胞表面的單鏈抗體、另一端連接腫瘤細(xì)胞表面的抗原。通過使不同轉(zhuǎn)換器與不同抗原結(jié)合,達(dá)到利用單一CART細(xì)胞治療多種腫瘤和識別腫瘤細(xì)胞多個靶點(diǎn)的目的,從而使CART治療更為精準(zhǔn)、可控。

3 T細(xì)胞代謝變化

實(shí)體腫瘤周圍往往伴隨血管畸形和纖維結(jié)締組織增生,形成低氧、酸性、缺乏必需氨基酸(精氨酸、色氨酸等)的微環(huán)境。在這種環(huán)境下,浸潤T細(xì)胞存活困難、激活障礙,較難達(dá)到理想的腫瘤殺傷效果[7]。精氨酸和色氨酸是T細(xì)胞激活所需要的重要物質(zhì),精氨酸酶和吲哚胺2,3二氧化酶(Indoleamine 2,3 Dioxygenase,IDO)可分別分解精氨酸和色氨酸,從而調(diào)節(jié)T細(xì)胞的激活狀態(tài)。在腫瘤微環(huán)境中,腫瘤細(xì)胞和骨髓細(xì)胞均會分泌上述兩種酶,通過減少精氨酸和色氨酸的含量,阻礙T細(xì)胞的增殖和持續(xù)激活[35,36]。Mussai等[37]研究表明,神經(jīng)母細(xì)胞瘤可通過過表達(dá)精氨酸酶Ⅱ抑制靶向GD2的CART細(xì)胞在微環(huán)境內(nèi)的增殖。Ninomiya等[38]也證實(shí),抑制IDO活性后,CART細(xì)胞增殖和殺傷能力均增強(qiáng)、分泌細(xì)胞因子增加。然而,此類研究仍較少,可能會成為今后實(shí)體瘤治療研究的方向之一。

綜上所述,實(shí)體腫瘤中存在物理屏障、免疫屏障等諸多因素影響CART細(xì)胞的治療效果。雖然CART細(xì)胞實(shí)體瘤的臨床前實(shí)驗(yàn)取得了進(jìn)展,但無論是尋找不同腫瘤的適宜靶點(diǎn)、突破腫瘤微環(huán)境的抑制作用,還是增強(qiáng)CART細(xì)胞本身的殺傷效率和持續(xù)時間,都需要進(jìn)一步的臨床前實(shí)驗(yàn)和臨床實(shí)驗(yàn)去突破和證實(shí)。

參考文獻(xiàn):

[1] Stromnes IM,Schmitt TM,Hulbert A,etal.T cells engineered against a native antigen can surmount immunologic and physical barriers to treat pancreatic ductal adenocarcinoma[J].Cancer Cell,2015,28(5):638-652.

[2] DuFort CC,DelGiorno KE,Hingorani SR.Mounting pressure in the microenvironment:fluids,solids,and cells in pancreatic ductal adenocarcinoma[J].Gastroenterology,2016,150(7):1545.

[3] Klemm F,Joyce JA.Microenvironmental regulation of therapeutic response in cancer[J].Trends Cell Biol,2015,25(4):198-213.

[4] Sato N,Kohi S,Hirata K,etal.Role of hyaluronan in pancreatic cancer biology and therapy:Once again in the spotlight[J].Cancer Sci,2016,107(5):569-575.

[5] Toole BP.Hyaluronan:from extracellular glue to pericellular cue[J].Nat Rev Cancer,2004,4(7):528-539.

[6] Jacobetz MA,Chan DS,Neesse A,etal.Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer[J].Gut,2013,62(1):112-120.

[7] Moon EK,Wang LC,Dolfi DV,etal.Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors[J].Clin Cancer Res,2014,20(16):4262-4273.

[8] Wang LCS,Lo A,Scholler J,etal.Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity[J].Cancer Immunol Res,2013,2(2):154-166.

[9] Adusumilli PS,Cherkassky L,Villena-Vargas J,etal.Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity[J].Sci Transl Med,2014,6(261):261ra151.

[10] Speiser DE,Ho PC,Verdeil G.Regulatory circuits of T cell function in cancer[J].Nat Rev Immunol,2016,16(10):599-611.

[11] Schneider H,Downey J,Smith A,etal.Reversal of the TCR stop signal by CTLA-4[J].Science,2006,313(5795):1972-1975.

[12] Riley JL,Mao M,Kobayashi S,etal.Modulation of TCR-induced transcriptional profiles by ligation of CD28,ICOS,and CTLA-4 receptors[J].Prac Natl Acad Sci USA,2002,99(18):11790-11795.

[13] Waterhouse P,Penninger JM,Timms E,etal.Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4[J].Science,1995,270(5238):985-988.

[14] Qureshi OS,Zheng Y,Nakamura K,etal.Trans-endocytosis of CD80 and CD86:a molecular basis for the cell-extrinsic function of CTLA-4[J].Science,2011,332(6029):600-603.

[15] Freeman GJ,Long AJ,Iwai Y,etal.Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation[J].J Exp Med,2000,192(7):1027-1034.

[16] Khalil DN,Smith EL,Brentjens RJ,etal.The future of cancer treatment:immunomodulation,CARs and combination immunotherapy[J].Nat Rev Clin Oncol,2016,13(5):273-290.

[17] Liu X,Ranganathan R,Jiang S,etal.A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors[J].Cancer Res,2016,76(6):1578-1590.

[18] Jin C,Yu D,Essand M.Prospects to improve chimeric antigen receptor T-cell therapy for solid tumors[J].Immunotherapy,2016,8(12):1355-1361.

[19] Roessler S,Budhu A,Wang XW.Deciphering cancer heterogeneity:the biological space[J].Front Cell Dev Biol,2014,2:12.

[20] Zhang H,Ye ZL,Yuan ZG,etal.New strategies for the treatment of solid tumors with CAR-T cells[J].Int J Biol Sci,2016,12(6):718-729.

[21] Lamers CH,Sleijfer S,Vulto AG,etal.Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX:first clinical experience[J].J Clin Oncol,2006,24(13):e20-22.

[22] Berger C,Flowers ME,Warren EH,etal.Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation[J].Blood,2006,107(6):2294-2302.

[23] Di Stasi A,Tey SK,Dotti G,etal.Inducible apoptosis as a safety switch for adoptive cell therapy[J].New Engl J Med,2011,365(18):1673-1683.

[24] Vogler I,Newrzela S,Hartmann S,etal.An improved bicistronic CD20/tCD34 vector for efficient purification and in vivo depletion of gene-modified T cells for adoptive immunotherapy[J].Gene Ther,2010,18(7):1330-1338.

[25] Wang X,Chang WC,Wong CW,etal.A transgene-encoded cell surface polypeptide for selection,in vivo tracking,and ablation of engineered cells[J].Blood,2011,118(5):1255-1263.

[26] Johnson LA,Scholler J,Ohkuri T,etal.Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma[J].Sci Transl Med,2015,7(275):275ra222.

[27] Muller N,Michen S,Tietze S,etal.Engineering NK cells modified with an EGFRvⅢ-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1alpha-secreting glioblastoma[J].J Immunother,2015,38(5):197-210.

[28] Maher J,Wilkie S.CAR mechanics:driving T cells into the MUC of cancer[J].Cancer Res,2009,69(11):4559-4562.

[29] Posey AD Jr,Schwab RD,Boesteanu AC,etal.Engineered CAR T cells targeting the cancer-associated tn-glycoform of the membrane mucin MUC1 control adenocarcinoma[J].Immunity,2016,44(6):1444-1454.

[30] Morello A,Sadelain M,Adusumilli PS.Mesothelin-targeted CARs:Driving T cells to solid tumors[J].Cancer Discov,2016,6(2):133-146.

[31] Beatty GL,Haas AR,Maus MV,etal.Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies[J].Cancer Immunol Res,2014,2(2):112-120.

[32] Roybal KT,Rupp LJ,Morsut L,etal.Precision tumor recognition by T cells with combinatorial antigen-sensing circuits[J].Cell,2016,164(4):770-779.

[33] Chen C,Li K,Jiang H,etal.Development of T cells carrying two complementary chimeric antigen receptors against glypican-3 and asialoglycoprotein receptor 1 for the treatment of hepatocellular carcinoma[J].Cancer Immunol Immunother,2017,66(4):475.

[34] Cao Y,Rodgers DT,Du J,etal.Design of switchable chimeric antigen receptor T cells taregting breast cancer[J].Angew Chem Int Ed Engl,2016,55(26):7520-7524.

[35] Munn DH,Mellor AL.Indoleamine 2,3-dioxygenase and tumor-induced tolerance[J].J Clin Invest,2007,117(5):1147-1154.

[36] Bronte V,Zanovello P.Regulation of immune responses by L-arginine metabolism[J].Nat Rev Immunol,2005,5(8):641-654.

[37] Mussai F,Egan S,Hunter S,etal.Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity[J].Cancer Res,2015,75(15):3043-3053.

[38] Niomiya S,Narala N,Huye L,etal.Tumor iodoleamine 2,3-dioxygenase(IDO)inhiubits CD19-CAR T cells and is downregulated by lymphodepleting drugs[J].Blood,2015,125(25):3905-3916.

猜你喜歡
檢查點(diǎn)免疫抑制屏障
咬緊百日攻堅(jiān) 筑牢安全屏障
Spark效用感知的檢查點(diǎn)緩存并行清理策略①
屏障修護(hù)TOP10
免疫檢查點(diǎn)抑制劑相關(guān)內(nèi)分泌代謝疾病
豬免疫抑制性疾病的病因、發(fā)病特點(diǎn)及防控措施
一道屏障
免疫檢查點(diǎn)抑制劑在腫瘤治療中的不良反應(yīng)及毒性管理
防控豬群免疫抑制的技術(shù)措施
維護(hù)網(wǎng)絡(luò)安全 筑牢網(wǎng)絡(luò)強(qiáng)省屏障
丹參總酚酸對大鼠缺血性腦卒中后免疫抑制現(xiàn)象的改善作用
达孜县| 永丰县| 柘城县| 通许县| 新蔡县| 兴安盟| 芷江| 台前县| 山西省| 宣威市| 东港市| 成都市| 盖州市| 榕江县| 台东市| 肃宁县| 镇江市| 宁津县| 岳阳县| 洛隆县| 南江县| 民权县| 临桂县| 福海县| 巴楚县| 申扎县| 宝丰县| 金寨县| 耿马| 萨嘎县| 姜堰市| 日土县| 九台市| 六枝特区| 遂川县| 临夏县| 吉林市| 分宜县| 上栗县| 庆元县| 宁波市|